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Abstract— We present a crosslayer framework for optimizing
the performance of wireless networks as measured by applica-
tions or upper layer protocols. The approach combines adaptive
modulation with Network Utility Maximization. We extend the
approach to find optimal source rates and transmitter power
and rate policies without explicit knowledge of the distribution
of channel states. These optimal power and rate policies balance
delay (backlog), transmission rate and energy to maximize
network performance under constraints on average transmitter
power and link buffer arrival and departure rates. Explicit
policies are found for single links, and algorithmic methods
presented to find optimal policies for complex interfering
networks.

I. INTRODUCTION

Adaptive Modulation (AM) is a physical layer technique
to improve the performance of wireless systems by adapting
to channel conditions. Specifically, AM yields physical layer
policies that adapt to changes in the condition of the wireless
channel, generally under constraints on link or network
resources. AM has most often been applied to optimize
point-to-point physical layer metrics, and has generally not
taken into account the requirements of applications or other
upper layer protocols, creating a possible mismatch between
the optimum behavior expected by an application or upper
layer protocol and that supplied by the physical layer. To
address these limitations, we proposed in [1] a crosslayer
technique we called NUM/AM. NUM/AM yields policies
that optimize network performance as measured by appli-
cations or upper layer network protocols. In this paper we
extend NUM/AM to find optimal rate and power policies
without explicit knowledge of the distribution of channel
states. These optimal power and rate policies balance delay
(backlog), transmission rate, and energy to maximize net-
work performance under constraints on average transmitter
power and link buffer arrival and departure rates.

AM has generated considerable research interest and
commercial activity [2], [3], [4], [5], [6]. The fundamental
concept is the real time adjustment of transmitter parameters,
such as rate, power, BER, coding rate, etc., under flat fading
or other channel variations while meeting an average power
constraint. When spectral efficiency is the performance met-
ric (SE/AM), then rate and power policies are greedy, taking
advantage of good channel conditions and budgeting little or
no transmitter power to poor channel conditions.

Network Utility Maximization, NUM, has been exten-
sively studied in the context of wireline networks and is a
rapidly expanding area of research in wireless networks [7],
[8]. In NUM the goal is to maximize network performance as
measured by metrics for an upper layer protocol or network
application. The network is typically modeled as a collection
of links, generally of deterministic error free capacity, that
can carry one or more flows. Recent results suggest that
the NUM formulation may not adequately model wireless
networks that have randomly time varying wireless channels
[9].

Conceptually, NUM and AM are symbiotic, with NUM
modeling the upper layers of the protocol stack and AM
the physical layer. NUM/AM exploits this relationship by
combining the two frameworks into a crosslayer technique
that captures the performance needs of applications and
the random nature of the wireless channel. Performance is
measured by average or expected utility, which is a broad
and flexible metric. NUM/AM policies include physical layer
AM policies as well as higher layer policies that maximize
overall network performance.

In this paper we study NUM/AM for a network of
buffered links under the assumption that the distribution
of the channel states is unknown. Our approach directly
estimates Lagrange multipliers and optimal policies. These
policies adapt to changes in channel conditions and balance
link delay, transmitter energy/power, transmission rates and
the rate at which upper layer protocols inject packets into the
network. We investigate networks of increasing complexity.
For a single link, results include analytical expressions for
optimal policies that explicitly trade-off delay rate and en-
ergy. For multiple interfering links, an algorithmic approach
to computing optimal policies is presented.

The remainder of this paper is organized as follows:
Section II describes the system model and a general class
of utility functions. Section III describes the fundamental
NUM/AM problem and presents a distribution free method
of solution. Section IV investigates the single link case and
presents optimal policies. Section V considers multiple inter-
fering links and describes a numerical method for finding the
optimal NUM/AM strategies. Conclusions and future work
are presented in Section VI.



