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Abstract

Since 1984 there has been a concentrated e�ort to develop e�cient interior-point

methods for linear programming (LP). In the last few years researchers have begun

to appreciate a very important property of these interior-point methods (beyond

their e�ciency for LP): they extend gracefully to nonlinear convex optimization

problems. New interior-point algorithms for problem classes such as semide�nite

programming (SDP) or second-order cone programming (SOCP) are now approach-

ing the extreme e�ciency of modern linear programming codes.

In this paper we discuss three examples of areas of control where our ability to

e�ciently solve nonlinear convex optimization problems opens up new applications.

In the �rst example we show how SOCP can be used to solve robust open-loop

optimal control problems. In the second example, we show how SOCP can be used

to simultaneously design the set-point and feedback gains for a controller, and com-

pare this method with the more standard approach. Our �nal application concerns

analysis and synthesis via linear matrix inequalities and SDP.
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1 New advances in nonlinear convex optimization

A linear program (LP) is an optimization problem with linear objective and

linear equality and inequality constraints:

minimize cTx

subject to aTi x � bi; i = 1; : : : ; L;

Fx = g;

(1)

where the vector x is the optimization variable and ai, bi, c, F , and g are

problem parameters. Linear programming has been used in a wide variety of

�elds since Dantzig introduced the simplex method in 1948 [Dan63]. In control,

for example, Zadeh and Whalen observed in 1962 that certain minimum-time

and minimum-fuel optimal control problems could be (numerically) solved by

linear programming [ZW62]. In the late 70s, Richalet [Ric93] developed model

predictive control (also known as dynamic matrix control or receding horizon

control), in which linear or quadratic programs are used to solve an optimal

control problem at each time step. Model predictive control is now widely used

in the process control industry [ML97].

In 1984, Karmarkar introduced a new interior-point algorithm for linear pro-

gramming which was more e�cient than the simplex method in terms of worst-

case complexity analysis and also in practice [Kar84]. This event spurred in-

tense research in interior-point methods, which continues even now. In the last

year or so several books have been written on interior-point methods for linear

programming, e.g., by Wright [Wri97] and Vanderbei [Van97]. Moreover, sev-

eral high quality, e�cient implementations of interior-point LP solvers have

become available (see, e.g., [Van92,Zha94,CMW97,GA94,MR97]).

The most obvious advantages of interior-point over simplex-based methods for

LP are e�ciency (for medium and large-scale problems) and the ability to use

approximate search directions, which allows the use of conjugate gradient or

related methods that can exploit problem structure. One advantage which is

not yet as well appreciated is that interior-point methods extend gracefully to

nonlinear convex optimization problems, whereas the simplex method, which

is based very much on the linear structure of the problem, does not. This

observation was made �rst by Nesterov and Nemirovski [NN94], who devel-

oped a general framework for interior-point methods for a very wide variety of

nonlinear convex optimization problems. Interior-point methods for nonlinear

convex optimization problems have been found to have many of the same char-

acteristics of the methods for LP, e.g., they have polynomial-time worst case

complexity, and they are extremely e�cient in practice, requiring a number of

iterations that hardly varies with problem size, and is typically between 5 and
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50. Each iteration requires the solution (or approximate solution) of a linear

system of equations.

While the ability of interior-point methods to solve large-scale LPs faster than

simplex is certainly important, it is the ability of interior-point methods to

solve nonlinear, nondi�erentiable convex problems with the same e�ciency

that opens up many new possible applications.

As an example consider semide�nite programming (SDP), a problem family

which has the form

minimize cTx

subject to x1A1 + � � �+ xnAn � B;

Fx = g

(2)

where Ai and B are symmetric m � m matrices, and the inequality � de-

notes matrix inequality, i.e., X � Y means Y � X is positive semide�-

nite. The constraint x1A1 + � � � + xnAn � B is called a linear matrix in-

equality (LMI). While SDPs look complicated and would appear di�cult to

solve, new interior-point methods can solve them with great e�ciency (see,

e.g., [VB95,Ali95,OW97,AHO94]) and several SDP codes are now widely avail-

able [VB94,FK95,WB96,GN93,AHNO97,Bor97]. The ability to numerically

solve SDPs with great e�ciency is being applied in several �elds, e.g., combi-

natorial optimization and control [BEFB94]. As a result, SDP is currently a

highly active research area.

As another example consider the second-order cone program (SOCP) which

has the form

minimize cTx

subject to kAix+ bik � cTi x+ di; i = 1; : : : ; L;

Fx = g;

(3)

where k�k denotes the Euclidean norm, i.e., kzk =
p
zT z. SOCPs include linear

and quadratic programming as special cases, but can also be used to solve a

variety of nonlinear, nondi�erentiable problems; see, e.g., [LVBL97]. Moreover,

e�cient interior-point software for SOCP is now available [LVB97,AHN+97].

In this paper we will examine three areas of control where our ability to

numerically solve nonlinear, nondi�erentiable convex optimization problems,

by new interior-point methods, yields new applications. In x2 we show how

SOCP can be used to solve robust optimal control problems, which, we predict,

will be useful in model predictive control. In x3 we show how SOCP can be used

to synthesize optimal linear and a�ne controllers. We show how this method

3



can be used to jointly synthesize set-points and feedback gains, and compare

this method with the usual method in which the set-points and feedback gains

are chosen independently. Finally, in x4, we give an example of control analysis

and synthesis via linear matrix inequalities. Some general conclusions are given

in x5.

