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Abstract

Policy gradient methods are among the most effective meth-
ods for large-scale reinforcement learning, and their empir-
ical success has prompted several works that develop the
foundation of their global convergence theory. However, prior
works have either required exact gradients or state-action vis-
itation measure based mini-batch stochastic gradients with a
diverging batch size, which limit their applicability in practi-
cal scenarios. In this paper, we consider classical policy gra-
dient methods that compute an approximate gradient with a
single trajectory or a fixed size mini-batch of trajectories un-
der soft-max parametrization and log-barrier regularization,
along with the widely-used REINFORCE gradient estimation
procedure. By controlling the number of “bad” episodes and
resorting to the classical doubling trick, we establish an any-
time sub-linear high probability regret bound as well as al-
most sure global convergence of the average regret with an
asymptotically sub-linear rate. These provide the first set of
global convergence and sample efficiency results for the well-
known REINFORCE algorithm and contribute to a better un-
derstanding of its performance in practice.

1 Introduction

In this paper, we study the global convergence rates of the
REINFORCE algorithm (Williams 1992) for episodic rein-
forcement learning. REINFORCE is a vanilla policy gradi-
ent method that computes a stochastic approximate gradient
with a single trajectory or a fixed size mini-batch of trajec-
tories with particular choice of gradient estimator, where we
use ‘vanilla’ here to disambiguate the method from more ex-
otic variants such as natural policy gradient methods. REIN-
FORCE and its variants are among the most widely used pol-
icy gradient methods in practice due to their good empirical
performance and implementation simplicity (Mnih and Gre-
gor 2014; Gu et al. 2015; Zoph and Le 2016; Rennie et al.
2017; Guu et al. 2017; Johnson et al. 2017; Yi et al. 2018;
Kool, van Hoof, and Welling 2018, 2020). Related methods
include the actor-critic family (Konda and Tsitsiklis 2003;
Mnih et al. 2016) and deterministic and trust-region based
variants (Silver et al. 2014; Schulman et al. 2017, 2015).
The theoretical results for policy gradient methods have,
up to recently, been restricted to convergence to local sta-
tionary points (Agarwal et al. 2019). Lately, a series of
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works have established global convergence results. These
recent developments cover a broad range of issues including
global optimality characterization (Fazel et al. 2018; Bhan-
dari and Russo 2019), convergence rates (Zhang et al. 2019;
Mei et al. 2020; Bhandari and Russo 2020; Cen et al. 2020),
the use of function approximation (Agarwal et al. 2019;
Wang et al. 2019; Fu, Yang, and Wang 2020), and efficient
exploration (Agarwal et al. 2020) (for more details, see the
related work section, which we defer to Appendix E due to
space limits). Nevertheless, prior work on vanilla policy gra-
dient methods either requires exact and deterministic policy
gradients or only guarantees convergence up to ©(1/MP)
with a fixed mini-batch size M > 0 of trajectories col-
lected when performing a single update (where p > 0is 1/2
in most cases), while global convergence is only achieved
when the batch size M goes to infinity. By contrast, prac-
tical implementations of policy gradient methods typically
use either a single or a fixed number of sample trajectories,
which tends to perform well. In addition, prior theoretical
results (for general MDPs) have used the state-action visita-
tion measure based gradient estimation (see e.g., (Wang et al.
2019, (3.10))), which are typically not used in practice.

The main purpose of this paper is to bridge this gap be-
tween theory and practice. We do this in two major ways.
First, we derive performance bounds for the case of a fixed
mini-batch size, rather than requiring diverging size. Sec-
ond, we remove the need for the state-action visitation mea-
sure based gradient, instead using the REINFORCE gradient
estimator. It is nontrivial to go from a diverging mini-batch
size to a fixed one. In fact, by allowing for an arbitrarily large
batch size, existing works in the literature were able to make
use of IID samples to decouple the analysis into determin-
istic gradient descent/ascent and error control of stochastic
gradient estimations. In contrast, with a single trajectory or
a fixed batch size, such a decoupling is no longer feasible.
In addition, the state-action visitation measure based gradi-
ent estimations are unbiased and unbounded, while REIN-
FORCE gradient estimations are biased and bounded. Hence
a key to the analysis is to deal with the bias while making
better use of the boundedness. Our analysis not only ad-
dresses these challenges, but also leads to convergence re-
sults in almost sure and high probability senses, which are
stronger than the expected convergence results that dominate
the literature (for vanilla policy gradient methods). We also



emphasize that the goal of this work is to provide a deeper
understanding of a widely used algorithm, REINFORCE,
with little or no modifications, rather than tweaking it to
achieve near-optimal performance bounds. Lastly, our anal-
ysis is not the complete picture and several open questions
about the performance of policy gradient methods remain.
We discuss these issues in the conclusion.

1.1 Contribution

Our major contribution can be summarized as follows.
We establish the first set of global convergence results
for the REINFORCE algorithm. In particular, we estab-
lish an anytime sub-linear high probability regret bound
as well as almost sure global convergence of the aver-
age regret with an asymptotically sub-linear rate for RE-
INFORCE, showing that the algorithm is sample efficient
(i.e., with polynomial/non-exponential complexity). To our
knowledge, these (almost sure and high probability) results
are stronger than existing global convergence results for
(vanilla) policy gradient methods in the literature. More-
over, our convergence results remove the non-vanishing
O(1/MP) term (with M > 0 being the mini-batch size of
the trajectories and p > 0 being some constant exponent)
and hence show for the first time that policy gradient estima-
tions with a single or finite number of trajectories also enjoy
global convergence properties. Finally, the widely-used RE-
INFORCE gradient estimation procedure is studied, as op-
posed to the state-action visitation measure based estimators
typically studied in the literature but rarely used in practice.

2 Problem setting and preliminaries

Below we begin with our problem setting and some prelimi-
naries on MDPs and policy optimization. For brevity we re-
strict ourselves to the stationary infinite-horizon discounted
setting. We briefly discuss potential extensions beyond this
setting in §6.

2.1 Problem setting

We consider a finite MDP M, which is characterized by
a finite state space S = {1,...,S5}, a finite action space
A ={1,..., A}, a transition probability p (with p(s’|s, a)
being the probability of transitioning to state s’ given the
current state s and action a), a reward function r (with
r(s,a) being the instantaneous reward when taking action
a at state s), a discount factor v € [0,1) and an initial state
distribution p € A(S). Here A(X') denotes the probability
simplex over a finite set X. A (stationary, stochastic) policy
7 is a mapping from S to A(.A). We will use w(als), 7(s, a)
or T, o alternatively to denote the probability of taking ac-
tion a at state s following policy 7. The policy 7 can also be
viewed as an S A dimensional vector in

1= {weRSA‘ ZA [ Tsa=1(¥s €5),
“ (H
Tea>0(Vs€S, ae A)}.

Notice that here we use the double indices s and a for nota-
tional convenience. We use (s, -) € R* to denote the sub-
vector (m(s,1),...,m(s, A)). We also assume that r(s,a)

is deterministic for any s € S and a € A for simplic-
ity, although our results hold for any r with an almost sure
uniform bound. Here r can be similarly viewed as an S A-
dimensional vector. Without loss of generality, we assume
thatr(s,a) € [0,1] forall s € S and a € A, whichis a com-
mon assumption (Jaksch, Ortner, and Auer 2010; Agarwal
et al. 2019; Mei et al. 2020; Even-Dar and Mansour 2003;
Jin et al. 2018). We also assume that p is component-wise
positive, as is assumed in (Bhandari and Russo 2019).

Given a policy 7 € II, the expected cumulative reward of
the MDP is defined as

—EY " Arsna), 2

where sq ~ p, a; ~ 77('|5t)7 st+1 ~ p(|st,ar), V& > 0,
and the goal is to find a policy 7 which solves the following
optimization problem:

maximize ey F(m). 3)

Any policy 7* € argmax,  F'(7) is said to be optimal,
and the corresponding optimal objective value is denoted as
F* = F(7*). Note that in the literature, F'() is also com-
monly written as V7 and referred to as the value function.
Here we hide the dependency on p as it is fixed throughout

the paper.

2.2 Vanilla policy gradient method and
REINFORCE algorithm

When the transition probability p and reward r are fully
known, problem (3) reduces to solving an MDP, in which
case various classical algorithms are available, including
value iteration and policy iteration (Bertsekas 2017). In
this paper, we consider the episodic reinforcement learn-
ing setting in which the agent accesses p and r by interact-
ing with the environment over successive episodes, i.e., the
agent accesses the environment in the form of a p-restart
model (Shani, Efroni, and Mannor 2019), which is com-
monly adopted in the policy gradient literature (Kakade et al.
2003). In addition, we focus on the REINFORCE algorithm,
a representative policy gradient method.

