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Controller coefficient truncation using Lyapunov
performance certificate
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SUMMARY

We describe a method for truncating the coefficients of a linear controller while guaranteeing that a given
set of relaxed performance constraints is met. Our method sequentially and greedily truncates individual
coefficients, using a Lyapunov certificate, typically in linear matrix inequality (LMI) form, to guarantee
the performance. Numerical examples show that the method is surprisingly effective at finding controllers
with aggressively truncated coefficients, which meet typical performance constraints. We give an example
showing that how the basic method can be extended to handle nonlinear plants and controllers. Copyright
! 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. The controller coefficient truncation problem

We consider a discrete-time linear time-invariant control system, with plant

xp(t+1)= Apxp(t)+B1w(t)+B2u(t),

z(t)= C1xp(t)+D11w(t)+D12u(t),

y(t)= C2xp(t)+D21w(t),

and controller

xc(t+1)= Acxc(t)+Bcy(t),

u(t)= Ccxc(t)+Dcy(t).
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Here xp(t) is the plant state, u(t) is the control input, y(t) is the sensor output, w(t) and z(t) are
the exogenous input and output, respectively, and xc(t) is the controller state.

The vector !∈RN will represent the design parameters or coefficients in the controller. Typically
these are (some of) the entries in the matrices Ac, Bc, Cc, and Dc. We are given a nominal controller
design, described by the coefficient vector !nom, and a set of acceptable controller designs C⊆RN .
The setC gives the (coefficients of the) controllers that achieve acceptable closed-loop performance.
We assume that !nom∈C, i.e. the nominal controller meets the performance specifications. For
example, we can give C in terms of a single scalar performance measure J :RN →R, as

C={!|J (!)!(1+")J (!nom)},

which are the designs no more than " worse than the nominal. If the nominal design is the controller
that minimizes J , then C is the set of "-suboptimal designs. Our goal is to find !∈C that achieves
closed-loop performance close to the nominal, and at the same time low complexity.

The complexity of a vector of controller coefficients ! is measured by the function ! :RN →R,

!(!)=
N∑
i=1

#i (!i ),

where #i (!i ) gives the complexity of the i th coefficient of !. We can take, for example, #i (a) to
be the number of bits needed to express a, or the total number of 1s in the binary expansion of a,
in which case !(!) gives the total number of bits (or 1s) in the controller coefficients. Of course
the functions #i , and therefore also !, can be discontinuous.

Our goal is to find the lowest complexity controller among the acceptable designs. We can
express this as the optimization problem

minimize !(!)

subject to !∈C,
(1)

with variable !∈RN . We call this as the controller coefficient truncation problem (CCTP), since
we can think of the controller coefficient !i as a truncated version of the nominal controller
coefficient !nomi .

The CCTP (1) is in general very difficult to solve. For example, when ! measures bit complexity,
the CCTP can be cast as a combinatorial optimization problem, with the binary expansions of
the coefficients as Boolean (i.e. {0,1}) variables. Branch-and-bound, or other global optimization
techniques, can be used to solve small CCTPs, with perhaps 10 coefficients. But we are interested
in methods that can handle much larger problems, with perhaps hundreds (or more) of controller
coefficients. In addition, it is not crucial to find the global solution of the CCTP (1); it is enough
to find a controller with low (if not lowest) complexity.

In this paper we describe a heuristic algorithm for the CCTP (1) that runs quickly and scales
to large problems. While the designs produced are very likely not globally optimal, they appear
to be quite good. The method typically produces aggressively truncated controller designs, even
when the allowed performance degradation over the nominal design is just a few per cent.

In our method, we greedily truncate individual coefficients sequentially, in random order, using
a Lyapunov certificate (which is updated at each step) to guarantee the performance, i.e. !∈C.
When the algorithm is run multiple times, the randomness in the truncation order produces designs
that are different, but have very similar total complexity. Running the algorithm a few times, and
taking the best controller found, can give a modest improvement over running it just once.

Before proceeding we mention a related issue that we do not consider, at least until Section 6:
the effects of truncation or saturation of the control signals u(t), y(t), and xc(t). This makes the
entire control system nonlinear, and can lead to instability, large and small limit cycles, and other
behavior. However, the Lyapunov-based methods described in the paper can be extended to handle
nonlinearities; we briefly describe one such extension in Section 6.
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1.2. Previous and related work

The subject of coefficient truncation is relatively old. It was initially discussed in the context of
filter design: there was an understandable interest in designing finite word-length filters that would
be easily implemented in hardware with a small degradation in performance (see [1, 2]). The idea
of coefficient truncation subsequently appeared in other fields, such as speech processing [3] and
control [4].

Several methods have been proposed for coefficient truncation: exhaustive search over possible
truncated coefficients [1], successive truncation of coefficients and re-optimization over remaining
ones [2, 5], local bivariate search around the scaled and truncated coefficients [6], tree-traversal
techniques for truncated coefficients organized in a tree according to their complexity [7, 8], coef-
ficient quantization using information-theoretic bounds [9], weighted least squares [10], simulated
annealing [11, 12], genetic algorithms [13, 14], Tabu search [15], and design of optimal filter realiza-
tions that minimize coefficient complexity [11, 16]. Other approaches have formulated the problem
as a nonlinear discrete optimization problem [17], or have used integer programming techniques
over the space of powers-of-two coefficients [18, 19]. Barua et al. [20] surveys different methods
for quantizing lifting coefficients for wavelet filters: mostly uniform bit allocation, exhaustively
searched allocation, and simulated annealing with lumped scaling and/or gain compensation. Liu
et al. [21] presents how to choose the optimal realization for an Linear Quadratic Gaussian (LQG)
controller to be robust to finite word-length effects. The effects of quantization and finite word
length on robust stability of digital controllers and performance bounds derived using Lyapunov
theory are presented in [22].

1.3. Outline

In Section 2 we describe the general algorithm. In the next three sections we present examples,
in each case working out the details for the general case, and illustrating the algorithm with a
numerical instance of the problem. In Section 3 the controller has constant state feedback form, the
nominal controller is linear quadratic regular (LQR) optimal, and the set of acceptable controllers
is determined by the LQR cost. In Section 4 the controller is dynamic, and the objective is the
decay rate of the closed-loop system. In Section 5 the controller is dynamic, with order equal
to the plant; the nominal controller is a central H∞ optimal controller, and the set of acceptable
controllers is determined by an H∞ criterion. In Section 6 we consider a simple example of a
nonlinear feedback system, consisting of a linear plant and a controller that is nominally linear,
but includes saturation in the state update and output equations. The objective is the decay rate of
the nonlinear system.

