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Abstract— We consider the problem of fitting given data
(u1,%1),- .-, (Um,ym) where u; € R™ and y; € R with a convex
polynomial f. A technique to solve this problem using sum of
squares polynomials is presented. This technique is extended
to enforce convexity of f only on a specified region. Also,
an algorithm to fit the convex hull of a set of points with a
convex sub-level set of a polynomial is presented. This problem
is a natural extension of the problem of finding the minimum
volume ellipsoid covering a set. The algorithm, like that for the
minimum volume ellipsoid problem, has the property of being
invariant to affine coordinate transformations. We generalize
this technique to fit arbitrary unions and intersections of
polynomial sub-level sets.

I. INTRODUCTION

We consider the problem of fitting given data

(u17y1)7 sy (umaym)

with u; € R™ and y; € R with a convex polynomial f.
Given polynomials pq,...,p, in n variables, we restrict
the polynomials we are considering so that f has the form

f201P1+"'+prwa

where ¢; fori =1,...,w, are reals. We would like to choose

variables ¢ = (c1, ..., ¢y). For example, this description of

f allows us to describe the set of polynomials of degree less

than a constant or the polynomials of a specific degree.
Using least-squares fitting we obtain the problem

minimize > .-, (f(u;) — yi)? 0
subject to f is convex,
One may also consider other norms but we will use the above
formulation in this paper.

In some special cases the solution to this problem is
known. If, for example, the polynomials p; are such that
f is affine in x and therefore convex, we have that f has
the form f = ¢; + cox1 + -+ + ¢py12, and the problem
becomes

minimize Z:il(f(uz) —yi)?.

This is a least-squares problem with variable c; and it has
an analytical solution.
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If instead the polynomials p; have degree less than or equal
to 2 then f is a quadratic form and can be written as

flx) = T Az +bTx + 1,

where A, b, and r linearly depend on c. Since imposing the
convexity of f is equivalent to imposing A to be positive
semidefinite, the problem becomes
minimize Y .-, (f(u;) — yi)?
subject to  f(z) = 2T Az + bTx + 1,
A > 0.

This problem is a semidefinite program (SDP) [BV03] with
variables A, b, and r and can be solved efficiently.

In the general case, if we consider the set C of coefficients
such that f is convex

C={c| f=cap1+ + capw, [ is convex},

problem (1) can be rewritten as

minimize
subject to
Since the set C is convex, this is a convex optimization
problem. Nevertheless, since there is no known tractable
description of the set C in general and so the problem is
hard to solve.
We will consider a subset of C so that the problem
becomes tractable. We will also show conditions under which
one can solve the original problem exactly.

II. CONVEX POLYNOMIALS VIA SOS

We first consider the problem of imposing convexity on a
generic polynomial f in n variables of the form f = c¢1p; +
-+ cyPw Where p;, ¢ = 1,...,w, are given polynomials
in n variables, ¢ = (c1,...,c,) € RY, and d is the degree
of f.

We know that a necessary and sufficient condition for f
to be convex is that

h=s"V?f(z)s >0 forall z,s. 3)

Notice that h is a polynomial expression with variables s
and = and moreover is of the same degree d as f.
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A polynomial ¢(t) such that g(¢t) > 0 for all t € R" is
called positive semidefinite (PSD). Therefore f is convex if
and only if h is PSD.

Except for special cases (e.g., n = 1 or d = 2), it is NP-
hard to determine whether or not a given polynomial is PSD,
let alone solve an optimization problem, with the coefficients
of ¢ as variables, with the constraint that A is PSD.

A famous sufficient condition for a polynomial to be PSD
is that it has the form

g(x) =Y qi(x)?,
=1

for some polynomials ¢;, with degree no more than d/2.
A polynomial g that has this sum-of-squares form is called
SOS.

The condition that a polynomial g be SOS (viewed as
a constraint on its coefficients) turns out to be equivalent
to an linear matrix inequality (LMI) ([Nes00], [Par00]). In
particular a polynomial g of even degree w is SOS if and only

if there exist monomials of degree less that d/2, ey, ..., e
and a positive semidefinite matrix V' such that
g= eTVe. )

Since the condition g = €T Ve is a set of linear equality
constraints relating the coefficients of g to the elements of
V, we have that imposing the polynomial g to be SOS is
equivalent to the positive semidefiniteness constraint that
V > 0 together with a set of linear equality constraints.

We will impose convexity on the polynomial f by requir-
ing i to be SOS. We then clearly have

S={c| his SOS} CC.