2 Robust optimal control

We consider a discrete-time linear dynamic system with �nite impulse re-

sponse, described by the convolution equation

y(t) = h0u(t) + h1u(t� 1) + � � �+ hku(t� k); (4)

where u is the input sequence, y is the output sequence, and ht is the tth

impulse response coe�cient. In this section we assume that u(t) and y(t) are

scalar, i.e., that our system is single-input single-output, in order to simplify

the exposition, but the method readily extends to the case of vector (i.e.,

multiple) inputs and outputs. (Indeed, the method extends to multi-rate or

time-varying systems; linearity is the key property.)

We assume (for now) that the impulse response coe�cients h0; : : : ; hk are

known, and that u(t) = 0 for t � 0. In �nite horizon optimal control (or input

design) our task is to �nd an input sequence u = (u(1); : : : ; u(N)) up to some

input horizon N , that optimizes some objective subject to some constraints

on u and y.

To be speci�c, we might have a desired or target output trajectory ydes =

(ydes(1); : : : ; ydes(M)), de�ned up to some output horizon M , and want to

minimize the maximum or peak tracking error, given by

E = max
t=1;::: ;M

jy(t)� ydes(t)j :

Typical constraints might include an allowable range for the input, i.e.,

Ulow � u(t) � Uhigh; t = 1; : : : ; N;

and a limit on the slew rate of the input signal, i.e.,

ju(t+ 1)� u(t)j � S; t = 1; : : : ; N � 1:

The resulting optimal control problem is to choose u, respecting the input

range and slew rate limit, in order to minimize the peak tracking error. This
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can be expressed as the optimization problem

minimize E = maxt=1;::: ;M jy(t)� ydes(t)j

subject to Ulow � u(t) � Uhigh; t = 1; : : : ; N;

ju(t+ 1)� u(t)j � S; t = 1; : : : ; N � 1;

(5)

where the optimization variable is u = (u(1); : : : ; u(N)). We will now show

that the optimal control problem (5) can be cast in the form of a linear pro-

gram. This implies that we can solve the optimal control problem using stan-

dard LP software (although greater e�ciency can be obtained by developing

a specialized code that exploits the special structure of this problem; see, e.g.,

[Wri93,Wri96,BVG94]).

We �rst note from (4) that y(t) is a linear function of u. We have y = Au

where A is the Toeplitz matrix de�ned by

Aij =

8<
:
hi�j if 0 � i� j � k;

0 otherwise

If aTi is the ith row of A, we have

y(t)� ydes(t) = aTt u� ydes(t)

so the problem (5) can be formulated as the LP

minimize 


subject to �
 � aTt u� ydes(t) � 
; t = 1; : : : ;M;

Ulow � u(t) � Uhigh; t = 1; : : : ; N;

�S � u(t+ 1)� u(t) � S; t = 1; : : : ; N � 1;

(6)

where the variables are u 2 RN and 
 2 R. This problem is an LP, with N+1

variables, 2M + 2N + 2(N � 1) linear inequality constraints, and no equality

constraints.

Let us make several comments before moving on to our next topic. The idea of

reformulating an optimal control problem as a linear program extends to far

more complex problems, with multiple inputs and outputs and various piece-

wise linear convex constraints or objectives. Using quadratic programming

(QP) instead of LP, for example, we can include traditional sum-of-squares

objectives like

J =
MX
t=1

((y(t)� ydes(t))
2
+ �

NX
t=1

u(t)2:
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Thus, linear and quadratic programming can be used to (numerically) solve

large, complex optimal control problems which, obviously, have no analytical

solution. This observation is the basis for model predictive control, in which

an LP or QP such as (6) is solved at each time step.

What we have described so far is well known, and certainly follows the spirit

of Zadeh and Whalen's observation that some optimal control problems can

be solved using LP. We now describe a useful extension that is not yet well

known, and relies on our (new) ability to e�ciently solve nonlinear convex

optimization problems, speci�cally, SOCPs.

So far we have assumed that the impulse response is known. Now we assume

that the impulse response h = (h0; : : : ; hk) is not known exactly; instead, all

we know is that it lies in an ellipsoid :

H = f h j h = h+ Fp; kpk � 1 g; (7)

where kpk =
q
pTp. We assume that the vector h 2 Rk+1 and matrix F 2

R(k+1)�q, which describe the ellipsoid H, are given.

We can think of h (which is the center of the ellipsoid) as the nominal impulse

response; the matrix F describes the shape and size of the uncertainty in the

impulse response h. For example, F = 0 means the ellipsoid collapses to a

single point, i.e., we know h exactly. If the rank of F is less than k + 1,

then we know the impulse response exactly in some directions (speci�cally,

directions z 6= 0 for which F Tz = 0). In general, the singular values of F

give the lengths of the semi-axes of H, and the left singular vectors give the

semi-axes.

Before continuing let us give a speci�c example of where the ellipsoid un-

certainty description (7) might arise in practice. Suppose we perform some

system identi�cation tests, in the presence of some measurement or system

noise. Assuming or approximating these noises as Gaussian will lead us to an

estimate ĥ of the impulse response, along with a measurement error covariance

�est. The associated con�dence ellipsoids have the form

E� = f h j (h� ĥ)T��1est(h� ĥ) � � g;

where � > 0 sets the con�dence level. This con�dence ellipsoid can be ex-

pressed in the form (7) with h = ĥ and F = (��est)
1=2 (where X1=2 denotes

the symmetric positive de�nite square root of the symmetric positive de�nite

matrix X).

Now let us reconsider our original optimal control problem (5). Since the

impulse response h is now uncertain (assuming F 6= 0), so is the output

y resulting from a particular input u. One way to reformulate the optimal
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control problem, taking into account the uncertainty in h, is to consider the

worst case peak tracking error, i.e.,

Ewc = max
h2H

max
t=1;::: ;M

jy(t)� ydes(t)j:

This leads us to the optimization problem

minimize Ewc = maxh2Hmaxt=1;::: ;M jy(t)� ydes(t)j

subject to Ulow � u(t) � Uhigh; t = 1; : : : ; N;

ju(t+ 1)� u(t)j � S; t = 1; : : : ; N � 1;

(8)

which is the robust version of (5).