2. THE ALGORITHM

Our algorithm uses two subroutines or methods: interv, which finds an interval of acceptable values
of a coefficient and trunc, which truncates a coefficient, given an interval of acceptable choices.
We first describe these methods more precisely, but still abstractly; more concrete descriptions will
be given later in Sections 2.1 and 2.2.

The method interv(!, i) takes as input the coefficient vector !∈C and a coefficient index i . It
returns an interval [l,u] of allowed values for !i , with the other parameters held fixed, i.e. numbers
l and u, with !i ∈ [l,u], with

(!1, . . . ,!i−1, z,!i+1, . . . ,!N )∈C for z∈ [l,u].

Of course the simple choice l=u=!i is always valid. At the other extreme, the largest valid
interval that can be returned by interv is given by

l! = inf{l|(!1, . . . ,!i−1, z,!i+1, . . . ,!N )∈C for z∈ [l,!i ]},

u! = sup{u|(!1, . . . ,!i−1, z,!i+1, . . . ,!N )∈C for z∈ [!i ,u]}.
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A typical implementation of interv falls between these two extremes, returning a reasonably
large interval guaranteed to lie in C, with reasonable computational effort. In the examples we
will consider, this can be done using linear matrix inequalities (LMIs).

The trunci (x, l,u) is a truncation method which, given a number x to be truncated and an
interval [l,u] of acceptable choices (containing x), returns a number z in the interval [l,u] with
!i (z)!!i (x). One valid choice is z= x ; at the other extreme, the algorithm can return the point
with smallest complexity in the interval, i.e. the minimizer of !i (z) over [l,u]. For the complexity
measures that we use in the examples shown later, we can easily compute the latter.

The algorithm is initialized with the nominal design, which we assume has finite complexity.
At each step an index i is chosen, and all parameters except !i are fixed. We use interv to find
an interval of acceptable values for !i , and then trunc to find a value of !i with (possibly) lower
complexity. We have experimented with various methods for choosing the index i in each step, and
found the best results by organizing the algorithm into passes, each of which involves updating
each parameter once; in each pass, the ordering of the indices is random. The algorithm stops
when the parameter does not change over one pass. A high-level description of the algorithm is
presented next:

! :=!nom

repeat
!prev :=!
choose a permutation $ of (1, . . . ,N )
for i =1 to N

j :=$(i)
[l,u] := interv(!, j )
! j := trunci (! j , l,u)

until !=!prev

As the algorithm is random, it can and does converge to different points in different runs. It can
be run several times, taking the best controller coefficient vector found as our final choice.

2.1. Complexity measures and truncation methods

In this section we describe various possible complexity measures and the associated truncation
methods. Any z∈R can be written as

z= s
∞∑

i=−∞
bi2−i ,

where s∈{−1,1} is the sign and bi ∈{0,1} are the bits of z in a binary expansion. (This represen-
tation can be made unique by ruling out any sequence that ends with all ones, i.e. bi =1 for i"k,
for some k).

One possible complexity measure is the number of ones in the binary expansion of z,

#ones(z)=
∞∑

i=−∞
bi ,

which gives the number of adders needed to implement multiplication by z using a shift and sum
method.

Another complexity measure is the width of the range of the non-zero bits, more commonly
referred to as the number of bits in the expansion of z,

#bits(z)=max{i |bi '=0}−min{i |bi '=0}+1.

This measure is useful if multiplication by z will be carried out in fixed-point arithmetic.
Yet another complexity measure is the number of bits needed in the fractional part of the binary

expansion of z,

#frac-bits(z)=max
{
0,max

i
{i |bi '=0}

}
.

Copyright ! 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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For these complexity measures, it is straightforward to find the number z that minimizes the
measure in a given interval, i.e. to implement (the most powerful) trunc method. We assume that
the binary expansions of l and u are finite (though possibly long),

sll−L . . .l0.l1 . . . lR, suu−L . . .u0.u1 . . .uR,

respectively. The number z will have at most L bits in its integer part and R bits in its fractional
part, and we denote its bits as

sz z−L . . . z0.z1 . . . zR .

With complexity measure #ones or #bits, z can be found as follows:

zi :=0 for all i
for i =−L to R

if li =ui , zi := li
else
if all bits after li are 0, break
else zi :=1

When the complexity measure is #frac-bits, the same algorithm can be used, with zi initially set to
zero for i>0 and the for loop index modified to run from 1 to R, instead of from −L to R.

2.2. Interval computation via Lyapunov performance certificate

Our approach to determining an interval [l,u] for which

(!1, . . . ,!i−1, z,!i+1, . . . ,!N )∈C for z∈ [l,u]

will be based on a conservative approximation of C. Given !∈C we first find a convex set Ĉ that
satisfies !∈ Ĉ and Ĉ⊆C. We then take

l = inf{z|(!1, . . . ,!i+1, z,!i+1, . . . ,!N )∈ Ĉ},

u = sup{z|(!1, . . . ,!i+1, z,!i+1, . . . ,!N )∈ Ĉ}.
(2)

Since Ĉ is convex, it follows that

(!1, . . . ,!i+1, z,!i+1, . . . ,!N )∈ Ĉ⊆C for z∈ [l,u].

This is illustrated in Figure 1. For more on convex sets, see [23].
To find the set Ĉ, we use a Lyapunov performance certificate. The details depend on the particular

performance measure or measures, but the common form is as follows. We express the set of
acceptable controllers using LMIs:

!∈ Ĉ⇐⇒∃%L(!,%)#0,

where L is a function that is bi-affine, i.e. affine in ! for fixed % and affine in % for fixed !. The
symbol # refers to matrix inequality, between symmetric matrices, so the condition above is that

Figure 1. The set C of acceptable design parameters need not be convex, as shown in this example. The
set Ĉ is a convex subset of C that contains !. The interval of values of !, shown as the vertical line

segment, gives an interval of values in C.
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L(!,%) is positive semidefinite. The variable % represents the coefficients in the Lyapunov function
used to certify the performance. For more on representing control system specifications via LMIs,
see, e.g. [24–26].

For a given !∈C, we compute a value of % such that L(!,%)#0. We then fix %, and take

Ĉ={!|L(!,%)#0}. (3)

This set depends on the particular choice of %; but in all cases, it is convex, indeed, it is described by
an LMI in !. For a given !∈C, % can be typically chosen to maximize the minimum eigenvalue of
L(!,%) or to maximize the (log of the) determinant of L(!,%). Both of these problems are convex:
maximizing the minimum eigenvalue can be reduced to solve a semidefinite program (SDP) [27]
and maximizing the determinant can be reduced to solving a MAXDET problem [28].