Policy parametrization and surrogate objectives. Here
we consider parametrizing the policy with parameter 6 <
O, ie., mp : © — II, and take the following (regularized)
optimization problem as an approximation to (3):

= F(mg) + AR(0), 4)

where A > 0 and R : ©® — R is a differentiable regu-
larization term that improves convergence, to be specified
later. Although our ultimate goal is still to solve the origi-
nal problem (3) this regularized optimization problem is a
useful surrogate and our approach will be to tackle prob-
lem (4) with progressively smaller A\ regularization penal-
ties, thereby converging to solving the actual problem we
care about.

maximizepeo L (0)

Policy gradient method. In each episode n, the policy
gradient method directly performs an online stochastic gra-
dient ascent update on a surrogate objective Ly~ (), i.e.,

9"t = 0" + a"VyLan (0", (5)



where o is the step-size and A" is the regularization pa-

rameter. Here the stochastic gradient VgL . (6") is com-
puted by sampling a single trajectory 7" following pol-
icy mpn from M with the initial state distribution p. Here
" = (387 ag) Tga 81117 CL?, T{L7 AR 57]2["3 a%"v’r?[")’ where
H™ is a finite (and potentially random) stopping time of
the trajectory (to be specified below), s§ ~ p, af ~
mon (-[sf), sfy1 ~ p(|sf,af) and rf = r(s},a}) for all
t =0,..., H*. We summarize the generic policy gradient
method (with single trajectory gradient estimates) in Algo-
rithm 1. An extension to mini-batch scenarios will be dis-
cussed in §5. As is always (implicitly) assumed in the liter-
ature of episodic reinforcement learning (e.g., cf. (Marbach
and Tsitsiklis 2001)), given the current policy, we assume
that the sampled trajectory is conditionally independent of
all previous policies and trajectories.

Algorithm 1 Policy Gradient Method with Single Trajec-
tory Estimates

1: Input: initial parameter 6°, step-sizes o™ and regular-
ization parameters A" (n > 0).

2: forn=0,1,... do

3:  Choose H", sample trajectory 7" from M follow-
ing policy mgn», and compute an approximate gradient
VoL (6™) of Lyn using trajectory 7".

4 Update "1 = 0" + o"VyLy» om).

5: end for

REINFORCE algorithm. There are several ways of

choosing the stochastic gradient operator Vg in the policy
gradient method, and the well-known REINFORCE algo-
rithm (Williams 1992) corresponds to a specific family of es-
timators based on the policy gradient theorem (Sutton et al.
2000) (cf. §3). Other common alternatives include zeroth
order/random search (Fazel et al. 2018; Malik et al. 2018)
and actor-critic (Konda and Tsitsiklis 2003) approximations.
One may also choose to parametrize the policy as a mapping
from the parameter space to a specific action, which would
then result in deterministic policy gradient approximations
(Silver et al. 2014).

Although our main goal is to study the REINFORCE
algorithm, our analysis indeed holds for rather generic
stochastic gradient estimates. In the next section, we intro-
duce the (mild) assumptions needed for our convergence
analysis and the detailed gradient estimation procedures in
the REINFORCE algorithm, and then verify that the as-
sumptions do hold for these gradient estimations.

2.3 Phased learning and performance criteria

Phased learning. To facilitate the exposition below, we di-
vide the optimization in Algorithm 1 into successive phases
l=0,1,...,each with length T; > 0. We then fix the regu-
larization coefficient \; within each phase [ > 0. In addition,
a post-processing step is enforced at the end of each phase
to produce the initialization of the next phase. The resulting

algorithm is described in Algorithm 2. Here the trajectory is
denoted as Th* = (sf)’k, af)’k, r(l)’k, ce slﬁ]i,k,a%};‘l , réﬁk)
and we will refer to #“* as the (I, k)-th iterate hereafter.
The post-processing function is required to guarantee that
the resulting policy 7y is lower bounded by a pre-specified
tolerance ¢, € (0,1/A] to ensure that the regularization is
bounded (cf. Algorithm 3 for a formal description and §3.1
for an example realization).

Note that here the k-th episode in phase [ corresponds

to the n-th episode in the original indexing with n =
Zé;% T; + k. For notational compactness below, for 7 =
{T;}320, we define By Z, x Z, — Z,, where
Br(l,k) = Z;;t T; + k maps the double index (I, k) to the
corresponding original episode number, with dom By =
{(l,k) € Zy xZ4|0 <k <T; — 1}. The mapping B is
a bijection and we denote its inverse by G7.

Algorithm 2 Phased Policy Gradient Method

1: Input: initial parameter §%:° Lk

, step-sizes a'", regulariza-
tion parameters ', phase lengths 7} (I, k > 0) and post-
processing tolerance e, € (0,1/A].

2: Set 90 = PostProcess(82, eyp).

3: for phase l = 0,1,2,... do

4: forepisode k =0,1,...,7; — 1do

5: Choose H'“*, sample trajectory 75F from M fol-

lowing policy mgi,x, and compute an approximate

gradient Vo Ly (0°*) of Ly using trajectory 7%,

6: Update 01F+1 = gLk 4 a““@eL,\z (65F).
7:  end for

8:  Set§*10 =postProcess(0-T,¢,p).

9: end for

Algorithm 3 PostProcess (6, €yp)
Input: ¢,, € (0,1/A],0 € ©.
Return ¢’ (near 6) such that 7y (s,a) > epp for each
s,a €S x A

Performance criteria. The criterion we adopt to evaluate
the performance of Algorithm 2 is regret. For any N > 0,
the regret up to episode [V is defined as the cumulative sub-
optimality of the policy over the N episodes. Formally, we
define

regret(N) = Z

Here the summation is over all (I, k)-th iterates whose cor-
responding original episode numbers are smaller or equal

~ L,k .
to N, and FUF (i) = Byp ity vir(shF, ab®), where

1,k 1 Lk Lk
S0 ~ P Oy t )>

* bk
tamBrameny T T (o) (6)

Lk Sk
~ W@L,k("St ), Sir1 p(|5 ) Ay



Vvt > 0, and E; ;. denotes the conditional expectation given
the (I,k)-th iteration #*. Notice that the regret defined
above takes into account the fact that the trajectories are
stopped/truncated to have finite horizons H'*, which char-
acterizes the actual loss caused by sampling the trajectories
in line 5 of Algorithm 2. A similar regret definition for the
episodic (discounted) reinforcement learning setting consid-
ered here is adopted in (Fu, Yang, and Wang 2020). We re-
mark that all our regret bounds remain correct up to lower
order terms when we replace FUF with F or an expectation-
free version.

Similarly, we also define the single phase version of regret
as follows. The regret up to episode K € {0,...,7; — 1} in
phase [ is defined as

K .
regret,(K) = Zk:o F* — FY%(mgur). @)
Notice that (6) and (7) are connected via
In—1
regret(N) = Z regret,(7;—1)+regret; (kn), (8)
1=0

where (In,kn) = G (N).

We provide high probability regret bounds in §4. We re-
mark that a regret bound of the form regret(N)/(N +
1) < R (for some R > 0) immediately implies that
minlyk:BT(l_’k)SN F* — F(ﬂ'gl,k) < R, where the latter is
also a commonly adopted performance criteria in the litera-
ture (Agarwal et al. 2019; Wang et al. 2019).

3 Assumptions and REINFORCE gradients
3.1 Assumptions

Here we list a few fundamental assumptions that we require
for our analysis.

Assumption 1 (Setting). The regularization term is a log-
barrier, i.e.,

R(0) = <5 Zses,aeA log(mg(s,a)),

and the policy is parametrized to be a soft-max, i.e.,
exp(0s o .
mo(s,a) = —Za/ejéxlpy(@)s,a/)’ with © = R4,

The first assumption concerns the form of the policy pa-
rameterization and the regularization. Notice that the regu-
larization term here can also be seen as a relative entropy/KL
regularization (with a uniform distribution policy reference)
(Agarwal et al. 2019). Such kind of regularization terms are
also widely adopted in practice (although typically with vari-
ations) (Peters, Miilling, and Altun 2010; Schulman, Chen,
and Abbeel 2017).

With Assumption 1, the post-processing function in Al-
gorithm 3 can be for example realized by first calculat-

ing T = eppl + (1 — Aepp)mp, and then return 6 with
9;@ = log @4, + c,. Here 1 is an all-one vector and ¢ € R
(s =1,...,5) are arbitrary real numbers.