Before discussing how we can solve (8) via nonlinear convex optimization,

let us make some general comments about what the solutions will look like.

First we note that when there is no uncertainty, the robust optimal control

problem (8) reduces to the original optimal control problem (5). In general,

however, the two solutions will di�er. The optimal u for the robust problem

must work well for all impulse responses in the ellipsoid H, whereas the op-

timal u for the original problem must work well only for the given impulse

response. Very roughly speaking, the robust optimal u will generally be more

`cautious' than the optimal u for the non-robust problem; the robust optimal

u will not drive or excite the system in directions in which the uncertainty is

large. (This will become clearer below.)

We can think of the robust problem as a regularization of the original prob-

lem, in the following sense. In the original problem it is assumed that the

impulse response is known perfectly, so complete con�dence is put on the y

that results via (4) from a particular u. If adding, say, a large oscillation to

u will decrease the objective even a very small amount, then the optimal u

will include the oscillation. This will not happen in the robust version, unless

the oscillation exploits some common feature of all the impulse responses in

H. Thus, the robust problem (8) can be thought of as a regularization of the

original problem (5) that is based on our knowledge or con�dence in the plant,

and not on some generic feature like smoothness (which is the standard basis

for regularization). The optimal u for (8) will not take advantage of details of

any particular h 2 H; it will only take advantage of features that occur in all

h 2 H.

Now we will show how the robust optimal control problem can be solved via

SOCP. It is still true that y(t) is a linear function of u, and can be expressed

in the form y(t) = aTt u. The di�erence is that now the vector at is uncertain.

For our analysis here, it will be convenient to write y(t) in the form

y(t) = (h+ Fp)TDtu;
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where kpk � 1 and Dt is a matrix that selects and reorders the components of

u appropriately. For example, since y(1) = h0u(1) and y(2) = h0u(2)+h1u(1),

we have

D1 =

2
666666664

1 0 � � � 0

0 0 � � � 0
...
...
. . .

...

0 0 � � � 0

3
777777775
; D2 =

2
666666664

0 1 � � � 0

1 0 � � � 0
...
...
. . .

...

0 0 � � � 0

3
777777775

and so on. The worst case peak tracking error can be expressed as

Ewc=max
h2H

max
t=1;::: ;M

jy(t)� ydes(t)j

= max
t=1;::: ;M

max
kpk�1

j(h+ Fp)TDtu� ydes(t)j:

We can analytically solve for the worst (i.e., maximizing) p, by writing the

last expression as

j(h+ Fp)TDtu� ydes(t)j = jpTF TDtu+ (h
T
Dtu� ydes(t))j: (9)

Now we use the fact that for any vector c, pT c ranges between the values

�kck as p ranges over the unit ball kpk � 1 (with the extremes taken on when

p = �c=kck). Thus we have

max
kpk�1

j(h+ Fp)TDtu� ydes(t)j = kF TDtuk+ j(h
T
Dtu� ydes(t))j

and the maximizing p is given by

pmax =
sign(h

T
Dtu� ydes(t))

kF TDtuk
F TDtu: (10)

Note that the maximizing p depends on t.

We can therefore express the worst case peak tracking error in explicit form

as

Ewc = max
t=1;::: ;M

�
kF TDtuk+ j(h

T
Dtu� ydes(t))j

�
:

A maximizing (i.e., worst case) p can found as follows: �rst, �nd a time s at

which the max over t above is achieved, i.e.,

Ewc = kF TDsuk+ j(h
T
Dsu� ydes(s))j:
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Now, take p from (10) with t = s. (We note the great practical value of

knowing the speci�c `worst' impulse response h 2 H, i.e., one that yields the

worst case peak tracking error Ewc.)

Finally we can pose the robust optimal control problem (8) as an SOCP. We

�rst express it as

minimize 


subject to kF TDtuk+ h
T
Dtu� ydes(t) � 
 t = 1; : : : ;M;

kF TDtuk � (h
T
Dtu� ydes(t)) � 
 t = 1; : : : ;M;

Ulow � u(t) � Uhigh; t = 1; : : : ; N;

�S � u(t+ 1)� u(t) � S; t = 1; : : : ; N � 1;

(11)

where the variables are u 2 Rk+1 and 
 2 R. Simply rearranging the terms

in the inequalities yields the standard SOCP form (3). Thus, we can solve

the robust optimal control problem by formulating it as a nonlinear convex

optimization problem, speci�cally, an SOCP. (Here too we can exploit the

structure of the problem to develop a custom, very e�cient SOCP solver

speci�cally for robust optimal control.)

Examining the �rst two constraints in (11), which are equivalent to

kF TDtuk+ j(h
T
Dtu� ydes(t))j � 
;

reveals the e�ect of the uncertainty. Without uncertainty it reduces to

j(h
T
Dtu� ydes(t))j � 
:

The e�ect of the uncertainty is to tighten this constraint by adding the (non-

negative) term kF TDtuk on the left hand side. This term can be thought of

as the extra `margin' that must be maintained to guarantee the constraint is

satis�ed for all h 2 H. We can interpret kF TDtuk as a measure of how much

the input u `excites' or `drives' the uncertainty in the system.