Since the condition of a polynomial being PSD is not
equivalent to being SOS, in general C # S and therefore
by imposing h to be SOS, we are not considering all the
possible convex polynomials but only a subset of them. Only
in special cases does S = C, for example if n =1 or d = 2.

As mentioned above, the advantage of h being SOS is
that imposing this constraint can be cast as LMI and handled
efficiently [BGFB94].

ITI. FUNCTION FITTING VIA SOS
Using the approximation of the previous section to solve
problem (1), we obtain
minimize
subject to

ceS.

Equivalently, using the necessary and sufficient condition for
a polynomial to be SOS, we obtain the problem
minimize Y7, (f(ui) — yi)?
subject to  h = sTV2f(x)s =elVe forall z,s (6)
V=0,

where e is a vector of monomials in s and x and the variables
are the matrix V' and c. Since the equation h = eTVe is
simply a set of linear equations in the coefficients of V' and
¢, this problem can be cast as a semidefinite program for
which there are efficient algorithms [BVO03], [VB96].

Fig. 1: Convex polynomial fi tting example.

A. Numerical example

We present a very simple example for n = 1, where the
data u,; fori = 1,...,100, is obtained by uniformly sampling
the interval [—5,5] and y; = exp(u;). In this case, since
S = C we can tractably solve problem (1). Figure 1 shows
an example, where stars correspond to given data points.

I'V. MINIMUM VOLUME SET FITTING

In this section we address the problem of finding a
convex set P, described through a sub-level set of a convex
polynomial g, that contains a set of points and is close in
some sense to them. We would like, for example, to find the
minimum volume set P that includes all points ;.

As before, given polynomials p1, ..., p, we restrict our-
selves to consider a polynomial g of the form

g="bip1 + -+ bypuw,

where we would like to choose b € R". Therefore we want

to solve the problem
minimize
subject to

volume(P)
P={z|gx) <1}

u; € P foralli=1,...,m,
P is convex.

)

If for example g is a polynomial of degree 2, P will be
the minimum volume ellipsoid containing all the data points.
This is a well-known problem [BVO03] and if we write g as
g =27 Az +bTx + r we then g is convex if and only if A
is positive semidefinite. The above problem then becomes

minimize  volume(P)
subject to uiTAui—l—bTui—i-rg 1, i=1,....m
A=0.

We can assume without loss of generality that g(z) > 0
for all z, in which case the volume of P is proportional to
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vdet A~! and we can write the problem as

minimize logdet A™!
subject to  ul Au; +bTu; +r <1, i=1,...,m
A0
A b
|: bT r :| i 07

where the last constraint is equivalent to g(z) > 0 for all z.
This problem can be cast as an SDP [NN95].
In the general case the problem can be written as

minimize  volume(P)
subjectto u; € P fori=1,...,m,
h=sTV2g(z)s >0 for all z,s.

Now not only is the second constraint hard to handle exactly,
but there is also no known way to efficiently compute the
volume of P. We propose a heuristic algorithm that tries to
shrink the set P around the data points and that for d = 2 is
equivalent to the minimum volume ellipsoid. This problem
has possible applications in data mining [KNZO01], [LN95],
robotics, and computer vision [KG99], [TCST94], [RB97].

A. Pseudo minimum volume heuristic

The main idea of the algorithm is to increase the curvature
of g along all directions so that the set P gets closer to the
points u;. Since the curvature of g along the direction s is
proportional to

h=s"V?g(x)s,

we will write h in a specific form so that we can, at the same
time, enforce h to be PSD and increase the curvature of g.
The first step, as before, is to impose

h=sTV%g(x)s is SOS,
or equivalently

h=sTV2g(z)s =eTVe forall z,s
V=0,

where e is a vector of monomials in  and s. In this way we
have that g is convex. Similarly to the case of the minimum
volume ellipsoid, we maximize the determinant of V' which
has the effect of increasing the curvature of g along all
possible directions.

The heuristic becomes

log det V!

g(x) >0 for all z,

sT'V2%g(z)s = e'Ve forallz,s
glu;)) <1 i=1,...,m.

minimize
subject to

Again replacing the positivity constraint g(z) > 0 by an
SOS condition, we arrive at

minimize logdet V!

subject to g is SOS
sT'V%g(x)s = eTVe forallz,s
glu;)) <1 i=1,...,m,

or equivalently

minimize logdet V!

subject to g = hTCh,
C =0, (8)
sT'V?%g(z)s = eTVe forallz,s
glu;)) <1 i=1,...,m,

where h is a vector of monomials in x and e is a vector
of monomials in x and s. This problem can now be solved
efficiently.