Assumption 2 (Policy gradient estimator). There exist con-
stants C, Cy, Cy, My, My > 0, such that for all I, k > 0,

we have ||§9L)\z (0Y%)||2 < Cy almost surely and that

VoL (0" Bk VoL (0"%) > Co||VoLyi (6"%)12 = 1.4,
Ev k| VoLyk (0%)]13 < My + Ma||Vo Ly (8°%)]13,

where Zf’:_ol (512’1,C < C, V1 > 0. In addition, H"* >
logy/,(k+1), V1, k>0.

The second assumption requires that the gradient esti-
mates are almost surely bounded, nearly unbiased and sat-
isfy a bounded second-order moment growth condition. This
is a slight generalization of standard assumptions in the
stochastic gradient descent literature (Bottou, Curtis, and
Nocedal 2018). Additionally, we also require that the tra-
jectory lengths H"* are at least logarithmically growing in
k to control the loss of rewards due to truncation. For no-
tational simplicity, hereafter we omit to mention the trajec-
tory sampling (i.e., so ~ p, ai™ ~ mgi(|st®), sifl ~
p(-\s,l;k, af;k), vt > 0) when we write down E; .

Notice that Assumption 2 immediately holds if
VoL (65F) is unbiased and has a bounded second-
order moment. We have implicitly assumed that L) is
differentiable, which we can do due to the following lemma:

Proposition 1 ((Agarwal et al. 2019, Lemma E.4)). Under
Assumption 1, Ly is strongly smooth with parameter ) =

g + % iey [VoLa(0) = VoL ()2 < Ball0 — 02

forany 6, 6 € R54,

3.2 REINFORCE gradient estimations

Now we introduce REINFORCE gradient estimation with
baselines, and specify the hyper-parameters under which the
technical Assumption 2 holds, when operating under the set-
ting Assumption 1.

REINFORCE gradient estimation with log-regularization
takes the following form:

= Ly NWBHEYEL p s ik Lk Lk
VoL (0 )*Z YR (sy™ ay™) — b(sy™))

t=0
X Vg log mgir (ab¥|st*) ©
Al
+ 52 seS.aca Vo log gk (als),
-~ . Hl,k' _
where 3 € (0,1), QV*(sb*,ab®) = 7, 4 4L, and

the second term above corresponds to the gradient of the
regularization R(6). Notice that here the outer summation
is only up to | 3H"* |, which ensures that Q"% (5% al*) is
sufficiently accurate. Here b : S — R is called the base-
line, and is required to be independent of the trajectory 7!*
(Agarwal, Jiang, and Kakade 2019, §4.1). The purpose of
subtracting b from the approximate (J-values is to (poten-
tially) reduce the variance of the “plain” REINFORCE gra-
dient estimation, which corresponds to the case when b = 0.

With this we have the following result, the proof of which
can be found in the Appendix.

Lemma 2. Suppose that Assumption 1 holds, € (0,1),
and that for all I, k > 0, A<

8(k+1)
2108, , (F453F) (
Tmin{B,1- 6}

HW > = O(log(k + 1))). (10)



Assume in addition that |b(s)| < B for any s € S, where
B > 0 is a constant. Then for the gradient estimation (9),
Assumption 2 holds with

N2 B _
C=16(tp+1), O =220 403,

Cy =1, M1=%+Vb, My = 2.

and 85 = ((1% + 2X)(k +1)73, V1 k > 0. Here

v)?
_ N2
Vi € [O, 4(% + )\) } is the uniform upper bound
on variances of policy gradient estimations with form (9).

This result extends without modification to non-stationary
baselines bi’k, as long as each bfgk is independent of trajec-
tory 5% and [b-"(s)] < B for any ¢, [, k > 0. Note that
the explicit upper bound on V} is pessimistic, and in prac-
tice V, is usually much smaller than V{ with appropriate
choices of baselines (e.g., the adaptive reinforcement base-
lines (Williams 1992; Zhao et al. 2011)), although the latter
has a smaller upper bound as stated in Lemma 2.

4 Main convergence results
4.1 Preliminary tools
We first present some preliminary tools for our analysis.

Non-convexity and control of “bad” episodes. One of
the key difficulties in applying policy gradient methods to
solve an MDP problem towards global optimality is that
problem (3) is in general non-convex (Agarwal et al. 2019).
Fortunately, we have the following result, which connects
the gradient of the surrogate objective L) with the global
optimality gap of the original optimization problem (3).

Proposition 3 ((Agarwal et al. 2019, Theorem 5.3)). Under
Assumption 1, for any ¢ > 0, suppose that we have
IVoLA(0)||2 < € and that ¢ < X\/(2SA). Then F* —

dﬂ
o< 4 5

oo

Here for any policy = € [II, df = (1 —
Y)Y reo V' Prob. (s, = s|sg ~ p) is the discounted state
visitation distribution, where Prob.(s; = s|sg ~ p) is the
probability of arriving at s in step ¢ starting from sy ~ p
following policy 7 in M. In addition, the division in dg* /p
is component-wise.

Now motivated by Proposition 3, when analyzing the re-
gret up to episode K in phase [, we define the following set
of “bad episodes”:

It ={kec{0,....,K}|||[VoLx(6"%)|]2 > X' /(2SA)}.

Then one can show that for any € > 0, if we choose A=
@, we have that F* — F(mgir) < ||dg*/p||ooe for any
ke {0,...,K}\I", while F*—F(mg.x) < 1/(1—~) holds
trivially for k € IT due to the assumption that the rewards
are between 0 and 1. We then establish a sub-linear (in K)
bound the size of I+, which serves as the key stepping stone
for the overall sub-linear regret bound. The details of these
arguments can be found in the Appendix.

Doubling trick. The second tool is a classical doubling
trick that is commonly adopted in the design of online learn-
ing algorithms (Besson and Kaufmann 2018; Basei, Guo,
and Hu 2020), which can be used to stitch together the re-
gret over multiple learning phases in Algorithm 2.

Notice that Proposition 3 suggests that for any pre-
specified tolerance €, one can select A proportional to € and
then run (stochastic) gradient ascent to drive F* — F(my)
below the tolerance. To obtain the eventual convergence
and regret bound in the long run we apply the doubling
trick, which specifies a growing phase length sequence with
Ti+1 ~ 277 in Algorithm 2 and a suitably decaying sequence
of regularization parameters {\'}5°.

From high probability to almost sure convergence. The
last tool is an observation that an arbitrary anytime sub-
linear high probability regret bound with logarithmic de-
pendency on 1/ immediately leads to almost sure conver-
gence of the average regret with a corresponding asymp-
totic rate. Although such an observation seems to be infor-
mally well-known in the theoretical computer science com-
munity, we provide a compact formal discussion below for
self-contained-ness.

Lemma 4. Suppose that ¥V 6 € (0,1), with probability at
least1 — 6,V N > 0, we have

regret(N) < di(N + ¢)*2(log(N/8))* + da(log N)* (11)

for some constants ¢, dy, d3, dy, ds > 0 and dy € [0,1).
Then we also have

Prob (EI N e Z., such thatV N > N, Anx holds) =1,
where the events Ay = {regret(N)/(N + 1) < (%)}, and

(+) = dN~07%) (14 £)%® (31og N)ds 4 dalloe M),
To put it another way, we have

Nlim regret(N)/(N +1) =0 almost surely
—00

with an asymptotic rate of (x).

Notice that here we restrict the right-hand side of (11) to
a rather specific form simply because our bounds below are
all of this form. However, similar results hold for much more
general forms of bounds.

4.2 Regret analysis

In this section, we establish the regret bound of Algorithm
2, when used with the REINFORCE gradient estimator from
§3.2. We begin by bounding the regret of a single phase and
then use the doubling trick to combine these into the overall
regret bound.

Single phase analysis. We begin by bounding the regret
defined in (7) of each phase in Algorithm 2. Note that a sin-
gle phase in Algorithm 2 is exactly Algorithm 1 terminated
in episode 7}, with \» = A for all n > 0 and §° = #"0.
Also notice that for a given phase [ > 0, in order for Theo-
rem 5 below to hold, we actually only need the conditions in
Assumption 2 to be satisfied for this specific (.



Theorem 5. Under Assumptlons 1 and 2, for phase l > 0

suppose that we choose obF = C) “m for some
2

Cla € (0,Co/(MaBy1)]. Then for any € > 0, if we choose

)\l = 6(17“’) then ¥V § € (O 1), with probability at least
— 4, for anyK € {0,. — 1}, we have

VECHT o8 (3)los(2/0)

regret,(K) < U;
(12)

+(K+1)’ A ‘ e+ 2% log(K + 3).