The observation that some robust convex optimization problems can be solved

using new interior-point methods has been made recently by El Ghaoui and

Lebret [EL96] and Ben Tal and Nemirovski [BTN96]. In this section we have

considered a speci�c example, using a peak tracking error criterion, but the

method is quite general. It can, for example, be used to �nd the worst case

quadratic cost (see Lobo et al [LVBL97]).

There are several other general ways to describe the uncertainty in the im-

pulse response. The ellipsoid H can be replaced by a polytope describing the

uncertainty; in some cases the resulting robust optimal control problem can
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be cast as an LP (see, e.g., [CM87,AP92,ZM93]). It is also possible to use a

statistical description, e.g., assuming that h has a Gaussian distribution. In

this case we require that the constraints hold, or the objective be small, with

a minimum probability (i.e., reliability). Some problems of this form can also

be cast as SOCPs; see, e.g., [LVBL97].

2.1 Example

We now give a speci�c numerical example to demonstrate the discussion above.

We consider a system with the step response (i.e., s(t) = h0+ � � �+ ht) shown

in �gure 1(a). Note that the system exhibits undershoot and overshoot, has a

DC or static gain of one, and settles within 30 samples. The desired trajectory

ydes is shown in �gure 1(b). It consists of a slew up to 1, a hold, followed by a

slew down to 0:4, another hold, and a �nal slew down to 0, over a 64 sample

period. We take input horizon N = 80 and output horizon M = 96.

t0 30

0

1

(a) System step response

0

1

0 100t

(b) Desired trajectory

Fig. 1. System step response and desired trajectory.

We impose the input range and slew rate constraints

0 = Ulow � u(t) � Uhigh = 1:2; ju(t+ 1)� u(t)j � S = 0:5:

By solving the LP (6) we obtain the optimal input uopt (and resulting output

yopt) shown in �gure 2. This input results in peak tracking error 0:019. The

input range and slew rate constraints on the input are both active.

Even for this simple small problem the results are impressive, and could not

be obtained by any other method, for example some analytical or closed-form

solution from control theory. The input uopt evidently has the right form, i.e.,

it approximately tracks ydes with a 15 or so sample delay; but the details (e.g.,

the oscillations for the �rst 20 samples) are hardly obvious.
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t

0

1

0 100

(a) uopt

t

0

1

0 100

(b) yopt

Fig. 2. Optimal control results

We now turn to robust optimal control. We take the impulse response con-

sidered above as h, and the same ydes, horizons M and N , and input range

and slew limits. The uncertainty is given by an F 2 R28�2. This means that

the impulse response is known perfectly in 26 dimensions, and varies or is

uncertain only in a 2-dimensional plane (spanned by the columns of F ). To

give a feel for the various possible h 2 H, we plot the step response associated

with various h 2 H, in �gure 3. The plot shows that the uncertainty is fairly

localized in time, concentrated around t = 20, and fairly high frequency. (We

made no e�ort to choose F to be realistic; see below.)

t

0

1

0 30

(a) nominal step response

0

1

0 30t

(b) typical step responses

Fig. 3. System step responses

We solve the robust optimal control problem (8), by solving the SOCP (11).

The resulting optimal input urob is shown in �gure 4, together with the nominal

optimal input uopt for comparison. The inputs look quite similar, despite the

fact that the nominal optimal input uopt assumes perfect knowledge of the

impulse response, and the robust optimal input urob works well with a set of

impulse responses that lie in a 2-dimensional ellipsoid.

The performance of the two di�erence inputs, however, is quite di�erent. The
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t

0

1

0 100

(a) nominal optimal uopt

t

0

1

0 100

(b) robust optimal urob

Fig. 4. System inputs

�rst row of table 1 shows the peak tracking error for each of the inputs uopt
and urob, with the nominal impulse response h. The robust optimal input

urob achieves worse (larger) peak tracking error: 0.026 versus 0.019 for uopt.

Of course this must be the case since uopt achieves the global minimum of

peak tracking error; all other inputs do worse (or at least, no better). The

second row of the table shows the worst case peak tracking error for the two

inputs. (The two maximizing p's are di�erent.) The nominal optimal input uopt
does very poorly: an impulse response in H causes the peak tracking error to

increase more than ten-fold to 0:200. The robust optimal input, on the other

hand, achieves the same worst case peak tracking error: 0:026. Thus the input

urob is far more robust to the system uncertainty than is the nominal optimal

uopt. We note again that the two inputs do not appear to be very di�erent.

uopt urob

E (nominal plant) 0:019 0:026

Ewc (worst-case plant) 0:200 0:026

Table 1

Nominal and worst case peak tracking errors for uopt and urob

We can continue this example by scaling the uncertainty, i.e., replacing the

matrix F with �F where � � 0. Thus, � = 0 means there is no uncertainty,

� = 1 means the uncertainty is the same as above, and � = 1:5 means the

uncertainty is 50% larger than in the example above. For each value of � we

can solve the robust optimal control problem, and compare the worst case

peak tracking error with that achieved by the nominal optimal controller. The

result is plotted in �gure 5. The gap between the solid curve (nominal optimal

input) and the dashed curve (robust optimal input) grows with increasing

uncertainty.

We close this section by admitting that in this example we speci�cally chose

the uncertainty ellipsoid H to give a good gap in performance between the
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E
w
c

uncertainty scaling �
0

0.25

0 1.5

urob

uopt

Fig. 5. Performance/robustness tradeo�

nominal and robust optimal inputs. In some cases the gap is far smaller, which

means that the nominal optimal input is already relatively robust to impulse

response changes. But the point here is that the robust optimal input can

be computed with approximately the same e�ort as the nominal optimal; the

di�erence is solving an SOCP instead of an LP. Thus, at little or no increase

in computational cost, we can synthesize inputs that are automatically ro-

bust to our particular system uncertainty. This is in contrast with the normal

method of regularization, where we simply limit the smoothness or band-

width of the input signal. Indeed, the example above shows that robustness

is not determined entirely by smoothness or bandwidth, since uopt and urob
have approximately the same smoothness and bandwidth, but very di�erent

robustness properties.