To find l or u in (2), we need to minimize or maximize a scalar variable over an LMI. This can
be reduced to an eigenvalue computation [23, Exer. 4.38], and can be carried out efficiently. Since
L(!,%) is bi-affine in ! and %, it can be expressed as

L(!,%)= L0+
N∑
i=1

!i Li ,

where we have obscured the fact that the matrices L0 and Li depend on %. When !̃=
(!1, . . . ,!i−1, z,!i+1, . . . ,!N ), we have

L(!̃,%)= L(!,%)+(z−!i )Li .

Assuming that L(!,%)+0, the range [l,u] of !i consists of the values of z for which L(!̃,%)#0. It
can be shown that

l=!i −min{1/&i |&i>0}, u=!i −max{1/&i |&i<0}, (4)

where &i are the eigenvalues of L(!,%)−1/2Li L(!,%)−1/2.
In the examples we will consider, the LMIs that arise have an even more specific form,

L(!,%)=
[
I ZT

Z I

]

#0,

where

Z = Z0+
N∑
i=1

!iviwT
i .

Here Z0 is a matrix, and vi and wi are vectors, with dimensions and data that depend on the
particular problem. In the general notation used above, this corresponds to

L0=
[

I ZT
0

Z0 I

]

, Li =
[

0 wiv
T
i

viw
T
i 0

]

, i =1, . . . ,N.

We can then express Ĉ as

Ĉ={!|‖Z‖!1},

where ‖·‖ denotes the spectral norm (maximum singular value).
We now give the details of how to find the range of the coefficient !i in the convex set Ĉ, i.e.

how to compute l and u in (2).
Note that the rank of Li is exactly 2. Assuming that L(!,%)+0 and vi and wi are both nonzero,

the matrix L(!,%)−1/2Li L(!,%)−1/2 has one positive eigenvalue &max, (2n+m−2) zero eigenvalues,
and one negative eigenvalue &min. We now proceed to find more explicit expressions for &min and

Copyright ! 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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CONTROLLER COEFFICIENT TRUNCATION

&max. Let Z =U"V T be the full singular value decomposition of Z where U and V are orthogonal
matrices and " has the same dimensions as Z . If m=n, " is diagonal. If m"n, we have

"=
[
diag('1, . . . ,'n)

0

]
.

Otherwise, we have

"= [diag('1, . . . ,'m) 0].

Let

x =UT vi , y=V Twi , E=
[
I "T

" I

]
, F=

[
0 yxT

xyT 0

]
.

Using a block Cholesky factorization, we can write E=CCT , where

C=
[
I 0

" (I −""T )1/2

]
.

Note that

C−1=
[

I 0

−A" A

]
,

where A= (I −""T )−1/2.
It is easy to show that &min and &max are, respectively, the minimum and maximum eigenvalues

of C−1FC−T. Since

F=
[
0 y

x 0

][
yT 0

0 xT

]
,

and since non-zero eigenvalues of MN and NM are identical for any two matrices M ∈Rn×m and
N ∈Rm×n, &min and &max are the eigenvalues of

[
yT 0

0 xT

]

C−TC−1

[
0 y

x 0

]

.

These can be found analytically as

&min = −(−
√
3(2+)yT y+)*, (5)

&max = −(+
√
3(2+)yT y+)*. (6)

The terms (, ), and * can be computed more easily as

( = xT A2"y=
min{m,n}∑

i=1

xi yi'i
1−'2i

, (7)

) = xT A2x=
m∑
i=1

x2i
1−'2i

, (8)

* = yT"T A2"y=
n∑
j=1

y2j'
2
j

1−'2j
. (9)
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In summary, to find l and u, we start by computing the SVD of the Z and setting x =UT vi ,
y=V Twi . We then proceed to compute the three terms in (7)–(9) and compute &min and &max
from (5) and (6). Finally, l and u are found from (4):

l=!i −1/&max, u=!i −1/&min. (10)

3. STATE FEEDBACK CONTROLLER WITH LQR COST

We will demonstrate how to apply the algorithm to a specific problem class where the plant is
given by

x(t+1)= Ax(t)+Bu(t), x(0)= x0, (11)

and is controlled by a state feedback gain controller given by

u(t)=Kx(t), (12)

where A∈Rn×n , B∈Rn×m , C∈Rk×n , K ∈Rm×n is the feedback gain matrix, x(t)∈Rn is the state
of the system, and u(t)∈Rm is the input to the system. The design variables are the entries of the
matrix K .

3.1. Admissible controllers

Given Q∈Rn×n as positive semidefinite and R∈Rm×m as positive definite, the performance
measure is given by the LQR cost

J (K )=E
[ ∞∑
t=0

x(t)T Qx(t)+u(t)T Ru(t)
]

=E
[ ∞∑
t=0

x(t)T (Q+KT RK)x(t)
]
, (13)

where the expectation is taken over x0∼N(0,"). If A+BK is unstable J (K ) is infinite. Otherwise,
let P be the (unique) solution to the Lyapunov equation

(A+BK)T P(A+BK)−P+Q+KTRK=0. (14)

The cost in (13) can be expressed as J (K )=Tr("P). This holds because

J (K )=E
[ ∞∑
t=0

x(t)T Px(t)−x(t)T (A+BK)T P(A+BK)x(t)
]

=E
[ ∞∑
t=0

x(t)T Px(t)−x(t+1)T Px(t+1)
]

=E[xT0 Px0]

=Tr(E[x0xT0 ]P)

=Tr("P).

The nominal design K nom is chosen to be the optimal state feedback controller, i.e. the one that
minimizes the LQR cost J . It can be found as follows:

K nom=−(R+BT PnomB)−1BT PnomA,

where Pnom is the solution of the discrete-time algebraic Riccati equation

Pnom=Q+AT PnomA−AT PnomA(R+BT PnomB)−1BT PnomA.
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When K =K nom, Pnom is also the solution of the Lyapunov equation (14). The LQR cost associated
with the optimal controller is J nom =Tr("Pnom).

We define the set of admissible controller design as

C={K |J (K )!(1+")J nom},

where " is a given positive number. This means that a controller design is admissible if and only
if it is "-suboptimal.

We choose the Lyapunov performance certificate L to be

L(K , P)=





P−(A+BK )T P(A+BK )−Q−KT RK 0 0

0 (1+")J nom−Tr("P) 0

0 0 P



 .

Here K and P correspond, respectively, to ! and % introduced in Section 2.2. The condition that
L(K , P)#0 is equivalent to

(A+BK )T P(A+BK )−P+Q+KT RK $ 0,

Tr("P)! (1+")J nom, (15)

P # 0. (16)

As (15) and (16) do not depend on K , and for a particular choice P , (3) becomes

Ĉ={K |(A+BK )T P(A+BK )−P+Q+KT RK$0}. (17)

Given K ∈C, any matrix P that satisfies L(K , P)#0 is a valid choice. We take P to be the solution
of the following optimization problem

maximize &min(L(K , P))

subject to L(K , P)#0.