Here the constant Uy only depends on the underlying MDP
M, phase initialization 040 and the constants C, Cy, Cs,
Mla Ol,a) Al'

The proof as well as a more formal statement of Theorem
5 with details of the constants (cf. Theorem 9) are deferred to
the Appendix. Here the constant 3 is the smoothness con-
stant from Proposition 1. We remark that when e is fixed, the
regret bound (12) can be seen as a sub-linear (in K as K —
o0) regret term plus an error term (K +1)e+ % log(K+3).
Alternatively, one can interpret it as follows:

regret,;(K) <U log, (K + 3)4/log(2/0)
K+1 — 1 VK 1e2
2v log(K + 3) n ’ az” .
1-~v K+1 7 Ml

Namely, the average regret in episode [ converges to a con-
stant multiple of the pre-specified tolerance € at a sub-linear
rate (as K — 00).

Overall regret bound. Now we stitch together the single
phase regret bounds established above to obtain the overall
regret bound of Algorithm 2, with the help of the doubling
trick. This leads to the following theorem.

Theorem 6 (Regret for REINFORCE). Under Assump-
tion 1, suppose that for each | > 0, we choose abk =

Cl,am, with C[7a S [1/(2/65\),1/(26)\l)] and

A = 1777, and choose T} = 2!, ¢ = Tfl/ﬁ = 9-U/6
A= 61(12777) and ep, = 1/(2A). In addition, suppose that

(9) is adopted to evaluate VoL (0°%), with 8 € (0,1),
|b(s)| < B for any s € S (where B > 0 is a constant),
and that (10) holds for HY* for all 1, k > 0. Then we have
Sor any 6 € (0,1), with probability at least 1 — 6, for any
N > 0, we have

*
L
dp
P

regret(N) = O((ﬁ +

a-7

)N% (log %)%). (13)

e}

In addition, we have

lim regret(N)/(N +1)=0 almostsurely (14)
N—oo

<f2f‘/2 ‘ )N_%(logN)%).

Note that the almost sure convergence (14) is immediately
implied by the high probability bound (13) via Lemma 4.
Here for clarity, we have restricted the statement to the case

with asymptotic rate O ((

when we use the REINFORCE gradient estimation from
§3.2. A more general counterpart result can be found in Ap-
pendix B.3, from which Theorem 6 is immediately implied.
See also Appendix C for a more formal statement of the re-
gret bound (cf. Corollary 11) for REINFORCE with detailed
constants.

Notice that compared to the single phase regret bound in
(12), the overall regret bound in (13) now gets rid of the de-
pendency on a pre-specified tolerance ¢ > 0. This should
be attributed to the adaptivity in the regularization param-
eter sequence. Also notice that here we have followed the
convention of the reinforcement learning literature to make
all the problem dependent quantities (e.g., v, S, A, etc.) ex-
plicit in the big-O notation.

One crucial difference between our regret bound and
those in the existing literature of vanilla policy gradient
methods in the general MDP settings (which are sometimes
not stated in the form of regret, but can be easily deduced
from their proofs in those cases) is that the previous results
either require exact and deterministic updates or contain
a non-vanishing ©(1/M?) term, with M being the mini-
batch size (of the trajectories) and p > 0 being some ex-
ponent (with a typical value of 1/2). By removing such non-
vanishing terms, we obtain the first sub-linear regret bound
for model-free vanilla policy gradient methods with finite
mini-batch sizes.

5 Extension to mini-batch updates

We now consider extending our previous results to mini-
batch settings, by modifying Algorithm 2 as follows. Firstly,
in each inner iteration, instead of sampling only one trajec-

tory in line 5, we sample M > 1 independent trajectories

7'{ k, e ,Tllhk from M following policy 7.+ and then com-

pute an approximate gradient V" L (0°%) (i = 1,..., M)
using each of these M trajectories. We then modify the up-
date in line 6 as

9[,k+1 _ el,k' + Oél’

1L,
kMZVEJ)LM(Hl’k).
=1

See Algorithm 4 in Appendix D for a formal description of
the modified algorithm.

Regret with mini-batches. Notice that since each inner
iteration (in Algorithm 4) now consists of M episodes, we
need to slightly modify the definition of the regret up to
episode N (N > 0) as follows:

regret(N; M) =

M(F* — F"* (g,
Z{(LkﬂBT(z,k)st%J—l} ( (mg1.1)) (15)

+ (N—M {%J) (F* = F (s i)

where (lN,JWa kN,]M) = GT( LN/MJ) and Fl’k(ﬁgz,k) is the
same as in (6). The above definition accounts for the fact
that each of the M episodes in an inner iteration/step (I, k)
corresponds to the same iterate % and hence has the same



contribution to the regret. The second term on the right-hand
side accounts for the contribution of the (remaining) N —
M| N/M | episodes (among a total of M episodes) in inner
iteration/step (In a1, kN a1 )-

Then the following regret bound can be established.

Corollary 7 (Regret for mini-batch REINFORCE). Under
Assumption 1, suppose that for each | > 0, we choose obF =

Cl,am, with Cy o € [1/(2835),1/(2Bx)] and

A = 1; , and choose T) = 2!, ¢ = Tfl/6 = 27l/6

A= E(IQJ and ep, = 1/(2A). In addition, suppose that
the assumptions in Lemma 12 hold (note that Assumption 1
and \' < X already automatically hold by the other assump-
tions). Then we have for any § € (0, 1), with probability at
least 1 — 0, jointly for all episodes N, we have (for the mini-
batch Algorithm 4)

X« (M¥ + M 3)(N + Mﬁ(log(N/a))%

regret(N; M) = O(( 5242

M (log N)?
11—~ :

In addition, we also have

]\}im regret(N; M)/(N 4+ 1) =0 almost surely
—00
with an asymptotic rate of

o (4 + %)

(M6+M 6)]\] 6(1+M) (10gN)2 +M)

(I-v)N

Again, we note that the almost sure convergence above is
directly implied by the high probability bound via Lemma
4. The proof and a more formal statement of this corollary
(cf. Corollary 13) can be found in Appendix D. In particular,
when M = 1, the bound above reduces to (13). In addi-
tion, we can see that there might be a trade-off between the
terms M /6 and M5/, The intuition behind this is a trade-
off between lower variance with larger batch sizes and more
frequent updates with smaller batch sizes.

6 Conclusion and open problems

In this work, we establish the global convergence rates of
practical policy gradient algorithms with a fixed size mini-
batch of trajectories combined with REINFORCE gradient
estimation.

Although in §4 and §5, we only instantiate the bounds for
the REINFORCE gradient estimators, we note that our gen-
eral results (in particular, Theorem 10 in Appendix B.3) can
be easily applied to other gradient estimators (e.g., actor-
critic and state-action visitation measure based estimators)
as well, as long as one can verify the existence of the con-
stants in Assumption 2 in a similar way to Lemma 2. In ad-
dition, one can also easily derive sample complexity results
as by-products of our analysis. In fact, our proof of The-
orem 5 immediately implies a O(1/€*) sample complexity
bound (for Algorithm 1 with REINFORCE gradient estima-
tors and a constant regularization parameter) for any pre-
specified tolerance € > 0, where we use O to indicate the

big-O notation with logarithmic terms suppressed. We have
focused only on regret in this paper mainly for clarity pur-
poses.

It is also relatively straightforward to extend our results to
finite horizon non-stationary settings, in which the soft-max
policy parametrization will have a dimension of SAH and
different policy gradient estimators can be adopted (with-
out trajectory truncation), with H being the horizon of each
episode. In this case, it’s also easy to rewrite the regret bound
as a function of the total number of time steps 7' < HN,
where N is the total number of episodes. Other straightfor-
ward extensions include refined convergence to stationary
points (in both almost sure and high probability senses and
with no requirement on large batch sizes), and inexact con-
vergence results when 6% (¢f. Assumption 2) is not square
summable (e.g., when H'F is fixed or not growing suffi-
ciently fast).