We conjecture that the use of robust optimal input signals will improve the

performance of model predictive controllers, since the inputs generated at each

time step would work well with an entire ellipsoid of plants. A careful analysis

is quite complicated, however, since a model predictive controller is a very

complex, nonlinear feedback system.

3 Synthesis of linear and a�ne feedback controllers

The second application of nonlinear convex optimization we consider is syn-

thesis of linear and a�ne feedback controllers. To simplify the exposition we

consider the static case, i.e., the case in which all signals are vectors that do

not change in time. The method discussed here does, however, extend to the

dynamic case; see, e.g., [BB91]. For some other references on static feedback

control, see, e.g., [SP96,KKB94].

The system we consider is shown in �gure 6. The signal w 2 Rnw is the

exogenous input, which might include command signals, disturbances, and
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noises. The signal z 2 Rnz is the critical output that we wish to control or

regulate (whether or not we actually sense it). The signal y 2 Rny is the sensed

output, which is the signal we actually measure or sense, i.e., the signal the

controller has access to. The signal u 2 Rnu is the actuator input, which is the

signal we are allowed to manipulate. We assume that the plant P is known;

the problem is to determine or design the controller K.

P

K

u

w

y

z
exogenous inputs

actuator inputs

critical outputs

sensed outputs

Fig. 6. Closed-loop control system

We start with the case of linear controller and plant, in which P and K are

simply matrices of the appropriate dimensions, and the signals are related by

2
64z
y

3
75 =

2
64Pzu Pzw

Pyu Pyw

3
75
2
64u
w

3
75 ; u = Ky: (12)

To formulate a controller design problem, we need to describe the set of pos-

sible disturbance signals w, how we measure the size of z, and what limits

there are on the actuator signal u. There are many ways to do this (see,

e.g., [BB91]); for concreteness we will take a speci�c, simple case. We assume

that the disturbance vector w is only known to lie in a given ellipsoid

W = f w + Fp j kpk � 1 g :

(Here F might come from an estimated covariance matrix for w, with a given

con�dence level, as described in x2.)

The regulation performance of the closed-loop system will be judged by the

worst case, peak size of z:

Z = max
w2W

max
i=1;::: ;nz

jzij: (13)

We will constrain the actuator authority, i.e., the maximum peak level of the

actuator signal that can be caused by w:

U = max
w2W

max
i=1;::: ;nu

juij: (14)

Of course we would like to choose K so that both Z and U are small, i.e.,

we achieve good regulation performance, using little actuator authority. In
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general, however, there will be a tradeo� between these two objectives. We

can consider the basic controller design problem

minimize Z

subject to U � Umax;
(15)

where the variable is the matrix K 2 Rnu�ny (which determines U and Z

via (13) and (14)).

We will now show how this problem can be cast as an SOCP, using a clever

change of variables and a few other transformations. The �rst step is to express

the signals z and u directly in terms of K. Eliminating y from (12) yields

z = Hw, where

H = Pzw + PzuK(I � PyuK)�1Pyw:

The matrix H shows how z depends on w; note that H depends on K is a very

complex way. We assume here that I � PyuK is invertible. This assumption

is not important; it can be circumvented, for example, by slightly perturbing

K (see, e.g., [Vid85,BB91]). In a similar way, we can express u as u = Gw,

where

G = K(I � PyuK)�1Pyw:

We can express the components of u and z as

zi = hTi (w + Fp); ui = gTi (w + Fp)

where kpk � 1 parameterizes w, and hTi (gTi ) is the ith row of H (G).

Now we can derive explicit expressions for U and Z in terms of G and H:

U = max
i=1;::: ;nu

max
kpk�1

jgTi (w + Fp)j = max
i=1;::: ;nu

�
jgTi wj+ kF Tgik

�
;

and similarly,

Z = max
i=1;::: ;nu

�
jhTi wj+ kF Thik

�
:

(In deriving these expressions we use the fact that pT c ranges between �kck
for kpk � 1; see x2.)

Thus, our basic controller design problem (15) can be expressed as

minimize 


subject to jhTi wj+ kF Thik � 
; i = 1; : : : ; nz

jgTi wj+ kF Tgik � Umax; i = 1; : : : ; nu;

(16)

15



where the variables are the matrix K and the scalar 
.

The problem (16), unfortunately, is a complicated nonlinear optimization

problem. Far worse than its nonlinearity is the fact that it is not convex.

By a clever change of variables, however, we can convert the problem into an

equivalent, but convex problem. We de�ne a new matrix

Q = K(I � PyuK)�1 2 Rnu�ny (17)

so that

H = Pzw + PzuQPyw; G = QPyw: (18)

It is important to note that G is a linear function of the matrix Q, and H is

an a�ne function, i.e., a linear function plus a constant. This is in contrast

to the complicated nonlinear dependence on K of the matrices G and H.

Provided the matrix I +QPyu is invertible, we can invert this transformation

to get K from Q as

K = (I +QPyu)
�1Q: (19)

Here we will simply ignore the possibility that I + QPyu is singular. In fact,

the case of singular I + QPyu causes no problem; it corresponds to integral

control. The details (as well as the extension to the dynamic case) can be

found in [BB91]. Ignoring these important details, we can view (17) and (19)

as inverses, that relate each K with a particular Q and vice versa.