It is clear that for d = 2, the problem reduces to finding
the minimum volume ellipsoid. Note that the matrix C' is not
unique and it depends on the choice of monomials e. It is also
possible for the heuristic to fail; for example, if we choose
a redundant set of monomials for e, then C' may not be full
rank and the determinant of C' will be zero. One workaround
for this is to use fewer monomials for e. Moreover we should
notice that it is not strictly needed for e to be made out of
monomials but any polynomial expression would work.

It can be shown (see Appendix) that, under some minor
conditions, the solution to this problem has the nice property
of being invariant to affine coordinate transformations. In
other words, if P is the solution of the problem, by changing
the coordinates of the points w; through an affine transfor-
mation, we would have that the set P scaled by the same
transformation, is an optimal point for the problem in the
new set of coordinates.

1) Example: We show in a simple case how to derive the
matrices C' and V for problem (8). Suppose g has the form

g(@,y) = 1 + eax'y?,
we can choose the vectors of monomials h as
h = (1,2%y%).
With this choice of h the matrix C' will be
C= [ oo } .
We then have
h=sTV?g(z)s = 12c322y*s? +12c3xty?s2 + 3223351 59,
and by picking the vector of monomials e to be
e = (zy*s1, x%ysy),

we obtain

1263

T T 1603
h=e'Ve=ce {1603 e.

1263

2) Numerical example: We show the result of the algo-
rithm for a set of points corresponding to the simulated first
150 steps of a dynamical system. We pick ¢ to be a generic
polynomial of degree less than d. Figure 2 shows the level
set for different degrees d of the polynomial g.
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Fig. 2: Pseudo minimum volume example.

V. CONDITIONAL CONVEX POLYNOMIAL FITTING

In this section we want to solve problem (1) with the
relaxed constraint that f is convex only over a set P and not
on the entire space

minimize >~ (f(wi) — vi)? ©)
subject to f is convex on P.

We require that the set P contains the points u; and that
is convex. Moreover the set P should be described as the
sub-level set of a polynomial g

P={z|gx) <1}.

For example, the previously presented algorithm gives us a
set P with the required properties that can be used to solve
problem (9).

We will write a sufficient condition for f to be convex over
the set P. We will show that for P compact this condition
has a nice property that allows to prove a stronger result. For
h = sTV2fs we define

I(z,s8) = h(z,s) + w(z,s)(1 — g(x)), (10)

where w is a sum of squares polynomial. It is clear that if
[ is SOS then the function f will be convex over the set P.
Vice versa it can be shown [Sch91] that if P is compact and
h is strictly positive over P, there exist SOS polynomials [
and w so that (10) holds.

Therefore, by using this condition to impose convexity of
f over P, the problem becomes

minimize Y .- (f(wi) — i)?
subject to  sTV2fs —w(x,s)(1 — g(x))
w is SOS.

is SOS

Notice that we have a wide range of choice for the polyno-
mial w since the only constraint is that it should be SOS.
Therefore we cannot solve this problem because to describe
the polynomial w we would need an infinite number of
variables. Nevertheless we should notice that if we were able
to solve this problem and P was compact, we would be able

-10 ) 0 5 10

Fig. 3: Conditional convex polynomial fi tting.

to find a polynomial for which the cost function is no greater
than the optimal value of

minimize Y .- (f(u;) — yi)?
subject to f is strictly convex on P.

(1)

To make this problem tractable we can, for example,
impose the maximum degree of w to be less than a given
constant ¢. In this case, w will have the form

w=hTWh,

where h is a vector of all monomials of degree less or equal
than ¢/2 and W is a generic positive semidefinite matrix.

Once we fix the order of the polynomial w, the problem
can be cast as a convex program (SDP) and solved efficiently.
We obtain the problem

m

minimize Y- (f(wi) — vi)?

subject to  sTV?fs —w(x,s)(1—g(x)) is SOS
w = hTWh,
W =0,

where the variables are ¢ and W and h is a vector of
monomials of degree less or equal than ¢/2. By increasing ¢
we obtain larger problems that in the limit tend to a solution
for which the cost function is not greater than the optimal
value of problem (11).