Here &min(L(K , P)) is the minimum eigenvalue of L(K , P) and P is the variable we are optimizing
over. Recall that K is fixed.

We will now show that Ĉ⊆C. Let K ∈ Ĉ. Consider the Lyapunov function V :Rn →R defined
as V (z)= zT Pz. For any T>0,

V (x(T ))−V (x(0))=
T∑
t=0

V (x(t+1))−V (x(t))

=
T∑
t=0

x(t+1)T Px(t+1)−x(t)T Px(t)

=
T∑
t=0

x(t)T ((A+BK )T P(A+BK )−P)x(t)

! −
T∑
t=0

x(t)(Q+KT RK )x(t).

Therefore,

T∑
t=0

x(t)(Q+KT RK )x(t)!V (x(0))−V (x(T ))!V (x(0)),

where the last inequality follows because V (x(T ))"0 from (16). Letting T tend to infinity and
taking expectation over x0, we obtain J (K )!Tr("P). It follows from (15) that

J (K )!(1+")J nom.
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3.2. Coefficient range calculation

Let (l,u) be the range of coefficient Ki j . Given (17), problem (2) becomes

l =min{Ki j |(A+BK )T P(A+BK )−P+Q+KT RK$0},

u =max{Ki j |(A+BK )T P(A+BK )−P+Q+KT RK$0}.

The inequality in (17) is equivalent to
∥∥∥∥∥

[
P1/2(A+BK )

R1/2K

]

(P−Q)−1/2

∥∥∥∥∥!1. (18)

The method outlined in Section 2.2 can be used to compute l and u by taking

Z =
[
P1/2(A+BK )

R1/2K

]

(P−Q)−1/2,

v =
[
P1/2B

R1/2

]

ei , w= (P−Q)−1/2e j ,

where ei and e j are, respectively, the i th unit vector in Rm and j th unit vector in Rn and K ∈ Ĉ
is the current admissible controller design.

3.3. Numerical instance

Our example has dimensions n=10 and m=5. We generated the plant randomly, as A= I+
0.1X/

√
n, where Xi j are independent and identically distributed (IID) N(0,1). We generated the

matrix B∈R10×5 with Bi j IID N(0,1). We take "= I , Q= I , and R= I .
The complexity measures #i (z) are chosen to be #frac-bits. The fractional part of each entry of

K nom is expressed with 40 bits, requiring a total of 2000 bits to express K nom, i.e. !(!nom)=2000
bits. We take "=15%, i.e. admissible feedback controllers are those that are up to 15% suboptimal.

The progress of the complexity !(!) during a sample run of the algorithm is shown in Figure 2.
In this sample run the algorithm converges to a complexity of 85 bits in one pass over the variables.
During the run of the algorithm the cost J is approximately constant and equal to its maximum
allowed value of 1.15J nom.

The best design after 10 random runs of the algorithm achieves a complexity of !(!)=81 bits,
with a cost of J (!)=1.1494J (!nom). The best design found after 100 random runs of the algorithm
achieves a complexity of !(!)=75 bits and J (!)=1.1495J (!nom).

This best design gives very aggressive coefficient truncation with only 1.5 bits per coefficient.
This is illustrated in Figure 3, which shows the distribution of the (50) coefficients of the nominal
design and the coefficients of the best design. We observe that most of the coefficients in the
best design are 0 while the remaining ones have a complexity of at most 3 bits (for example for
!i =0.125).

3.3.1. Multiple random instances. We report above the results for one random instance of the
problem. We now generate 100 random instances of A and B with other problem data the same
(i.e. n=10,m=5, "= I , Q= I , R= I , "=15%). For each instance, we compute K nom and express
the fractional part of each of its entries with 40 bits (i.e. #(!nom)=2000 bits).

For each instance, we record the best design after 10 random runs of the algorithm. The
complexities of the best designs range between 74 and 127 bits, with a mean of 98.29 bits and
a standard deviation of 11.2 bits. The performance degradations of these designs ranged between
14.88 and 14.99%. For these designs, the algorithm converged in an average of 1.1250 passes over
the variables. Thus the results reported in single instance case above are quite typical.
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Figure 2. Total number of bits required to express ! versus iteration number.
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Figure 3. Top: Histogram of coefficients in the nominal design. Bottom: Histogram of coefficients in the
best design out of 10 random runs.

We can compare the results obtained with a simpler approach, in which we truncate the binary
expansions of the coefficients to precision 2−q (i.e. with q bits in their fractional parts), choosing
q as small as possible while still maintaining !∈C. For the 100 random instances that were
generated, q varied between 3 and 5 bits per coefficient with a mean of 4.57 bits. In contrast, our
algorithm gave aggressively truncated controllers, with coefficient complexity between 1.48 and
2.54 bits per coefficient, with a mean of 1.96 bits per coefficient.
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4. DYNAMIC CONTROLLER WITH DECAY RATE SPECIFICATION

We demonstrate how to apply the algorithm to the problem class where the plant is given by

xp(t+1)= Apxp(t)+Bpu(t), y(t)=Cpxp(t), (19)

and is controlled by a dynamic controller given by

xc(t+1)= Acxc(t)+Bcy(t), u(t)=Ccxc(t), (20)

where xp(t)∈Rnp , u(t)∈Rmc , y(t)∈Rmp , Ap ∈Rnp×np , Bp ∈Rnp×mc , Cp ∈Rmp×np , xc(t)∈Rnc ,
Ac ∈Rnc×nc , Bc∈Rnc×mp , and Cc∈Rmc×nc .
The closed-loop system is given by x(t+1)= Ax(t) where

x(t)=
[
xp(t)

xc(t)

]
, A=

[
Ap BpCc

BcCp Ac

]
. (21)

The design variables are the entries of the controller matrices Ac, Bc, and Cc.

4.1. Admissible controllers

A controller (Ac, Bc,Cc) is admissible if the decay rate of the closed-loop system is less than a
given rate (, where 0!(!1. The decay rate is given by +(A), where A is the matrix specified in
(21).

The performance measure is chosen to be the decay rate of the closed-loop system, i.e.
J (Ac, Bc,Cc)=+(A).
We are given a nominal controller design (Anom

c , Bnom
c ,Cnom

c ) such that

J (Anom
c , Bnom

c ,Cnom
c )=+.