II. SYSTEM MODEL

There are L links and N data sources in the network. A
single link is modeled in Figure 1. Packets are injected into
the link buffer by the upper layer protocol stack and are
removed and transmitted by the wireless link. The channel
is modeled by a channel state (gain) matrix G∈ RL×L, where
Gi j is the power gain from the transmitter on link j to the
receiver on link i. The vector of transmitter powers is given
by S∈ RL. For concreteness the link rate function is assumed
to be of the form

Rl(S,G) = log
(

1+ KGiiSl
∑ j �=l Gl jS j+N

)
l = 1, . . . ,L (1)

where K = − log(BER) scales the received power to meet
an instantaneous BER ceiling and N is receiver noise. Each
transmitter has an average power budget S̄. Time is discrete.
The distribution of G ∼ p(G) is iid in every time period
and is unknown to the network. We assume the channel
state is estimated without error and is known at the set
of transmitters. The system can adapt to changing channel
conditions by estimating G and adapting parameters such as
transmit power S = S(G), transmission rate R = R(S(G),G),
the upper layer source rate r = r(G) r ∈RN , etc. We consider
the case of continuous link rate and source rate adaptation
subject to instantaneous BER constraints.
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Fig. 1: System Model

A. Network Utility Maximization

The canonical NUM problem is to find the optimal source
rate r that maximizes overall network utility of a network
of links. The links in most prior work are assumed to have
fixed, error free capacities, R̄. In a fading context, this implies
transmitter power is unconstrained. Each link is generally
assumed to have an associated buffer. Formally the NUM
problem can be expressed as

maximize
r≥0

∑nUn(rn)

s.t. Ar ≤ R̄
(2)

where A∈RL×N describes the fixed typology of the network.
The operation of the network is described as an iterative
optimization algorithm seeking to solve this problem. The
iteration index is often interpreted as time and need not
correspond to physical time.

Utility functions are used as the metric of network perfor-
mance [10]. Utility functions can model network protocols,
applications, or user preferences. TCP in particular [11]
has been modeled in this way. Each flow in a network is
associated with a utility function U(r). Each U(r) is assumed
to be continuously differentiable, nondecreasing, and strictly
concave.

In this paper we consider the following general class of
utility functions often used in the literature:

U(r) =

{
r1−α

1−α α > 0 α �= 1
ln(r) α = 1

(3)

The parameter α corresponds to different properties of the
utility function.

III. NUM/AM

NUM/AM is a crosslayer technique that combines NUM
and AM. The NUM formulation (2) is extended by formally
introducing random channel (or other network component)
variations and modifying the performance metrics and con-
straints to be averages. In this paper we consider the goal is
to find adaptive rate and power policies that maximize the
average utility of the network, under constraints on source
and link rates and average power transmitted. By policies
we mean rate and power functions that optimally adapt
to changes in channel state, and we write S(Gt), r(Gt),
R(S(Gt),Gt) for the respective transmitter power, source rate
and link rate policies. Formally this can be stated as

maximize
r(Gt ),S(Gt)

lim 1
T

∫
T ∑l Ul(rl(Gt))dt

s.t. lim 1
T

∫
T Ar(Gt)dt ≤ lim 1

T

∫
T R(S(Gt),Gt)dt

lim 1
T

∫
T Sl(Gt)dt = S̄l

(4)
where A is an incidence matrix routing source flows r across
links. The objective function is the time average of the
instantaneous utility of the network. The utility is assumed
to be a function of the source rate r(Gt ), the rate at which
the upper layers of the protocol stack inject packets or bits
into the network. The first constraint is a buffer constraint,
which requires that the average arrival rate to the buffer
r(Gt) must be less than the departure rate from that buffer
R(S(Gt),Gt). The second constraint requires that averaged
transmitter power S(Gt) cannot exceed a maximum.

Under conditions of stationarity and ergodicity we can re-
express (4) as the following:

maximize
r(G),S(G)≥0

E[∑l Ul(rl(G))]

subject to
E[Sl(G)] = S̄l l = 1, . . . ,L
E[Ar] ≤ E[R(S(G),G)]

(5)



For simplicity in this paper we assume each source traverses
exactly one link, A = I. More complex topologies are ana-
lyzed similarly. The optimization is over the policies r(G)
and S(G) and indirectly the link rate R(S(G),G).

If we define the optimal source and link rate policies by
r∗(G) and R∗(S(G),G), then by Jensen’s inequality

U(E[r∗(G)]) ≥ E[U(r∗(G))], (6)

so the optimal source rate policy is a constant equal to
E[R∗(S(G),G)]. This is not surprising since the rate con-
straint effectively couples the distributions of r(G) and
R(S(G),G) only through their first moment. We conclude
that the optimal NUM/AM source rate policy is a constant
rate. In the single link case when U is strictly increasing and
concave, this rate is equal to the SE/AM rate.