There are also several open problems that may be re-
solved by combining the techniques introduced in this pa-
per with existing results in the literature. Firstly, it would be
desirable to remove the “exploration” assumption that the
initial distribution p is component-wise positive. This may
be achieved by combining our results with the policy cover
technique in (Agarwal et al. 2020) or the optimistic bonus
tricks in (Cai et al. 2019; Efroni et al. 2020). Secondly, the
bounds in our paper are likely far from optimal (i.e., sharp).
Hence it would be desirable to either refine our analysis or
apply our techniques to accelerated policy gradient methods
(e.g., IS-MBPG (Huang et al. 2020)) to obtain better global
convergence rates and/or last-iterate convergence. Thirdly, it
would be very interesting to see if global convergence re-
sults still hold for REINFORCE when the relative entropy
regularization term used in this paper is replaced with the
practically adopted entropy regularization term in the litera-
ture. The answer is affirmative when exact gradient estima-
tions are available (Mei et al. 2020; Cen et al. 2020), but it
remains unknown how these results might be generalized to
the stochastic settings in our paper. We conjecture that en-
tropy regularization leads to better global convergence rates
and can help us remove the necessity of the PostProcess
steps in Algorithm 2 as they are uniformly bounded. Finally,
one may also consider relaxing the uniform bound assump-
tion on the rewards 7 to instead being sub-Gaussian, intro-
ducing function approximation, and extending our results to
natural policy gradient and actor-critic methods as well as
more modern policy gradient methods like DPG, PPO and
TRPO.
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Appendix

In this appendix, we provide detailed proofs and formal statements of the results in the main text. For notational simplicity, we
sometimes abbreviate “almost sure” as “a.s.” or even omit “a.s.” whenever it is clear from the context. Also notice that as is
always implicitly assumed in the literature of episodic reinforcement learning (e.g., cf. (Marbach and Tsitsiklis 2001)), given
the current policy, the sampled trajectory is conditionally independent of all previous policies and trajectories.

Big-O notation. We first clarify the precise definitions of the Big-O notation used in our statements. Let f : Z X RY - R,
be a function of the total number of episodes N and all problem and algorithm dependent quantities (written jointly as a vector)
U € R% Similarly, let g : Z; x R? — R_. be a function of N and some (subset of) problem and algorithm dependent quantities
Up € R®, with dy < d. Then we write f(N;U) = O(g(N;Up)) to indicate that there exist constants W > 0 and Ny € Z

(independent of N and Up), such that f(N;U) < Wg(N;Uy) forall N > Nj.
A Proofs for REINFORCE gradient estimations
A.1 Proof of Lemma 2 (with b = 0)

Proof. We validate the three groups conditions in Assumption 2 in order. For the simplicity of exposition, we first restrict to
the case when b = 0, i.e., no baseline is incorporated.

Gradient estimation boundedness. Firstly, notice that since (s, a) € [0, 1], we have Q"% (s-*, al"¥) < 1/(1 —~). And by the
soft-max parametrization in Assumption 1, we have

Vologmgi(als) =150 — Earry, o () Ls,ars

where the vector 1,, € R°4 has all zero entries apart from the one corresponding to the state-action pair (s, a). Hence
IV log mgii(als)]2 < 2 forany (s,a) € S x A, and we see that

~ R . A
[Vora@ ), < 7= YA IVologmoe @ lsi )+ g D0 IValogmus(als)ls o
t=0 s€S,acA

<2/(1—7)2+2), as.
Hence we can take C; = 2/(1 — )% + 2.
Validation of nearly unbiasedness. Secondly, notice that
LBH"*)

E VoL (0"%) =Ey, Z Y Epx (Ql’k(si’k»ai’k)
t=0

si’k, ai’k) Vg log mgi.x (ai’k\si’k)

)\l

+ 57 s€S,acA v9 logﬁm’k (a|s) = Jl + JQ —+ J3,

where

o0
o0 ’

t=0

si’k, ai’k) Vg log mgi.x (aik|sék)>

+ GA 2ses.ac Vg log mgik (als),

o0

oo ’

t=BHVF|+1
|BH"F ]

o] ’
_ t t'—t, Lk
Js = —E 1 ; YE i (Zt’:Hlvk-H vy

Lk Lk Lk Lk
Sp 5Oy )VGlogﬂalvk(at 1se7) |

si’k, ai’k) Vo log mpi.k (ai’k |sik)




By (Agarwal, Jiang, and Kakade 2019, Theorem 4.6), we have

J1=E (Z Y Qo (s, 0y ") Vg log mor i (ag™ sy )>

t=0
A 17
tor S Valogmpals) (17
sES,acA
= VoL (0"").
Here for any 7w € 1II,
Q™ (s,a) =E (tho Wtr(st,at)‘so =s,a0 = a) ,
with a; ~ 7(s¢, ), s¢41 ~ p(+|s¢, ar), VE > 0.
And since (s, a) € [0, 1], we have
1 oo
122 < T—— > AIVelogmer(ar®|sy™)ll2
t=|BHUE|+1
<17,
and similarly
LBH"]
13]l2 < Z ' Z 7"V log mar (ay " 57™) |2
=HLkF4+1
LBH"*]
_ 1,k
< > A x 2T /(1 - )
t=0
1,k
< 20D (1 )2
Hence for any ng > 0, by taking
1+ 4(2+170)/(1+770)(k +1)
Lk —
M2 g min{s,1— gy ((1 — oy ) (= OUos(k+ 1)),
we have HVF > logy /., (k + 1), and that
R 4 min{ﬁ,lfﬁ}Hl’k 1ty
HEMVQLM(G”“) - WLM((JW)H2 < Ty S+ oo | (18)

which implies that
VoL (0")TEy VoL (6%)
= VoL (8"%)|15 + (Ez,iﬁaLAz (0"F) — VoL (9““)>T VoL (6
> [V Ly (8913 = VoLt (6) o (k 4+ 1) =0

1+mn9

2 _
> [VoLn (03 — | ———5 +2X\ ) (k+1)" =m0
> IV L (07%)]2 a2 (k+1)" >,
where the last two steps used Cauchy inequality, (18) and the fact that by (17),
HVOL/V( )2
<nytElk (Q”G (st ,at HV@logm)m at |8 H ) Vo log mgik(als)]|2

s€S,acA
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— 1+
Hence we can take C> = 1 and 6, 1, = ((1_%)2 + 2)\) (k + 1)_ﬁ. Thus we have

T—1

2 _ 2> _2+2ng
Z 6l2,k = <(1_’y)2 + 2)\> Z(kf + 1) 2+m0
k=0

k=0

() ()

N2
and hence we can take C' = 8 (ﬁ + )\) (1 + 17%)) Notice that for notational simplicity, we have taken g = 1 in the

statement of the proposition.

Validation of bounded second-order moment growth. Finally, we bound the second-order moment of the policy gradient. In
the following, for a random vector X = (X1,...,X,) € R", we define Var X = 2?21 var X;, and similarly Var; ; X =

S, var; ;. X;, where var, ;, denotes the conditional variance given the (I, k)-th iteration 6":*. Now define the constant V as
the uniform upper bound on the variance of the policy gradient vector, i.e.,

LBH]
% A A
V= >0 QZI(iDpAe[O N Var Z Y'Q(st,ar) Vg log mo(arls:) + A Z Vglogmg(als) | ,
R t=0 s€S,aeA
where 7 = (s0, a0, 70, - ., S, ag, ) is sampled from M following policy g, and Q (s, ay) = Zf/{:t Aty

Then we have Var, j, §9L AL (9““) < V for any I, k > 0 by definition. In addition, since for any random vector X € R",

var X <Y EX] = E[|X|3,
i=1
we have by the same argument as (16) that
2

[BH ]
— _~ A
V<E Z Y Q(st,a:) Vo log ma(as|se) + A Z Vo logmg(als)
t=0 s€S,acA 9
A1+ A1 —)?)?
(1—7)*

Finally, since for any random vector X € R",

n n
Ei el X|? =Eik Zi:l X7 = Zizl(El,kXZ'Q +var,, X;) = [|[E x X |3 + Var, ; X,

we have
~ 2 _
E;, HVQL/\Z (Gl’k)HQ <||Ji+ J2 + J3||§ +V
< 2113 + 2| Jall2 + [[J3]|2)* + V
32,72min{ﬁ,lfﬁ}H’c _
NI
< 2|V L (0"%)]5 + =)t +V
<V Ly (O3 + o+ T
>~ A 2 (1 _7)4 )
and hence we can take My = 2 and M; = 32/(1 — +)* 4 V. This completes our proof. O

A.2 Proof of Lemma 2

Proof. The proof is nearly identical to the case when b = 0 above. Hence we only outline the proof while highlighting the
differences.
Firstly, similar to (16), we have

H§9L)"(9l7k)H2 < (117 —|—B> % +2)\ as,



and hence we can take C'; = 2+(21137(71)*2“/) + 2\

Secondly, by the proof of (Agarwal, Jiang, and Kakade 2019, Lemma 4.10), we have

LBH"*]
| D7 Z At b(sF) Vo log mauk (abF[sF) | = 0. (19)
t=0

Hence E;, kﬁgL Al (9”“) is the same as in the proof when b = 0 above, and hence we can take

1 N2
C,=1, C 6((1—’y)2+)\>’

310 8(k+1)
2 < g1 )3
5[7]6: <(1_’y)2+2A> (k+1) 3, Hl,kz /’Y((l v) )

1\7

2min{3,1 - B} °
Finally, by definition, V}, can be written explicitly as
) sy
W = sup ~ Var Z YH(Q(st,at) — b(st)) Vo log mg(as|s:) + Z Vologmg(als) |,
H>0,0€0, A€[0,)\] =0 sES acA
where 7 = (0, a0, 70, - - -, S, ag, ) is sampled from M following policy 7, and Q (s, a) = Zf,[:t At =ty

_ _ \2
Hence similar to V' in then proof when b = 0 above, we have V}, < 4 (% + )\) , My =2and My =32/(1 — 7)4 +

Wb O
B Proofs for convergence analysis
Firstly, we state a simple result from elementary analysis, which will be used repeatedly in our proof below.