We define the set of admissible controller designs as

C={(Ac, Bc,Cc)|J (Ac, Bc,Cc)!(},

where (= (1+")+, and " is a given positive number.
We choose the Lyapunov performance certificate L to be

L(Ac, Bc,Cc, P)=
[

(2P−AT PA 0

0 P

]

,

where A is the matrix defined in (21). Here (Ac, Bc,Cc) and P correspond, respectively, to ! and
% introduced in Section 2.2. The condition that L(Ac, Bc,Cc, P)#0 is equivalent to

AT PA $ (2P,

P # 0.
(22)

As (22) does not depend on (Ac, Bc,Cc), for a fixed choice of P , (3) becomes

Ĉ={(Ac, Bc,Cc)|AT PA!(2P}. (23)

Any matrix P that satisfies L(Ac, Bc,Cc, P)#0 for (Ac, Bc,Cc)∈C is a valid choice. We take P
to be the solution of the following optimization problem

maximize &min(L(Ac, Bc,Cc, P))

subject to L(Ac, Bc,Cc, P)#0

Tr(P)=1.
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Here &min(L(Ac, Bc,Cc, P)) is the minimum eigenvalue of L(Ac, Bc,Cc, P), and P is the variable
we are maximizing over. Recall that Ac, Bc, and Cc are fixed. The constraint Tr(P)=1 is added
because L(Ac, Bc,Cc, P) is homogeneous in P .

We will now show that Ĉ⊆C. Let (Ac, Bc,Cc)∈ Ĉ. Consider the Lyapunov function V :
Rnp+nc →R defined as V (z)= zT Pz. Since AT PA!(2P then for all t"0

x(t)T AT PAx(t)! (2x(t)T Px(t)

x(t+1)T Px(t+1)! (2x(t)T Px(t)

V (x(t+1))! (2V (x(t)).

This means that for all t"0, V (x(t))!(2t V (x(0)) and

&min(P)‖x(t)‖2!x(t)T Px(t)!(2t x(0)T Px(0)!(2t&max(P)‖x(0)‖2,

then ‖x(t)‖!√
,(P)(t‖x(0)‖, where ,(P) is the condition number of P . The decay rate of the

system is then less than (, as required.

4.2. Coefficient range calculation

Let (l,u) be the range of coefficient (Ac)i j . Given (23), problem (2) becomes

l =min{(Ac)ij|AT PA!(2P},

u =max{(Ac)ij|AT PA!(2P}.

The inequality in (23) is equivalent to

‖P1/2AP−1/2‖!(. (24)

The method outlined in Section 2.2 can be used to compute l and u by taking

Z = (1/()P1/2AP−1/2, v= (1/()P1/2

[
0

ei

]
, w= P−1/2

[
0

e j

]
,

where ei and e j are, respectively, the i th and j th unit vectors in Rnc and A is the closed-loop
matrix associated with (Ac, Bc,Cc)∈ Ĉ.

The same method can be used to find the ranges of coefficients in Bc and Cc and the same
formulas can be used but with slightly modified definitions for v and w. To find the range of
coefficient (Bc)i j , use the same definitions for Z and v but let

w= P−1/2

[
CT

p e
j

0

]

,

where e j is the j th unit vector in Rmc . To find the range of coefficient (Cc)ij, use the same
definitions for Z and w but let

v= (1/()P1/2

[
Bpei

0

]

,

where ei is the i th unit vector in Rmc .

4.3. Numerical instance

We test the proposed method in the case where the plant is given by

xp(t+1)= Apxp(t)+Bpu(t)+w(t), y(t)=Cpxp(t)+v(t), (25)
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where w(t)∼N(0, I ) is the input noise and v(t)∼N(0, I ) is the measurement noise. The plant
is controlled by an LQG controller with Q= I , R= I . The matrices describing the controller are

Ac= Ap+BpK −LCp, Bc= L, Cc=K , (26)

where

K =−(BT
p P1Bp+R)−1BT

p P1Ap, L= Ap P2CT
p (Cp P2CT

p +V )−1. (27)

P1 and P2 are the unique positive semidefinite solutions to the discrete-time algebraic Riccati
equations

P1 = AT
p P1Ap+Q−AT

p P1Bp(R+BT
p P1Bp)−1BT

p P1Ap,

P2 = Ap P2AT
p +W−Ap P2CT

p (CpP2CT
p +V )−1CpP2AT

p .

Our example has dimensions np =5, mc=2, and mp =2. The plant matrix Ap is randomly
generated using the same method used to generate A in Section 3.3. The entries of Bp and Cp are
IID N(0,1). The matrices Anom

c , Bnom
c , and Cnom

c are then computed using the formulas presented
above.

The complexity measures #i (z) are chosen to be #frac-bits. The fractional part of each entry of
Anom
c , Bnom

c , and Cnom
c is expressed with 40 bits, requiring a total of 1800 bits, i.e. !(!nom)=1800

bits. We run the algorithm with "=5%.
The progress of the complexity !(!) and percentage deterioration in performance 100(J−

J nom)/J nom during the three sample runs of the algorithm are shown in Figure 4.
It is interesting to note that the three sample runs achieve designs with similar complexities but

with a varying range of performance degradation (although all within the allowable limit). This
suggests the following methodology: run the algorithm many times, choose the designs achieving
complexity below a specific value, and pick among those the design with the lowest degradation
in performance. Applying this idea to the 100 sample runs we obtained, we found that among
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Figure 4. Top: Total number of bits required to express !, versus iteration number. Bottom: Percentage
deterioration in performance versus iteration number.
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Figure 5. Best design complexity versus number of sample runs of the algorithm.

the designs achieving a complexity less than 170 bits, there exists a design whose performance is
degraded by only 2.15%.

The best design after 10 random runs of the algorithm achieves a complexity of !(!)=171
bits with a cost of J (!)=1.0246J (!nom). The best design after 100 random runs of the algorithm
achieves a complexity of !(!)=164 bits and J (!)=1.0362J (!nom). Figure 5 shows the best
available design complexity versus the number of sample runs of the algorithm.

4.3.1. Multiple random instances. We now generate 100 random instances of the matrices Ap ,
Bp , Cp , with the same values for other data: np =5, mc=2, mp =2, Q= I , R= I , and "=5%.
For each instance, we compute Anom, Bnom, Cnom and express the fractional part of each of their
entries with 40 bits (i.e. #(!nom)=1800 bits).

For each instance, we record the best design after 10 random runs of the algorithm. The
complexities of the best designs range between 17 and 472 bits, with a mean of 228.68 bits and
a standard deviation of 107.72 bits. The performance degradations of the best designs ranged
between 0.32 and 4.80%. The algorithm takes an average of 3.31 passes over the variables to
converge.