We will now take Q as our design variable; once we have found an optimal Q

we can recover the actual controller K via (19). The basic controller design

problem, in terms of the variable Q, becomes

minimize 


subject to jhi(Q)
Twj+ kF Thi(Q)k � 
; i = 1; : : : ; nz

jgi(Q)
Twj+ kF Tgi(Q)k � Umax; i = 1; : : : ; nu;

(20)

where the optimization variables are the matrix Q and the scalar 
. Since hi
and gi are both a�ne functions of Q (from (18)), the problem (20) is in fact

an SOCP.

The practical rami�cation is that we can e�ciently solve the controller design

problem (15) via an interior-point method for SOCP. For a problem with,

say, 20 sensors and 10 actuators, we can e�ciently optimize 200 gains (i.e.,

the entries of K). By repeatedly solving the problem for di�erent values of

allowed actuator authority Umax, we can compute the tradeo� curve relating
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the (globally optimal) value of performance with actuator authority. We will

see examples of this in x3.1.

The idea of using Q as the variable instead of K has been discovered many

times, and therefore has several names. The modern version is attributed

to Youla (hence called Youla parameter design or Q-parametrization), but

simpler versions of the trick were known and used in the 1940s; see [BB91].

We now turn to an interesting and useful extension of the linear feedback

controller design problem, i.e., the a�ne controller design problem. The setup

is the same as for linear controller design, except we assume that the plant and

controller are a�ne, i.e., are linear plus a constant. For example, the controller

is given by u = Ky+a, where a 2 Rnu. To specify the controller we must give

the feedback gain matrix K as well as the o�set or set-point vector a.

In fact, this general scheme with a�ne plant and controller can be handled

directly by the linear controller design method described above: we simply

add a new component to w, which is �xed equal to one, and make this same

(constant) signal available to the controller as another component of y. When

we design a linear controller for this expanded setup, it is the same as an

a�ne controller for the original setup. In terms of classical control, an a�ne

controller corresponds to a linear feedback controller with a (nonzero) set-

point. The discussion above shows that we can jointly optimize the set-points

and feedback gains by solving an SOCP.

3.1 Example

In this section we demonstrate the ideas above with a plant with 10 criti-

cal signals (nz = 10), 5 actuators (nu = 5), 10 sensors (ny = 10), and 10

disturbances (nw = 10). The problem data, i.e., the entries of P , F , w, and

the plant o�set vector, were chosen randomly (from a unit normal Gaussian

distribution, but it doesn't matter); there was no attempt to make the plant

realistic. For this example the controller is characterized by its feedback gain

matrix K, which is a 5 � 10 matrix, and the controller o�set a, which is a

vector with dimension 5.

We then solved the basic controller design problem (15) for various values of

Umax, in order to �nd the optimal tradeo� curve between performance and

actuator authority. Three versions of this problem were solved:

� Set-point only. We �x the feedback gains to be zero, and simply choose a,

the controller o�set. Thus the input has the form u = a 2 R5. This case is

the classical open-loop controller.

� Feedback gains only. Here we �x the controller to have the form u = K(y�y),

17



where y is the sensor output resulting from w = w and u = 0. This is the

classical linear feedback controller for an a�ne plant.

� Joint set-point and feedback. Here we design a general a�ne controller; the

input has the form u = Ky + a. The total number of variables is 55: 50

feedback gains (K) and 5 o�sets or set-points (a). As far as we know, joint

design of set-point and feedback gains is not done in classical control.

The optimal tradeo� curves for these three cases are shown in �gure 7.
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20

actuator authority Umax
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g
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Z

set-point

feedback

both

Fig. 7. Optimal tradeo� curves between Z and U for three control strategies:

set-point only, feedback only, and joint set-point & feedback.

Since the joint set-point and feedback design is more general than the other

two, its tradeo� curve lies below them. In this particular example, the feedback

controller always outperforms the set-point only controller, but this need not

happen in general. The plots are very useful: we can see that for small allowed

actuator authority (say, Umax � 1) the set-point controller works almost as

well as the other two; roughly speaking there simply isn't enough actuator

authority to get the bene�ts of feedback. When the allowed actuator authority

reaches a higher level (around 5) the bene�ts of the feedback only strategy

reaches its maximum, but the joint set-point and feedback strategy continues

to derive bene�t (i.e., reduce Z) with increasing actuator authority.

It is not surprising that the feedback controllers outperform the simple set-

point only controller. But this example clearly shows that joint design of set-

point and feedback gains can substantially outperform the classical feedback

design.
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4 Control system analysis and synthesis via linear matrix inequal-

ities

In this section we describe two examples of control system analysis and syn-

thesis problems that can be cast as semide�nite programs (SDPs), and hence,

e�ciently solved by new interior-point methods. The importance of LMIs in

control has been appreciated since Lur'e and Postinikov's work in the Soviet

Union in the 1940s. In the 1960s, Yakubovich, Kalman, and others developed

frequency domain and graphical methods to solve some special classes of the

resulting LMIs or SDPs. In the 1980s it was observed that the problems could

be solved in general, by numerical algorithms such as the ellipsoid method,

cutting-plane methods, or subgradient methods. But the real increase in util-

ity (and interest) came when interior-point methods for SDP made it practical

to solve the resulting LMI problems with reasonable e�ciency. A survey and

history of these methods (as well as descriptions of many other problems) can

be found in the monograph [BEFB94], which has a bibliography up to 1994.

There has been much work done since then, e.g., [BP94,AG95,Gah96].

We �rst consider a linear time-varying system described by

_x(t) = A(t)x(t); x(0) = x0 (21)

where A(t) can take on the (known) values A1; : : : ; AL:

A(t) 2 fA1; : : : ; ALg ;

but otherwise is arbitrary. Thus, (21) de�nes a (large) family of trajectories

(which depend on how A(t) switches between allowed values).