A. Numerical example

We solve the same numerical example presented in sec-
tion III-A but imposing convexity only on the interval
[—5, 5]. In this way we can, for example, fit using odd degree
polynomials. We describe the interval with g(z) = 22 — 24
and we fix the degree of w to be less or equal than 4. In
particular figure 3 shows the result for a third and fifth order
polynomial. Clearly the function is not convex on R but it
is still convex on the interval [—5, 5].
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VI. EXTENSIONS

We present two simple extensions. The first one allows to
fit a set of points described through the intersection of two
sub-level sets of polynomials. The second one extends the
results of the paper to a different class of polynomials.

A. Fitting the intersection of sub-level sets of polynomials

One simple extension of the pseudo minimum volume
heuristic is to find a convex set P that fits a set of the form
K=A{z|fi(r) <0 1=1,2},

where f; are polynomials.

We can write a sufficient condition for P to contain K.
In particular, if we have

(1 —=g(u;)) +wifi +wafo —wsfife is SOS,  (12)
where w; are SOS, clearly the set P will contain the set K.
It can also be shown [Sch91] that if K is compact and P
is such that & € K implies g(Z) < 1 then there exist SOS
polynomials w; such that (12) is verified.

The heuristic can be modified to impose K C P as

minimize logdet C~!

subject to g is SOS
sTV2g(x)s =eTCe for all z,5 € R”
(1 —g(uq)) + >, wifi —wsfifo is SOS,
w1, W2, w3 are SOS.

To be able to solve this problem, we need to impose some
more constraints on the polynomials w; since the only
constraint is that they should be SOS. As we did before,
we can impose them to have a maximum degree less than
some constant, and the resulting optimization problem is an
SDP. With similar techniques one may also also easily handle
union and intersection of such sets.

B. Convexity along a line passing through a point

We can extends the techniques presented in this paper to a
different class of polynomials [KG99], that are convex only
when restricted to a line passing for a given point x.

Given a polynomial f and a point x(, the property is
equivalent to

h(z) = (x — 20)TV2f(z)(x — 29) >0 for all z.

In other words we are replacing the generic direction s in
(3) along which the curvature of the polynomial is evaluated,
with the direction z — x( that goes through the point x.

We can therefore apply the function fitting algorithm (5)
and the pseudo minimum volume algorithm (8) for polyno-
mials with this property by simply substituting s with z —x.
We should point out that in this case the algorithm loses
the property of being invariant under an affine coordinate
transformation.

APPENDIX

Given problem (8), we would like to show the relationship
between the solutions of it for two different systems of
coordinates z,y such that + = Ay + b where det A # 0.
In particular we have that, if u;, v; for ¢ = 1,...,m are
the points in the first and second system of coordinates
respectively,

u; = Av; + b.

We will use subscript x to refer to the problem with the
x coordinates and a y subscript for the problem in the y
coordinates. We call, for example, e, and h, the vectors e
and h in the first system of coordinates and e, and h, in the
second. We also call €, and ﬁy the vectors e, and h, where
each component as been transformed in the other system of
coordinates so that + = Ay + b and s, = As,. Therefore
each component of ﬁy, for example, is a polynomial in y
and é, depends only on y and s,. The same holds for é,
and h, which are the vectors ey and hy in the other system
of coordinates.

We make the assumption that the vector €, can be repre-
sented as a linear combination of e, and that &, is a linear
combination of e,. Moreover we require the same property
for the vectors h, and h,. This assumption is satisfied, for
example, if h, consists of all monomials up to a certain
degree in = and the same choice is made for h,. In other
words, we require that in the two systems of coordinates, we
can describe the same set of polynomials.

Given this property we have that

hy = Urhy,
éy = Ugey,
where U; and U, are matrices that depend nonlinearly on
A and b. So suppose that g(x) is a feasible solution for
the problem in the z coordinates. We will show that the
polynomial f(y) = g(Ay+Db) is feasible in the second system
of coordinates.
We have that

J(vi) = g(Av; +b) = g(u;) < 1,

and therefore the points are included in the sub-level set. We
also have that

f(y) 9(Ay +b)
- h;thy
= RIUTCLULNy,

where clearly C,, = U{ C,U; = 0, and

sy V2 f(y)sy s, V2g(Ay + b)sy
ST ATV2g(Ay + 1) As,
e,

= ei"fUQTVQEUgey7

where V), = U2TV$U2 > 0. It is also clearly true that
logdet V! = 2logdet Uy + log det V,

in other words the same polynomial after a coordinate
transformation is still feasible for the second problem and
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produce a value which is the same except for a constant
independent of the polynomial. Since the same applies in the
other direction, we can conclude that an optimal solution to
the first problem will be optimal for the second one too.
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