We compare these results with the simple approach of truncating the binary expansions of the
coefficients to precision 2−q (i.e. with q bits in their fractional parts), choosing q as small as
possible while still maintaining !∈C. For the 100 random instances that were generated, q varied
between 5 and 14 bits per coefficient, with a mean of 8.39 bits. In contrast, our algorithm gave
controllers whose coefficient complexity was between 0.38 and 10.48 bits per coefficient, with a
mean of 5.08 bits per coefficient. In particular, for the instance in which our algorithm returned a
controller with complexity 17 (i.e. 0.38 bits per coefficients), q was 5 bits per coefficients.

5. DYNAMIC CONTROLLER WITH H∞-NORM SPECIFICATION

We demonstrate how to apply the algorithm to the problem class where the plant is given by

xp(t+1)= A1xp(t)+B1w(t)+B2u(t), x(0)=0,
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z(t)=C1xp(t)+D11w(t)+D12u(t),

y(t)=C2xp(t)+D21w(t),

and is controlled by a dynamic controller given by

xc(t+1)= Acxc(t)+Bcy(t), u(t)=Ccxc(t)+Dcy(t), xc(0)=0.

where xp(t)∈Rnp , u(t)∈Rmc , w(t)∈Rk, y(t)∈Rmp , and xc(t)∈Rnc .
The closed-loop system is given by

x(t+1)= Ax(t)+Bw(t), z(t)=Cx(t)+Dw(t),

where

x(t)=
[
xp(t)

xc(t)

]

, A=
[
A1+B2DcC2 B2Cc

BcC2 Ac

]

, B=
[
B1+B2DcD21

BcD21

]

, (28)

C = [C1+D12DcC2 D12Cc], D=D11+D12DcD21. (29)

The design variables are the entries of the controller matrices Ac, Bc, Cc, and Dc.

5.1. Admissible controllers

Let G(s) be the transfer function of the closed-loop system. The H∞ norm of G(s) is its largest
input/output RMS gain, i.e.

‖G‖∞ = sup
u '=0

‖z‖2
‖w‖2

,

where z(t) is the output of the closed-loop system for a given input w(t), and where

‖x‖2=
(

lim
T→∞

1
T

T∑
t=0

‖x(t)‖2
)1/2

,

for any signal x(t), t"0.
The performance measure J (Ac, Bc,Cc,Dc) is chosen to be the H∞ norm of the transfer function

of the closed-loop system.
We are given a nominal controller design (Anom

c , Bnom
c ,Cnom

c ,Dnom
c ) such that

J (Anom
c , Bnom

c ,Cnom
c ,Dnom

c )=*nom.

A controller (Ac, Bc,Cc,Dc) is admissible if the H∞ norm of the transfer function of the closed-
loop transfer function is less than a given value *>0, where *= (1+")*nom for given a positive
number ". In other words, the set of admissible controller designs is

C={(Ac, Bc,Cc,Dc)|J (Ac, Bc,Cc,Dc)!*}.

Note that (Anom
c , Bnom

c ,Cnom
c ,Dnom

c )∈ Ĉ.
We take the Lyapunov performance certificate to be

L(Ac, Bc,Cc,Dc, P)=





P−ATPA−CTC −AT PB−CT D 0

−BT PA−DTC *2 I −BT PB−DT D 0

0 0 P



 ,
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where A, B, C , D are the matrices introduced in (28) and (29). Here (Ac, Bc,Cc,Dc) and P corre-
spond, respectively, to ! and % introduced in Section 2.2. The condition that L(Ac, Bc,Cc, P)#0
is equivalent to

[
AT PA−P+CTC AT PB+CT D

BT PA+DTC BT PB+DT D−*2 I

]

$ 0,

P # 0. (30)

As (30) does not depend on (Ac, Bc,Cc,Dc), for a fixed choice of P , (3) becomes

Ĉ=
{

(Ac, Bc,Cc,Dc)

∣∣∣∣∣

[
AT PA−P+CTC AT PB+CT D

BTPA+DTC BT PB+DT D−*2 I

]

$0

}

. (31)

Any matrix P that satisfies L(Ac, Bc,Cc,Dc, P)#0 for (Ac, Bc,Cc,Dc)∈C is a valid choice.
We take P to be the solution of the following optimization problem

maximize &min(L(Ac, Bc,Cc,Dc, P))

subject to L(Ac, Bc,Cc,Dc, P)#0.

Here &min(L(Ac, Bc,Cc,Dc, P)) is the minimum eigenvalue of L(Ac, Bc,Cc, P), and P is the
variable we are optimizing over. Recall that Ac, Bc, Cc, and Dc are fixed.

We will now show that Ĉ⊆C. Let (Ac, Bc,Cc,Dc)∈ Ĉ. Consider the Lyapunov function V :
Rnp+nc →R defined as V (z)= zT Pz. For all x , w,

[
x

w

]T [
AT PA−P+CTC AT PB+CT D

BT PA+DTC BT PB+DT D−*2 I

][
x

w

]
!0,

or equivalently

(Ax+Bw)T P(Ax+Bw)−xT Px!*2wTw−(Cx+Dw)T (Cx+Dw).

For all t ,

V (x(t+1))−V (x(t))!*2w(t)Tw(t)−z(t)T z(t).

We know that V (x(0))=0. Since (30) implies that V (x(T ))"0 and since

V (x(T ))−V (x(0)=
T∑
t=0

V (x(t+1))−V (x(t)),

we deduce that

0!
T∑
t=0

V (x(t+1))−V (x(t))!
T∑
t=0

*2w(t)Tw(t)−z(t)T z(t).

Therefore

T∑
t=0

z(t)T z(t)!*2
T∑
t=0

w(t)Tw(t) (32)

holds for all T>0. Dividing by T and letting T tend to infinity on both sides of (32), we obtain
‖z‖2!*2‖w‖2 which implies that the H∞ norm of the transfer function of the closed-loop system
is less than or equal to * as desired.
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5.2. Coefficient range calculation

Let (l,u) be the range of coefficient (Ac)i j . Given the equation in (31), problem (2) becomes

l =min{(Ac)i j |AT PA−P+CTC+(AT PB+CT D)Q(BT PA+DTC)$0},

u =max{(Ac)i j |AT PA−P+CTC+(AT PB+CT D)Q(BT PA+DTC)$0},

where Q=*2 I −BT PB−DT D. The inequality in (31) is equivalent to
∥∥∥∥∥

[
P1/2AP−1/2 *−1P1/2B

CP−1/2 *−1D

]∥∥∥∥∥!1. (33)

The method outlined in Section 2.2 can be used to compute l and u by taking

Z =
[
P1/2AP−1/2 *−1P1/2B

CP−1/2 *−1D

]

, v=
[
P1/2

0

][
0

ei

]

, w=
[
P−1/2

0

][
0

e j

]

, (34)

where ei and e j are the i th and j th unit vectors in Rnc and (A, B,C,D) is the closed-loop matrix
associated with (Ac, Bc,Cc,Dc)∈ Ĉ.