Lemma 8. Let x;, = mfor k > 0. Then we have

Ko [e%s) o0

Ko — K +1 9
E Tp = E E z, <1
b=k, vV 2 +3 10g2 K2+3 o P k

Proof. The first inequality immediately comes from the fact that z;, is monotonically decreasing in k. The second inequality
can be derived by noticing that z; < 1 for any k£ > 0, and that

1
Zx’f /0 (z + 2)(logy (z + 2))2‘”" =1

This completes the proof. O

B.1 Proof of Lemma 4

Proof. The proof is a direct application of the well-known Borel-Cantelli lemma (Klenke 2013). Let 6y = 1/N? and define
the events { Ay} n>0 as

Ay = {regret(N) > di (N + ¢)%(log(N/6x))® + ds(log N)% 1.
Then Prob(Ay) < &y, and hence Y x_, Prob(Ay) < Y"%_, 1/N? < co. Hence by Borel-Cantelli lemma, we have
Prob(Ay occurs infinitely often) = 0.

Finally, by noticing that the complement of A is a subset of A, the proof is complete. O



B.2 Proof of Theorem 5

Theorem 9 (Formal statement of Theorem 5). Under Assumptions 1 and 2, for phase | > 0 suppose that we choose o'"* =
Cl@mfor some Cy o € (0,C2/(Mafyi)]. Then for any € > 0, if we choose \! = @ then for any 6 € (0, 1),
with probability at least 1 — §, for any K € {0,...,T; — 1}, we have

4(Dl + +/2C; 10g(2/(5
(1 — ’y)CgElGQ

v+ vlog(K + 1)
+ .
L=~

VE +1logy(K +3)+e(K +1)

regret;(K) <

i
p
p

o (20)

Cra(1=7)°
Here E; = 711’6é2AZ) , and

1 2 ﬂ2zC4C4
— 22 l ALl

C, = 32C1Cy, ((1 ) + A > + >
Dy = CCPy + BuMCE, + F* — Ly (0"°).

Proof. The proof consists of two parts. In the first part, we establish an upper bound on the weighted gradient norms sum of
previous iterates in the current phase. The second part then utilizes this bound to establish an upper bound on the phase regret.

Bounding the weighted gradient norms sum. By Proposition 1 and an equivalent definition of strongly smoothness (cf.
(Ryu and Boyd 2016, Appendix)), we have

— Ly (Hl,k-i-l) _ (—L/\L (Hl’k)) < —VyLy (6l,k>T<el,k+1 _ el,k) + @Hel’k—’_l _ 9l,k||2

Bxi (

= —aFV Ly (079 Vg Ly (05%) + b Vg Ly (69)]3.

Yk
Let Z; ,, = Y; 1 — By 1[Y,1]. Then the above inequality implies that
L)\L (Ql’k) — LAZ (9l’k+1)

< — al* Ly (0 TE Ve Ly (0MF) + BM(Q 0k Epk[VoLyi (0"%)3 + Zix
< — bk (CQHVQL)\I (el’k)H% - 51,]“) + BM(2 ) (M1 + MQ”V@L)\I (9l k)” ) + Zl,k Q21
M (a®
= — Oél’k(CQ — Mgﬁ/\zal’kﬂ)”V@L,\z(9”“)”% + al”“él_yk + w + Zl,k
C M- 1,k\2
<— 2“ VoLt (092 + als, , + 2AAT) 12(0‘ Yz
Now define X ;¢ = Zk:_o Zy 1 (with X o = 0), then
K-1
E(Xik1|Fix) =Y Zix + BV — B xVik|Fix) = Xi k. (22)

k=0

Here JF; i is the filtration up to episode K in phase [, ie, the o-algebra generated by all iterations
{690 .. 9%To L0 . 9-F ) uptothe (I, K)-th one. Notice that the second equality makes use of the fact that given the
current policy, the correspondingly sampled trajectory is conditionally independent of all previous policies and trajectories.

In addition, for any K > 1,

Xk — Xixk—1| =121k < OZI’K71||V9LAI (O K)o By k-1 VoLt (0571 — Vo Ly (84571
ﬁ)\l( LE- 1 I,K—1 I,K—1
+ A 7 ’Ez k-1l VoLt (0" 13 — VoLt (0513

2
<204 (’7)2 + 2>\l> abE- 4 %Cf(alﬂ*lf '

(-

Cl,K



Here we use the fact that

V0Lt (075 )|z < 2/(1 = 7)% + 24,
which follows from the same argument as (16). The above inequality on |X; x — X; x_1]| also implies that E|X; x| < oo,
which, together with (22), implies that X; i is a martingale. Notice that although X;  is only defined for K = 0,...,T],
we can augment the sequence by setting X; x = X; 1, and F; x = F; 7, for all K > Tj, and it’s obvious that (22) and
E|X; k| < oo also hold for K > T;. And by saying that X; i is a martingale, we are indeed referring to this (infinite length)
augmented sequence of random variables.

Now by the definition of abk | its easy to see that Zﬁzl C%K < C) < 00, where

2 2 44
1 B CiC
Cy=32C3CH, | 5 + N A - e 23
l 1 l’a((l’y)2+ + 9 (23)
Hence by Azuma-Hoeffding inequality, for any ¢ > 0,
Prob(|X, 1, > ¢) < 2e~¢/(2C), (24)
Then by summing up the inequalities (21) from k£ = 0 to K, we obtain that
T —1
02 02
Zo/ “IVoLa (09113 < = > VoL (0"M)]3
k=0 k=0
= BuM 3o (ahh)? R
< Z bt 8y + SZO + Z i+ sup Ly (0) — Ly (6"°)
k=0 k=0 (25)
oo oo M
Z 225lk + Al 1 Z( l7k)2 + X, + F* —LAL(GZ7O)
k=0 k= k=0
<CCP,+ ﬁMMlcl o+ FX— Ly (0"°) + X 1y,

D,
where we use the fact that the regularization term R(6) < 0 forall § € ©.
Hence we have
2(Di+ Xi1,)

K
St |VaLy (03 < 2
2

k=0

(26)

Bounding the phase regret. We now establish the regret bound in phase [ using (26).
Fix! > 0and K € {0,...,T; — 1}. Let
I"={ke{0,....,K}| vaLM (0"F)||l2 > A/ (2SA)}.
For simplicity, assume for now that |I+| > 0. Then since a/* is decreasing in k, we have

K
(X2 Lk
Q(Dl +Xl,Tl)/C2 > E «

452 A2
k=K —|I+|+1

_2G ol —=7) Z 1
1652 A2 Vk + 3logy(k + 3)

k=K —|I+|+1
Eq

1]
VK +3logy(K +3)
Hence we have (by the simple fact that /K + 3 < 2/K + 1 for any K > 0)

A(D+ X
It < w\/[(—i—llog?(l(—i—l%) 27

Now by Proposition 3 and the choice of \!, we have that for any k ¢ I,
F* = F(rgue) < 145 /plloce.

(By Lemma 8) > Eje?




Since for any w € I, F(7) € [0,1/(1 — )], we have F'* — F'(7) < 1/(1 — ). Hence by (27), we have
ZkgK F* — F(ﬂ'gz,k)
= Z F* — F(mgux) + Z F* — F(mgix)

kel+ k¢lt
S|/ (L =)+ (K + 1= [T |ldg /pllce
4(D;+ X «
< MDi+ Xim) VK + 1logy (K +3) + (K + 1)[|d% /plloce.