A. Method of Solution

FROEC, Full Recourse Optimization with Expected Con-
straints, is used to solve (5). FROEC is an online discrete
time approach to optimization. It takes as its input the
sequence of channel states seen by the network and produces
as its output estimates of the optimal Lagrange multipliers
and optimal policy values. The time index is k, and we
indicate the estimates of the optimal Lagrange multiplier
λ ∗ by λ k. Policy values are denoted by rk = r(Gk,λ k),
Sk = S(Gk,λ k), and Rk = R((Gk,λ k),Gk), e.g. Sk is the
value of the power policy at channel state Gk and λ k.
Optimal policies can sometimes be expressed analytically.
More generally FROEC numerically calculates the values of
the optimal policies. FROEC does not assume knowledge of
p(G) and under suitable conditions adjusts to changes in the
channels empirical distribution.

FROEC solves the dual problem to (5). The dual function
is first defined as

g(λ ) = argmax
r(G)≥0,S(G)≥0

L(r(G),S(G),λ ) (7)

where

L(r(G),S(G),λ ) = E[U(r(G))
−λq(r(G)−R(S(G),G))
−λs(S(G)− S̄))]

(8)

and λ = [λ T
q ,λ T

s ]T is the vector of Lagrange multipliers.
The dual problem

minimize
λ≥0

g(λ ). (9)

The FROEC approach generates a sequence of stochastic
subgradients to g(λ ). These in turn are used to optimize (9).
The FROEC algorithm has three steps. In the first step, the
channel is estimated at time k and policy values calculated:

[rk,Sk] = argmax
r≥0,S≥0

[
U(r)−λ k

q (r−R(S,Gk))−λ k
s (S− S̄))

]
.

(10)
The second step calculates stochastic subgradients:

δg = −
[ (

rk −Rk
)(

Sk − S̄
) ]

(11)

which is a vector composed of the “slack” in the constraints
evaluated at the current policy estimates. In the third step,
the λ k are updated using the subgradient recursion

λ k+1 =
[
λ k −Δkδg

]+
(12)

where []+ is the positivity operator and the step size Δk is a
sequence of positive constants.

B. Convergence

The convergence properties of (12) depends on the se-
quence {Δk}. When Δk = Δ, the estimated Lagrange multi-
plier probabilistically converges to a region centered around
the optimal value [12]. If we define e(k) = ||λ k −λ ∗|| then

P[e(k) ≥ ε|λ 0] ≤ A1(Δ)+A2(λ 0)exp(−h(Δ)k) (13)

where λ 0 is the initial guess for λ , and A1 → 0, h(Δ) → 0,
as Δ ↓ 0. In steady state, the fixed step size approach only
approximately meets the constraints, but the approximation
can be made very tight for small enough Δ.

IV. NUM/AM SINGLE LINK CASE

In this section we consider a single link in order to gain
intuition about optimal policies. The multiple interfering
link case will be described in Section V. In the single
link case we can solve for analytical policy estimates. The
resulting policies make optimal trade-offs between link rate,
transmitter energy/power, and delay. The policies are optimal
in the sense that the system converges to a small region near
its optimal operating point (13).

Equation (12) can be rewritten as

λ k+1
q = [λ k

q + Δk
(
r(Gk,λ k)−R(S(Gk,λ k),Gk

)
]+

= [λ 0
q + ∑k

l=1 δlT l
(
r(Gl ,λ l)−R(S(Gl,λ l),Gl)

)
]+

= [λ 0
q + ∑k

l=1 δl
(
Al −Dl

)
]+

(14)
where we interpret Al as the packet workload injected into
the buffer and Dl as the packet workload transmitted by the
link, T l as the time duration of the l th time period, λ 0

q as
the initial value of the the estimated Lagrange multiplier and
δl = Δl

T l . When T l = T and the step size is fixed Δk = Δ, then
λ k

q can be interpreted as proportional to the queue length of
the buffer, where λ 0

q is the initial backlog. A packet arriving
at the buffer will be delayed by the packet workload in front
of it. With this fixed step size, the queue length converges
to a region centered on the optimal queue length which is
proportional to λ ∗, the optimum Lagrange multiplier. As
channel samples vary and the system responds, the queue
lengths will randomly drift within this region.