The same method can be used to find the ranges of coefficients in Bc, Cc, and Dc. The same
formulas can be used but with slightly modified definitions for v and w. To find the range of
coefficient (Bc)ij, use the same definitions for Z and v in (34) but let

w=




P−1/2

[
CT
2

0

]

*−1DT
21



e j , (35)

where e j is the j th unit vector in Rmp . To find the range of coefficient (Cc)i j , use the same
definitions for Z and w in (34) but let

v=




P1/2

[
B2

0

]

D12



ei , (36)

where ei is the i th unit vector in Rmc . To find the range of coefficient (Dc)i j , use the definition
for Z given in (34), the definition of v given in (36) and the definition of w given in (34).

5.3. Numerical instance

Our example has dimensions np =5, nc=4, mp =2, mc=2, and k=3. We generate matrix Ap
using the method used to generate A in Section 3.3. The entries of the matrices B1, B2, C1, C2,
D11, D12, D21 are IID N(0,1).
The nominal controller (Anom

c , Bnom
c ,Cnom

c ,Dnom
c ) is chosen to be the central H∞ controller, i.e.

the one that minimizes the H∞ norm of the transfer function of the closed-loop system (see, e.g.
[29, 30]).

The complexity measures #i (z) are chosen to be #frac-bits. The fractional part of each entry of
Anom
c , Bnom

c , Cnom
c , Dnom

c is expressed with 40 bits, requiring a total of 1440 bits, i.e. !(!norm)=
1440 bits. We run the basic algorithm with "=15%, which means that we allow the H∞ norm of
the controller to be up to 15% suboptimal.

The progress of the complexity !(!) and percentage deterioration in performance 100(J−
J nom)/J nom during the three sample runs of the algorithm are shown in Figure 6.
It is interesting to note that the three sample runs achieve designs with similar complexities but

with a varying range of performance degradation (although all within the allowable limit). This
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Figure 6. Top: Total number of bits required to express ! versus iteration number. Bottom: Percentage
deterioration in performance versus iteration number.

suggests the following methodology: run the algorithm many times, choose the designs achieving
complexity below a specific value, and pick among those the design with the lowest degradation
in performance. Applying this idea to the 100 sample runs we obtained, we found that among
the designs achieving a complexity less than 260 bits, there exists a design whose performance is
degraded by only 1.15%.

The best design after 10 random runs of the algorithm achieves a complexity of !(!)=270
bits with a cost of J (!)=1.002J (!nom). The best design after 100 random runs of the algorithm
achieves a complexity of !(!)=247 bits and J (!)=1.030J (!nom).

5.3.1. Multiple random instances. We now generate 100 random instances of matrices Ap , B1, B2,
C1, C2, D11, D12, D21, with other data remaining the same: np =5, nc=4,mp =2, mc=2, k=3,
and "=15%. For each instance, we compute Anom, Bnom, Cnom, Dnom and express the fractional
part of each of their entries with 40 bits.

For each instance, we record the best design after 10 random runs of the algorithm. The
complexities of the best designs range between 170 and 403 bits, with a mean of 274.21 bits and a
standard deviation of 59.54 bits. The performance degradations of the best designs ranged between
0.04 and 14.52%. The algorithm takes an average of 1.5 passes over the variables to converge.

We compare these results with the simple approach of truncating the binary expansions of the
coefficients to precision 2−q (i.e. with q bits in their fractional parts), choosing q as small as
possible while still maintaining !∈C. For the 100 random instances that were generated, q varied
between 8 and 40 bits per coefficient with a mean of 18.72 bits. In contrast, our algorithm gave
controllers whose coefficient complexity was between 4.77 and 11.19 bits per coefficient, with a
mean of 7.63 bits per coefficient.

6. DYNAMIC CONTROLLER WITH SATURATION

We have been dealing with specifications on linear closed-loop systems until now. The methodology
that we covered can be easily extended to the case where we are given specifications on closed-loop
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systems with nonlinear dynamics. We illustrate this idea through the following example where the
plant is given by

xp(t+1)=Apxp(t)+Bpu(t), y(t)=Cpxp(t),

and is controlled by a dynamic controller given by the nonlinear dynamical system

xc(t+1)= sat(Acxc(t)+Bcy(t)),

u(t)= sat(Ccxc(t)),

where xp(t)∈Rnp , u(t)∈Rmc , y(t)∈Rmp , Ap ∈Rnp×np , Bp ∈Rnp×mc , Cp ∈Rmp×np , xc(t)∈Rnc ,
Ac ∈Rnc×nc , Bc∈Rnc×mp , and Cc∈Rmc×nc , and sat :R→R is defined as

sat(z)=






z if |z|!1

−1 if z<−1

1 if z>1.

The closed-loop system is a nonlinear dynamical system of the form

x(t+1) = Ax(t)+Bp(t),

q(t) = Cx(t),

pi = sat(qi ), i =1, . . . ,mc+nc,

(37)

where

x(t) =
[
xp(t)

xc(t)

]
, A=

[
Ap 0

0 0

]
,

B =
[
Bp 0

0 I

]

, C=
[

0 Cc

BcCp Ac

]

.

(38)

6.1. Admissible controllers

We define the decay rate of the closed-loop system to be the infinimum of ( for which every
trajectory of the closed-loop system satisfies

‖x(t)‖!M(t‖x(0)‖,

for all t and for some M>0. Here M is a constant that depends on the trajectory.
The performance measure J is chosen to be the decay rate of the closed-loop system. Unlike

the other cases we presented, it is very difficult to compute the decay rate J of the closed-loop
system described in (37). However, as we shall subsequently see, an upper bound on the decay
rate can be found using a Lyapunov method.

We are given nominal design (Anom
c , Bnom

c ,Cnom
c ) with a decay rate less than +.

A controller (Ac, Bc,Cc) is admissible if the decay rate of the closed-loop system is less than a
given rate (, where (= (1+")+ and " is a given positive number. The set of admissible controller
designs is then

C={(Ac, Bc,Cc)|J (Ac, Bc,Cc)!(}.