(]. - ’Y)CQEIGQ

This immediately implies that
regret,(K) =) F* = F(m)+ ) Flmgw) = F"*(mpur)

* o tr(shF bk
SZk<KF _F(Wel‘k)+Zk<KElth=Hz,k+17 (57" ay")

v/(k+1) 2
<Zk<K F(mgu.x +27'Y (28)
k<K
4Dy + X, n +~ylog(K +1
S ( l l,Tl) mlOgQ(K—FS)—‘r(K—‘r ) ; _’_ry ’Yog( )

(1 _’Y)CQEIGZ 1 -y

oo

Now if [I*| = 0, then we immediately have that

*

+ v+ ~vlog(K + 1)

regret,(K) < (K +1) .
-

)

s
P
p

oo

and hence (28) always holds.
Finally, by (24), we have that with probability at least 1 — ¢, for all K € {0,...,T; — 1},

regret,;(K)
4(D; + +/2Clog(2/9)) i v+ vlog(K +1)
VK +1logy(K + 3 K+1 .
(1_’)/)02E[€2 + ng( + )+€( + ) + 1_,}/
This completes our proof. O

B.3 Overall regret bound for general policy gradient estimators

In this section, we state and prove the overall regret bound for general policy gradient estimators, which generalizes Theorem 6
for REINFORCE gradient estimators.

Theorem 10 (General regret bound). Under Assumptions 1 and 2, suppose that for each | > 0, we choose ob* =

a, O‘m for some Cy,, € [C¥, Co/(MaBy)], with C* € (0,Cy/(Msfy)] and X = 1_ . In addition, suppose

that we specify Ty > 1, choose T) = 2'Ty, ¢! =T, V6 gnd A = 61(172_ﬂ’)for each 1 > 0. Then we have for any 6 € (0, 1), with
probability at least 1 — 0, for any N > 0, we have

regret(N) < Ri(N) + Ro(N) = O(N/%(log(N/5))*'?), (29)
where
_ 4(D + +/2C((logy(N + 1) + 2)log 2 + log(1/8)))  ||dx
Ri(N) = r_
1) ( (1 -=7)CE - Pl
X (N +Tp) (log, (2N + 2Ty +1))?, (30)
Ro(N) = (logy(N +1) + 11)(_7,:— ~vlog(N + To)).
Here the constants E = %6%7222),

_ _ _ 1
D = CC?! =+ ﬁj\MlCi + m + 10g(1/€pp),



_ _ N\?  pEotct
C:320§C§< ! A) L BciCa

T=ap " 2
oA Ca(1—9)
with Co, = %.
In addition, we also have
lim regret(N)/(N +1) =0 almost surely

N—oo
with an asymptotic rate of O(N~/6(log N)5/2).

Remark 1. Notice that the constant E is a uniform lower bound of E; (I > 0), while the constants D and C are uniform upper
bounds of Dy and Cy (I > 0), respectively. Here the constants E;, Dy, C) are those defined in Theorem 9.

Remark 2. In the big-O notation above, we have (temporarily) hidden the problem dependent quantities, which will be made
explicit when we specialize the results to the REINFORCE gradient estimation below.

Proof. We first prove the high probability result. By (20) and the choices of € and A/, we have that for any phase [ > 0, with
probability at least 1 — 6/2!*, forall K € {0,...,T; — 1},

regret;(K)
4D+ /2C((I + 2)log2 + log(1/9))) | dj’ 5/6 v 4 ylog T
< £ T % logy (T} + 2) + ——1—L.
_< (1-7)C:E - R
o0
a1 _ N2
where £ = %,
- . . 1
D = CC? + psM,C? + F +log(1/€pp)s

, , 1 \* g
C = 320202 ((1—7)2 + A) + @Tl

with C,, = %ﬁ)?’ and \ = 1_77 Here we used the fact that ¢/ < 1, which then implies that A\ < X and

8 . By < By — 8 N 2\
(=P =N =T 0= T s
We also used the fact that F* — F(r) < 1/(1 — ) for any 7 € II and that by the definition of PostProcess, Ry (mgi0) >
log €pp.-
Now recall that for any N > 0, we have
In—1
regret(N) = Z regret,(1; — 1) + regret; (k)
1=0
In

< Zregretl(Tl -1,
1=0

where (In,kn) = G7(N). In addition, by the choices of T}, we have that for any 0 < k < T} — 1,

-1
Br(l,k) =Y T;+k
j=0

=2 - 1Ty +k
> (2 = 1)T.
Hence for any N > 0, we have [y < log, (% + 1) <logy(N +1).
Thus we have that with probability at least 1 — Z;Z 00/ 241 > 1 — §, forany N > 0,

regret(N) < (Iy + 1)(R1(N) + Ra(N)),



where

Ra(N) = (4(D u ﬁé((ﬁv +f)>éjg; +los/O)) | 1% ) (N +Tp)E logy(N + Ty +2),
EQ(N) = ’Y+Pylfg_(],\;+TO).

Finally, noticing that [y + 1 < logy(N 4+ 1) + 1 < log, (2N + 2T + 1), we have

4(D + /2C((logy(N + 1) + 2) log 2 + log(1/6))) N
(1—-7v)CE

x (N +Tp) ¢ (logy (2N + 2Ty + 1))2,

(i + V() < LB ED 11)(_? vlog(N + To))

which immediately imply (29) and (30). Notice that here we used the fact that log, (N + 1) + 1 < log, (2N + 2T + 1) (since
To > 1),andthatT; < N+ 1< N+ Tforalll=0,...,Iy —1land T}, = 2NTH < N + Tp.
Finally, by invoking Lemma 4, we immediately obtain the almost sure convergence result. This completes our proof. O

»
&

p

(Iv + DR (N) < <

)

i

C Formal statement of REINFORCE regret bound

Here we provide a slightly more formal restatement of Theorem 6, with details about the constants in the big-O notation in the
main text. Recall that our goal there is specialize (and slightly simplify) the regret bound in Theorem 10 to the case when the
REINFORCE gradient estimation in §3.2 is adopted to evaluate @9[1 At (65F). In particular, we have the following corollary.
The proof is done by simply combining Lemma 2 (with A! < X by their definitions in Theorem 6 or Corollary 11 below) and
Theorem 10, together with the specific choices of the hyper-parameters as well as the constants in Lemma 2 plugged in and
some elementary algebraic simplifications, and is hence omitted.

Corollary 11 (Formal statement of Theorem 6). Under Assumption 1, suppose that for each | > 0, we choose o''* =

. , 31— —1/6 _ o—
Cl,am, with Cpo € [C*,1/(28\)], C* € (0,1/(2B5)] and X = 152, and choose Ty = 2!, ¢ = T, /6 = 9-1/8,

A= @ and ey, = 1/(2A). In addition, suppose that (9) is adopted to evaluate VoL (64F), with B € (0,1), |b(s)| < B
forany s € S (where B > 0 is a constant), and that (10) holds for H'F for all I, k > 0. Then we have for any 6 € (0, 1), with
probability at least 1 — 6, for any N > 0, we have

regret(N) < R;(N) + Ra(N),

where
) = A(D + /20 ((logy(N + 1) +2)log 2 + log(1/6))) N
(1-7E P
X (N +1)8 (logy (2N + 3))2,
Ro(N) = ’Y(Ing(]lv_"‘Wl) + 1)2.
Here the constants are E = Lol ) s and

1652A2

D= (o +A) + =% (g + V) + 1o+ log(24),

STIETIEIY

N4
ﬁ%(l _ 7)12 ((HEF—(}/)_;)) + /\)
+

~ 1
¢= 8192 2

Here Vi, is the variance bound defined in Lemma 2.
Suppose in addition that we specify C® = 1/(235), then we can simplify the regret bound into the following simple form:

2 42 m*
regret(N) =0 <<(SA + ||-2

1—~)7

) Ngaog(N/a))?) :

oo



In addition, we also have
Nlim regret(N)/(N +1) =0 almost surely
— 00

(1=)7
Remark 3. Notice that here (and below), with the specific choices of algorithm hyper-parameters and gradient estimators
we are finally able to make all the problem dependent quantities (e.g., v, S, A, etc.) explicit in the big-O notation, which

is consistent with the convention of the reinforcement learning literature. Here the only hidden quantities are some absolute
constants.

with an asymptotic rate of O ((ﬁ + Hdz*/pHOO) N*%(log N)%)

D Mini-batch phased policy gradient method

Here we formalize the mini-batch version of Algorithm 2 described at the beginning of §5 as Algorithm 4, and provide a formal
statement as well as a proof for Corollary 7.

Firstly, we have the following lemma, which transfers guarantees on Vg)L A(OF) (i =1,..., M) to the averaged gradient
estimation ﬁ Zﬁ1 ﬁg) Ly:(0%%). The proof follows directly from the fact that the variance of the sum of independent random
variables is the sum of the variances, and is thus omitted.