Similarly (12) can be rewritten as

λ k+1
s =

[
λ k

s + Δk(S(Gk)− S̄)
]+

=
[
λ 0

s + ∑k
l=1 δk(E(Gl)− Ē)

]+ (15)

where E(Gk) is the energy used by the transmitter at time k
when the channel is in state Gk, and Ē is the average energy
spent by the transmitter per transmission. When Δk = Δ, the
Lagrange multiplier λ k

s is proportional to the energy spent by



the transmitter up to time k. If on average the transmitter has
exceeded its energy budget λ k

s will be large and conversely.
With a fixed step size λ k

s will converge to a region centered
about the optimal value of the Lagrange multiplier λ ∗

s , and
will drift within this region as channel conditions vary.

The optimal policies are computed using (10). In this
form the estimated Lagrange multipliers λ k

q and λ k
s can be

interpreted as the relative cost of allowing the queue length
to increase or of exceeding the link energy budget in period
k + 1, given channel samples {Gl}k

l=1. As the queue length
grows, the trade-off between utility and and net arrivals in
the next period changes, and it takes more marginal utility
to offset any increase in queue length (delay). Similarly
as λ k

s grows the cost of exceeding the average energy
per transmission budget will increase, changing the cost of
energy as measured in utility. Since λ k is a random process
these costs will be different at different times or for different
channel realizations. However, they will (probabilistically)
remain within a region centered on their optimal values.

The power policy is a function of both λ k
q and λ k

s and is
given by

S(Gk,λ k) =

⎧⎨
⎩

(
λ k

q

λ k
s
− N

Gk

)
λ k

s
λ k

q
N < Gk λq,λ k

s > 0

0 otherwise
(16)

Equation (10) captures the trade-off between queue backlog,

transmitter energy and channel state. The ratio
λ k

q

λ k
s

measures
the relative cost of queue backlog to energy spent at time k.
We term this ratio energy normalized backlog and it is the
estimated energy cost per bit to transmit data at time k + 1.

The energy policy is positive only if channel conditions
exceed a threshold determined by the energy normalized
backlog and receiver noise. This threshold varies with time as
the system samples the channel and the energy normalized
backlog is updated. If the channel state were to encounter
a period of deep fading below the initial threshold, the
transmitter would not initially transmit data. Over time the
queue backlog would grow and the average spent energy
would decrease (since the link isn’t transmitting), causing
the power normalized backlog to grow and for the threshold
to decline. Eventually the channel state would exceed the
threshold and the link would begin transmitting. Through this
type of mechanism S(Gk,λ k) balances the queue backlog,
channel state and transmitter energy.

The rate policy is

R(Gk,λ k)=

⎧⎨
⎩ log

(
1−K +K

λ k
q

λ k
s

Gk

N

)
λ k

s
λ k

q
N < Gk λ k

s > 0

0 otherwise
(17)

This policy increases rates as energy normalized backlog
grows or channel conditions improve, matching intuition.
The threshold ensures that rates are positive.

It is informative to compare the NUM/AM and SE/AM
power policies. The functional form of the two policies are
similar with the fixed optimal Lagrange multiplier λ ∗

s replac-

ing the energy normalized backlog
λ k

q

λ k
s

in the SE/AM case.

Both frameworks cease transmission if channel conditions
are poor enough. The difference is that NUM/AM adjusts
its threshold as the energy normalized backlog varies, while
the SE/AM threshold is fixed, matching intuition. Under
NUM/AM the link will transmit if the queue backlog is
large enough, irrespective of the current channel condition.
SE/AM’s threshold on the other hand is memoryless, with
transmission occurring only if channel conditions are ade-
quate.

The source rate policy r(Gk) is effectively coupled to the
the link rate R only through the backlog of the link buffer.
From equation (7) it can be seen that, given the backlog λ k

q ,
the source rate rate can be determined independently from
the remainder of the system:

r(Gk,λ k
q ) = r(λ k

q ) = [U̇ ]−1(λ k
q ) (18)

where [U̇ ]−1 is the inverse function of the derivative of the
utility function. As the backlog varies the source rate will
also vary. Thus, under NUM/AM the best source rate is
independent of the channel.

A. Single Link Simulations

In this section we describe a single link simulation. The
simulation is over 200 discrete time periods. We consider
MQAM modulation with S̄ = 0 dB, N = −20 dB, and
E[G] = 0 dB with iid Rayleigh fading in each time interval.
The utility function has parameter α = 0.5. Figure 2 shows
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Fig. 2: Link Performance

the running average utility and source rate for the link.
Running averages are used to approximate the expectation
operation in (5) and to smooth the data for interpretation. The
vertical axis is measured in utility and bits/sec for the utility
function and source rate respectively. Both the utility and
source rate improve as the number of samples increases and
the algorithm seeks the optimal energy normalized backlog.
The improvement in performance is not monotone, since the
channel is changing randomly.