We choose the Lyapunov performance certificate to be

L(Ac, Bc,Cc, P,-1, . . . ,-mc+nc )=





(2P−AT PA −AT PB−(1/2)CT D 0 0

−BT PA−(1/2)DC D−BT PB 0 0

0 0 P− I 0

0 0 0 D




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where D=diag(-1, . . . ,-mc+nc ) and A, B, and C are the matrices introduced in (38). Here
(Ac, Bc,Cc) correspond to ! and (P,-1, . . . ,-mc+nc ) correspond to % introduced in Section 2.2. The
condition that L(Ac, Bc,Cc, P,-1, . . . ,-mc+nc )#0 is equivalent to

[
AT PA−(2P AT PB+(1/2)CT D

BT PA+(1/2)DC BT PB−D

]

$ 0,

P # I, (39)

D # 0. (40)

Since (39) and (40) do not depend on (Ac, Bc,Cc) for a fixed choice of P and D, (3) becomes

Ĉ=
{

(Ac, Bc,Cc)|
[

AT PA−(2P AT PB+(1/2)CT D

BT PA+(1/2)DC BT PB−D

]

$0

}

. (41)

Any matrix P and scalars -1, . . . ,-mc+nc that satisfy L(Ac, Bc,Cc, P,D)#0 for given
(Ac, Bc,Cc)∈C are a valid choice. We take (P,D) to be the solution of the following optimization
problem

maximize &min(L(Ac, Bc,Cc, P,D))

subject to L(Ac, Bc,Cc, P,D)#0,

D=diag(-1, . . . ,-mc+nc ).

Here &min(L(Ac, Bc,Cc, P)) is the minimum eigenvalue of L(Ac, Bc,Cc, P), and P , -1, . . . ,-mc+nc
are the variables that we are optimizing over. Recall that Ac, Bc, and Cc are fixed here.

We will now show that Ĉ⊆C. Let (Ac, Bc,Cc)∈ Ĉ. Consider the Lyapunov function
V :Rnp+nc →R defined as V (z)= zT Pz. Note that pi and qi must satisfy (pi −qi )pi!0 for
i =1, . . . ,mc+nc. Recalling that q=Cx , this means that, for all x and p,

[
x

p

]T [
0 −(1/2)CT D

−(1/2)DC D

][
x

p

]

!0. (42)

Since (Ac, Bc,Cc)∈ Ĉ, the following holds for all x , p,

[
x

p

]T [
AT PA−(2P AT PB+(1/2)CT D

BT PA+(1/2)DTC BTPB−D

][
x

p

]

!0. (43)

It follows from (42) and (43) that

[
x

p

]T [
AT PA−(2P AT PB

BTPA BT PB

][
x

p

]

!
[
x

p

]T [
0 −(1/2)CT D

−(1/2)DC D

][
x

p

]

!0.

This inequality implies that

(Az+Bp)T P(Az+Bp)!(2zT Pz.

Therefore we have V (x(t+1))!(2V (x(t)) for all t"0. This implies that the decay rate of the
closed-loop system is less than (, as demonstrated in Section 3.1.
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6.2. Coefficient range calculation

The inequality in (41) is an LMI in P and D, but in the given form it is a convex matrix quadratic
inequality in (A, B,C). It can easily be shown that it is actually equivalent to the LMI in (A, B,C):





(2P −(1/2)CT D AT

−(1/2)DC D BT

A B P−1



#0. (44)

Since (A, B,C) are linear in (Ac, Bc,Cc), (44) is also an LMI in (Ac, Bc,Cc). The range of
coefficient of (Ac)i j can, therefore, be found from (4) by the eigenvalue computation method
outlined in Section 2.2 with L(!,% given by (44) and

Li =





0 −(1/2)vwT D 0

−(1/2)DwvT 0 0

0 0 0



 ,

where

w=
[
0

ei

]
, v=

[
0

e j

]
,

and ei and e j are, respectively, the i th and j th unit vectors in Rnc .
The same method can be used to find the ranges of coefficients in Bc and Cc but with slightly

modified definitions for v and w. To find the range of coefficient (Bc)i j , take

w=
[
0

ei

]

, v=
[
CT

p e j

0

]

,

where ei is the i th unit vector in Rnc and e j is the j th unit vector in Rmp . To find the range of
coefficient (Cc)ij, take

w=
[
ei

0

]

, v=
[
0

e j

]

,

where ei is the i th unit vector in Rmp and e j is the j th unit vector in Rnc .

6.3. Numerical instance

We test the proposed method on the problem described in Section 4.3 where the plant is described
by (25) and where the nominal controller is described by (26) and (27). The decay rate + of the
closed-loop system is the minimum value of ( for which there exists matrices P and D that satisfy

L(Anom
c , Bnom

c ,Cnom
c , P,-, . . . ,-mc+nc )#0.

Our example has dimensions np =5, mc=2, and mp =2. The plant matrix Ap is randomly
generated using the same method used to generate A in Section 3.3. The entries of Bp and Cp are
IID N(0,1). The matrices Anom

c , Bnom
c , and Cnom

c are then computed using the formulas presented
in Section 4.3.

The complexity measures #i (z) are chosen to be #frac-bits. The fractional part of each entry of
Anom
c , Bnom

c , and Cnom
c is expressed with 40 bits, requiring a total of 1800 bits, i.e. !(!nom)=1800

bits. The decay rate of the nominal system is found to be 0.9326. We run the algorithm with
"=5%.

The best design after 10 random runs of the algorithm achieves a complexity of !(!)=35 bits,
with a cost of J (!)=0.9770J (!nom). The best design found after 100 random runs of the algorithm
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achieves a complexity of !(!)=18 bits and J (!)=0.9288J (!nom) (which is smaller than the value
for our nominal controller).

6.3.1. Multiple random instances. We generate 100 random instances of matrices Ap , Bp , Cp ,
with other data remaining the same: np =5, mc=2, mp =2, Q= I , R= I , and "=5%. For each
instance, we compute Anom, Bnom, Cnom and express the fractional part of each of their entries
with 40 bits (i.e. #(!nom)=1800 bits).

For each instance, we record the best design after 10 random runs of the algorithm. The
complexities of the best designs range between 10 and 52 bits, with a mean of 22.85 bits and a
standard deviation of 9.6 bits. Moreover, the performance degradations of the best designs ranged
between −9.21 and 0.61% and the algorithm takes an average of six passes over the variables to
converge. (Here negative values mean that the objective value of our truncated controller is smaller
than that of the nominal controller).

We compare these results with the simple approach of truncating the binary expansions of the
coefficients to precision 2−q (i.e. with q bits in their fractional parts), choosing q as small as
possible while still maintaining !∈C. For the 100 random instances that were generated, q varied
between 3 and 8 bits per coefficient with a mean of 5.55 bits. In contrast, our algorithm gave
aggressively truncated controllers whose complexity was between 0.22 and 1.16 bits per coefficient,
with a mean of 0.51 bits per coefficient.
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