We are interested in the quadratic performance index

J =

Z
1

0
x(t)TQx(t) dt

where Q is symmetric and positive semide�nite. The performance index J , of

course, depends on which trajectory of (21) we use. Therefore we will attempt

to �nd or bound the worst case value:

Jwc = max

Z
1

0
x(t)TQx(t) dt

where the maximum (supremum) is taken over all trajectories of (21). Even

the question whether Jwc <1, i.e., whether the system is stable, is interesting

(and challenging; it is NP-hard [BT97]).

Before proceeding let us mention one reason why we might be interested in

the linear time-varying system described above. Suppose we have a nonlinear,
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time-varying system

_z = f(z; t); z(0) = z0;

where f(0; t) = 0 and for all v,

rf(v) 2 CofA1; : : : ; ALg;

where Co denotes convex hull. Then Jwc evaluated for the linear time-varying

system gives an upper bound on Jwc for the nonlinear system, i.e., the re-

sults we derive here hold for the nonlinear system. This idea is called global

linearization; see, e.g., [BEFB94, x4.3]

We will use a quadratic Lyapunov function xTPx to establish a bound on Jwc.

Suppose for some P = P T � 0 we have

d

dt

�
x(t)TPx(t)

�
� �x(t)TQx(t) (22)

for all trajectories and all t (except switching times). Integrate this inequality

from t = 0 to t = T to get

x(T )TPx(T )� x(0)TPx(0) � �
Z T

0
x(t)TQx(t) dt:

Noting that x(T )TPx(T ) � 0 and rearranging yields

Z T

0
x(t)TQx(t) dt � xT0 Px0:

Since this holds for all T we have

J =

Z
1

0
x(t)TQx(t) dt � xT0 Px0:

This inequality holds for all trajectories, so we have

Jwc � xT0 Px0; (23)

for any P � 0 that satis�es (22).

Now we address the question of how to �nd a P � 0 that satis�es (22). Since

d

dt

�
x(t)TPx(t)

�
= x(t)T

�
A(t)TP + PA(t)

�
x(t);

the condition (22) can be shown to be equivalent to

AT
i P + PAi +Q � 0; i = 1; : : : ; L;
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which is a set of LMIs in P . (We skip some details here, such as what happens

at the switching times; see, e.g., [BEFB94].) Thus, �nding a P that provides

a bound on Jwc can be done by solving an LMI feasibility problem:

�nd P = P T

that satis�es P � 0; AT
i P + PAi +Q � 0; i = 1; : : : ; L:

Finally, we can optimize over the Lyapunov function P by searching for the

best (i.e., smallest) bound of the form (23) over P :

minimize xT0 Px0

subject to P � 0; AT
i P + PAi +Q � 0; i = 1; : : : ; L:

(24)

Since xT0 Px0 is a linear function of the variable P , this problem is an SDP

in the variable P = P T 2 Rn�n, and is readily solved using interior-point

methods.

This approach seems very simple and straightforward, but is more powerful

than many other methods and approaches, e.g., those based on the circle

criterion, small-gain methods, etc. The reason is simple: any method that

produces, in the end, a quadratic Lyapunov function to establish its bound, is,

almost by de�nition, no more powerful than the simple method of solving (24),

which �nds the globally optimal quadratic Lyapunov function.

The example described above shows how SDP can be used in control system

analysis. We will now show how a similar method can be used for a controller

synthesis problems. We consider a time-varying linear system, with input u,

given by

_x = A(t)x(t) +B(t)u(t); x(0) = x0; (25)

where

[A(t) B(t)] 2 f[A1 B1]; : : : ; [AL BL]g :

We will use a (constant, linear) state feedback gain K, i.e., u = Kx, so the

closed-loop system is described by

_x(t) = (A(t) +B(t)K)x(t); x(0) = x0:

The cost we consider is

J =

Z
1

0

�
x(t)TQx(t) + u(t)TRu(t)

�
dt
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where Q and R are positive de�nite. This cost depends on the particular

trajectory we take, so as above we consider the worst case cost

Jwc=max

Z
1

0

�
x(t)TQx(t) + u(t)TRu(t)

�
dt

=max

Z
1

0
x(t)T (Q+KTRK)x(t) dt

where the maximum is over all possible trajectories.

We can now pose the following problem: �nd a state feedback gain matrix

K and a quadratic Lyapunov function P that minimizes the bound xT0 Px0
on Jwc (for the closed-loop system). Note the interesting twist compared to

the standard approach. Here we are simultaneously doing the synthesis (i.e.,

designing K) and the analysis (i.e., �nding a Lyapunov function that gives a

guaranteed performance bound). In the standard approach,K is �rst designed,

and then P is sought.

We can pose this problem as

minimize xT0 Px0

subject to (Ai +BiK)TP + P (Ai +BiK) +Q+KTRK � 0; i = 1; : : : ; L;

P � 0;

(26)

where the variables are the state feedback gain matrix K and the Lyapunov

matrix P . Unfortunately this problem is not an SDP since the constraints

involve a quadratic term in K and products between the variables P and K.