Figure 3 shows that the constraints are closely met. The
moving average power curve initially deviates in the wrong
direction and then quickly moves to within a few percent of
S̄ = 1 as the algorithm learns the channel. The deviation is
a result of the random initial value chosen for the energy
normalized backlog. The source and link rate curves also



initially deviate and then converge. This deviation is also a
result of the initial conditions chosen for the simulation. The
area between the two curves is the delay or backlog of the
link.
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V. MULTIPLE LINKS

In this section we consider multiple interfering links.
Unfortunately (5) is not a convex problem for L ≥ 2 and
global policies may not exist. It can be made convex by
assuming SIRl >> 1 and transforming the variables Sl =
exp(xl), Gi j = exp(gi j), N = exp(n), where xl gi j and n are
proportional to transmitter power, channel gain, and noise in
dB. The link rate model can now be expressed as

Ri(G,S(G)) = − ln(e(−xi−gii)(∑ j �=i e
(x j+gi j) + en)). (19)

The estimated Lagrange multipliers become λ k
q ∈ RL and

λ k
s ∈ RL have similar interpretations to the single link case,

with [λ k
q ]l proportional to the backlog of the l th queue at

the kth channel sample and λ k
q interpreted similarly. The

ratios
[λ k

q ]i
[λ j

s ] j
can be interpreted as the backlog of the i th queue

normalized by the jth transmitter energy, we term this the
cross-link energy normalized backlog.

The transmitter power optimization has necessary condi-
tion

λ T
q D[R(S(G),G)] = λ T

s (20)

where D is the Jacobian operator. Equation (20) relates
the set of link delays to the set of transmitter powers
through a non-linear operator. It is difficult to solve for S(G)
analytically, but it can be readily solved numerically. The
FROEC approach yields a sequence of values that are the
optimal policies at the the current channel state G.

The optimal source rate policy is identical to the single
link case, since inter-link interference only effects the link
capacities:

[U̇i]−1(λ k
q ) = rk

i (G
k,λ k

q ) = rk
i (λ

k
q ) (21)

where [U̇ ]−1 is the inverse function of the derivative of the
utility function.

A. Numerical Example

Figures 4 and 5 depict a numerical example with L =
N = 6 links and sources and S̄l = 1. The simulation is over
200 time periods, and the channel state matrix is drawn iid
Rayleigh, with diagonal elements scaled to yield an average
of 20 dB over all links Figure 4 shows the performance of
each link in bits/sec . As in the single link case the curves
are running averages. As the network samples the channel
the performance improves significantly for all links.
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Figure 5 shows the transmitter power used by each link. It
initially drops and then asymptotically converges to within



a few percent of its target expected value. The initial drop
is an artifice of the starting point or initial conditions of the
network. The lower chart shows the difference between the
source rates and link rates for each link, which also converge.
Figure 6 shows the power normalized backlog for each link.
The large initial peak in this curve is also caused by the
initial conditions used.

Figure 6 shows the energy normalized backlog for each
link. The large initial peak in this curve is caused by the
initial conditions used. The curves settle in to a narrow region
about their optimal values, but do not converge, reflecting the
random variation of the channel.

VI. CONCLUSION

We have developed cross-layer adaptive transmission poli-
cies to optimize network performance based on tradeoffs
between data rate, delay, and energy. The policies determine
the optimal source rate, transmit power and transmission rate
based on performance metrics associated with the application
layer or network protocol. We also introduce the concept of
energy-normalized backlog, which corresponds to the cost of
transmitting packets in the next timeslot. For a single link,
our optimal adaptive policies are expressed in closed form,
while for multiple interfering links the policies are described
using a numerical algorithm. Simulations illustrate an initial
transient response, followed by convergence to a steady state
region. These numerical results provide significant insight
into transmission adaptation based on network performance,
and also show how optimization relative to link layer metrics
alone can lead to highly suboptimal policies. Future areas
of research include extending our approach to correlated
channels, investigating more general classes of policies using
past channel information, and investigating adaptive policies
based on link and network reliability.
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