Lemma 12. Suppose that each ﬁg)L (05K (i =1,..., M) is computed using (9) with the corresponding trajectory, and that
the same assumptions as in Lemma 2 hold. Then Assumption 2 also holds for Vg Ly (0"F) = L Zﬁl §(91)L>J (6Y%) with the
32 V

same constants C, Cy, Ca, My, 0, and V,, as in Lemma 2, while My = =) + %

Now we are ready to state and prove (a more formal version of) Corollary 7.
Corollary 13 (Formal statement of Corollary 7). Under Assumption 1, suppose that for each | > 0, we choose o'* =

. a o 3 — —1/6 _
Cz,am, with Cpo € [C%,1/(28x1)], C* € (0,1/(285)] and X = 152, and choose T; = 2\, e = T; /% = 271/,

A= 5(12777) and e, = 1/(2A). In addition, suppose that the assumptions in Lemma 12 hold (note that Assumption 1 and

A < X already automatically hold by the other assumptions). Then we have for any § € (0, 1), with probability at least 1 — 6,
forany N > M > 1, we have that (for the mini-batch Algorithm 4)

regret(N — M; M) < Ry (N; M) + Ry(N; M),

where

*
s
dg

p

4(Dar + /2C((log,(N/M) + 2) log 2 + log(1/5)))
+
(I-7E
x M6 N (log, (2(N/M) +1))?,

Ra(N; M) =7M(1°g2l(flf/i\4) 1?2

Here the constants E and C are the same as in Corollary 11, while

Ri(N; M) =

o0

Dy = (1-7)° <(1_17)2 + >\> + %(1 — )85 <(1§2W)4 + X;) + % + log(24).

Here Vj, is the variance bound defined in Lemma 2.
Suppose in addition that we specify C“ = 1/(285). Then we can simplify the regret bound into the following simple form:

regret(N; M)

_of (.54 L |% b g 4 MllogN)?

In addition, we also have
Nlim regret(N; M)/(N 4+ 1) =0 almost surely
—00

with an asymptotic rate of

s24r |dy it (14 M) rog i 4 Mlog N
O<<(1_7)7+ vl oo)(M +M~6)N <1+N> (logN)z + (1_7)N>.




Proof of Corollary 7. By the definition of regret(N; M), we immediately see that
regret(N; M) < Mregret(|N/M|), @31

where regret(J) (J > 0) is the original regret (6) in the mini-batch setting, which is defined only for the total number of inner
iterations/steps (instead of episodes, so not magnified with a factor of M). More precisely, we have that for any J > 0,

regret(J) = Z

Now by Lemma 12 and Theorem 10, and following the same simplification as is done in Corollary 11, we have that for any
J >0,

tawiBramzn L Elmoe)-

regret(J)
4(Dys + \/26((10g2(J +1) +2)log2 +1og(1/6)))  |la= ;

< + || J +1)% (logy(2J + 3))?

B | 0omg(zr 43
Y(logy(J +1) +1)?
+ )
L—xy
where the constants are as stated in the Corollary claims.
The proof is then complete by plugging the bound of regret(.J) above into (31) and invoking Lemma 4. O

Algorithm 4 Mini-Batch Phased Policy Gradient Method

1: Input: initial parameter 600, step-sizes al'*, regularization parameters \!, phase lengths 7} (I, k& > 0), post-processing

tolerance €, and batch size M > 0.

2: Set 990 = PostProcess(0°0, eyp).

3: for phasel =0,1,2,... do

4. forstepk=0,1,...,7; —1do

5: Choose H"*, sample IID trajectories {7"*}2 | (each with horizon H"*) from M following policy 7g:.x, and compute
an approximate gradient @éi)L,\z (65%) of Ly for each trajectory Til’k @G=1,...,M).

6:  Update g0F+1 = gbF 4 qlk LM G L gLk

7:  end for

8:  Set§!*10 =postProcess(0h7, eyp).

9: end for

E Related work

Policy gradient methods are a large family of algorithms for reinforcement learning that directly operate on the agent policy,
rather than on the action-value function (Glynn 1986; Sutton and Barto 2018). Examples of policy gradient methods include
REINFORCE (Williams 1992), A3C (Mnih et al. 2016), DPG (Silver et al. 2014), PPO (Schulman et al. 2017), and TRPO
(Schulman et al. 2015), to name just a few. These methods seek to directly maximize the cumulative reward as a function of the
policies, they are straightforward to implement and are amenable to function approximations. The asymptotic convergence of
(some) policy gradient methods to a stationary point has long been established (Sutton et al. 2000; Konda and Tsitsiklis 2003;
Marbach and Tsitsiklis 2001; Baxter and Bartlett 2001). The rate of such convergence is also known and has been improved
more recently, with the help of variance reduction (Papini et al. 2018; Xu, Gao, and Gu 2020, 2019), Hessian information (Shen
et al. 2019) and momentum techniques (Xiong et al. 2020; Yuan et al. 2020; Pham et al. 2020; Huang et al. 2020). In contrast,
until recently, the global convergence of (vanilla) policy gradient methods (like REINFORCE) had not been established unless
unrealistic assumptions like concavity of the expected cumulative reward function (Ma et al. 2016) are imposed. The only
exceptions are TRPO (Neu, Jonsson, and Gémez 2017) and the soft-max natural policy gradient method with fully known
models (Agarwal et al. 2019), which happen to be equivalent to the MDP Expert algorithms (Even-Dar, Kakade, and Mansour
2004, 2009; Neu et al. 2010).

In the past two years, a line of research on the global convergence theory for (both vanilla and natural) policy gradient
methods has emerged. By using a gradient domination property of the cumulative reward, global convergence of (both vanilla
and natural) policy gradient methods is first established for linear-quadratic regulators (Fazel et al. 2018). For general Markov
Decision Processes (MDPs), (Zhang et al. 2019) establishes convergence to approximately locally optimal (i.e., second-order



stationary) solutions for vanilla policy gradient methods. The global optimality of stationary points for general MDPs is shown
in (Bhandari and Russo 2019), and rates of convergence towards globally optimal solutions for (both vanilla and natural) policy
gradient methods with (neural network) function approximation are derived in (Agarwal et al. 2019; Wang et al. 2019). These
convergence results are then improved by several very recent works focusing on exact gradient settings. In particular, (Mei et al.
2020) focuses on the more practically relevant soft-max parametrization and vanilla policy gradient methods and improves
the results of (Agarwal et al. 2019) by removing the requirement of the relative entropy regularization and obtaining faster
convergence rates; (Bhandari and Russo 2020) obtains linear convergence for a general class of policy gradient methods; (Cen
et al. 2020) shows local quadratic convergence of natural policy gradient methods; and (Zhang et al. 2020) extends the results to
reinforcement learning with general utilities. For more modern policy gradient methods, (Zhao, Li, and Wen 2019) establishes
the asymptotic global convergence of of TRPO, while (Liu et al. 2019) further derives the global convergence rates for PPO and
TRPO. These rates are then improved in (Shani, Efroni, and Mannor 2019) for TRPO with adaptive regularization terms. Very
recently, (Fu, Yang, and Wang 2020) extends these results to obtain the global convergence rates of single-timescale actor-critic
methods with PPO actor updates, and (Agarwal et al. 2020) derives global convergence rates of a new policy gradient algorithm
combining natural policy gradient methods with a policy cover technique and show that the algorithm entails better exploration
behavior and hence removes the necessity for the access to a fully supported initial distribution p, which is assumed in most
other works on global convergence of policy gradient methods (including our work). All the above works either require exact
and deterministic updates or mini-batch updates with a diverging mini-batch size.

Lately, (Jin, Schmitt, and Wen 2020) studies vanilla policy gradient methods using the REINFORCE gradient estimators
computed with a single trajectory in each episode and obtains high probability sample complexity results, but the setting is
restricted to linear-quadratic regulators and their bounds have polynomial dependency on 1/4 (in contrast to our logarithmic
dependency on 1/4), where 0 is the probability that the bounds are violated. The authors of (Abbasi-Yadkori et al. 2019)
study natural policy gradient methods with a general high probability estimation oracle for state-action value functions (i.e., Q-
functions) in the average reward settings, and establish high probability regret bounds for these algorithms. Finally, we remark
that there are also some recent results on the global convergence rates of natural policy gradient methods in adversarial settings
(with full-information feedback) (Cai et al. 2019), model-based natural policy gradient methods (Efroni et al. 2020) as well as
extensions to non-stationary (Fei et al. 2020) and multi-agent game settings (Zhang, Yang, and Basar 2019; Mazumdar et al.
2019; Carmona, Lauriere, and Tan 2019; Fu et al. 2019; Guo et al. 2020), which are beyond the scope of this paper.