We will now show how a change of variables and a few other transformations

allow us to reformulate the problem (26) as an SDP (and hence, solve it

e�ciently). De�ne new matrices Y and W as

Y = P�1; W = KP�1;

so that (since P � 0, and hence Y � 0) we have

P = Y �1; K =WY �1:

We will use the variables Y and W instead of P and K. The inequality above

becomes

(Ai +BiWY �1)TY �1 + Y �1(Ai +BiWY �1) +Q+KTRK � 0: (27)
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At �rst, this looks worse than the original inequality, since it not only involves

products of the variables, but also an inverse (of Y ). But by applying a con-

gruence by Y , i.e., multiplying the left and the right hand sides by Y , we

obtain the following equivalent inequality:

Y AT
i +W TBT

i + AiY +BiW + Y QY +W TRW � 0;

which can be written as

Y AT
i +W TBT

i + AiY +BiW +

2
64 Y
W

3
75
T 2
64Q 0

0 R

3
75
2
64 Y
W

3
75 � 0:

This quadratic matrix inequality can, in turn, be expressed as the linear matrix

inequality

Li(Y;W ) =

2
666664

�Y AT
i �W TBT

i � AiY �BiW Y W T

Y Q�1 0

W 0 R�1

3
777775
� 0: (28)

(The equivalence is based on the Schur complement ; see, e.g., [VB96,BEFB94].)

To summarize, we have transformed the original (nonconvex) matrix inequal-

ity (27), with variables P and K, into the linear matrix inequality (28). (Here

we assume that Q is invertible. If Q is singular another more complicated

method can be used to derive an equivalent LMI.)

In a similar way we can express xT0 Px0 = xT0 Y
�1x0 � 
 as the LMI

2
64 
 xT0

x0 Y

3
75 � 0:

Finally, then, we can solve the original (nonconvex) problem (26) by solving

minimize 


subject to Li(Y;W ) � 0; i = 1; : : : ; L;2
64 
 xT0

x0 Y

3
75 � 0;

(29)

which is an SDP.

In this example, we use SDP to synthesize a state feedback gain matrix and,

simultaneously, a quadratic Lyapunov function that establishes a guaranteed
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performance bound for a time-varying system, or, by global linearization, a

nonlinear system.

4.1 Example

We illustrate the method described above with a speci�c numerical example.

We consider the di�erential equation

y000 + a1(t)y
00 + a2(t)y

0 + a3(t)y = a4(t)u

with initial condition y00(0) = y0(0) = y(0) = 1. We can represent this di�er-

ential equation as the linear time-varying system

_x(t) =

2
666664

0 1 0

0 0 1

�a3(t) �a2(t) �a1(t)

3
777775
x(t) +

2
666664

0

0

a4(t)

3
777775
u(t) = A(t)x(t) +B(t)u(t);

where x(t) = [ y(t) y0(t) y00(t) ]T . Each coe�cient ai(t) can take on the values

1 or 4, i.e., ai(t) 2 f1; 4g. The system can be described in the form (25) by

taking the 16 extreme values of a1; : : : ; a4.

The cost we consider is

J =

Z
1

0

�
u(t)2 + y(t)2 + y0(t)2 + y00(t)2

�
dt

=

Z
1

0

�
x(t)TQx(t) + u(t)TRu(t)

�
dt;

i.e., Q = I and R = 1.

We will compare two state feedback gain matrices. The matrix Klqr 2 R1�3 is

chosen to minimize the cost when the coe�cients all have the value ai = 2:5,

the mean of the high and low values. (Klqr can be found by solving a Riccati

equation, for example.) We compute a robust state feedback gain matrix Krob

by solving the SDP (29).

The results are summarized in table 2, which shows two costs for each of the

state feedback gain matrices Klqr and Krob. One cost is the nominal cost Jnom,

which is the cost with the coe�cients �xed at the nominal value ai = 2:5. The

other cost we show is the worst case cost Jwc, with the coe�cients varying.

The �rst column shows that when the coe�cients are �xed at 2:5, the LQR

controller does a bit better than the robust controller (as, of course, it must).
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p
Jnom

p
Jwc

Klqr 3:04 1
Krob 3:93 � 9:75

Table 2

Nominal and robust performance of LQR and robust state feedback gains.

The second column needs some explanation. It turns out that the LQR con-

troller yields an unstable closed-loop system for one of the sixteen extreme

values of coe�cients, so the upper right entry is in�nite. On the other hand for

the robust controller we have the upper bound 9:75 from solving the SDP (29)

(and indeed, we have the Lyapunov function P that proves it). This bound

holds for any variation of the coe�cients among the 16 vertices. In fact, we

do not know what
p
Jwc is: we only know that it is less than 9:75, and more

than 3:93.

So here we have used SDP to synthesize a controller that not only stabilizes a

time-varying system (with substantial coe�cient variation), but also, simulta-

neously, a quadratic Lyapunov function that gives a guaranteeed performance

bound.

5 Conclusions

In the last �ve years or so, interior-point methods originally designed for LP

have been extended to handle nonlinear convex optimization problems such as

SDP and SOCP. Our new ability to e�ciently solve such problems has had an

impact on several �elds, e.g., combinatorial optimization and control. It allows

us to more accurately capture real engineering objectives and speci�cations in

an optimization formulation, e.g., by incorporating robustness constraints into

our design. Indeed, we can incorporate robustness constraints that accurately

re
ect our uncertainty in the system.

The new interior-point methods for nonlinear convex optimization also allow

us to solve control problems that have been known, but were thought to be

di�cult or intractable except in special cases with analytic solutions. For ex-

ample, many control problems involving LMIs were known in the 1960s, but

only a small number of such problems could be solved (by graphical, analyti-

cal, or Riccati equation methods). The development of e�cient interior-point

methods for SDP allows us to solve a much wider class of problems.

In this paper we have described three simple examples, which were meant only

to be representative samples of the many possible new applications of non-

linear convex programming in control. While the examples we have described
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are small and simple (involving only a few tens of variables and constraints)

standard interior-point methods can easily handle the much larger and more

complex problems that would arise in practice (with, say, many hundreds of

variables and constraints). Custom interior-point methods, that exploit the

special structure of the problems, can handle far larger problems still.
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