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Abstract— This paper considers moving horizon estimation
(MHE) approach to solution of staged quadratic programming
(QP) problems. Using an insight into the constrained solution
structure for the growing horizon, we develop a very accurate
iterative update of the arrival cost in the MHE solution. The
update uses a quadratic approximation of the arrival cost and
information about the previously active or inactive constraints.
In the absence of constraints, the update is the familiar Kalman
filter in information form. In the presence of the constraints,
the update requires solving a sequence of linear systems with
varying size. The proposed MHE update provides very good
performance in numerical examples. This includes problems
with ℓ1 regularization where optimal estimation allows us to
perform online segmentation of streaming data.

I. INTRODUCTION

A. Problem statement

Given a series of quadratic forms g0(u), gt(u, v), where

u, v ∈ Rn and t is an integer index, consider a series of time

staged quadratic programming (QP) optimization problems

for increasing T

minimize g0(z0) +
∑T

t=1 gt(zt−1, zt)
subject to F eqzt = Geqzt−1 + heq

F ineqzt � Gineqzt−1 + hineq

t = 1, . . . , T,

(1)

where zt ∈ Rn are decision variables; the matrices F eq,

F ineq have sizes compatible with zt and the vectors heq,

hineq; and � denotes component-wise ≤ for two vectors. The

optimization interval t ∈ [1, T ] is further called full horizon.

Our goal is to provide a sequence of optimal solutions

Z∗(T ) = (z⋆
0|T , . . . , z

⋆
t|T ) as T increases.

The stage costs gt and the initial cost function, g0, are

convex quadratic functions that can be written in the form

gt(u, v) =

[

u
v

]T [

Rt Qt

QT
t Mt

] [

u
v

]

− 2

[

st
rt

]T [

u
v

]

, (2)

g0(v) = vTP0v − 2qT0 v, (3)

where matrices Rt, Qt, Mt, P0 ∈ Rn,n provide the convex-

ity.

The motivation for considering the QP formulation and

nonlinear estimation problem examples that lead to such

formulation are presented below. In the absence of con-

straints, the time staged QP is a slight generalization of

the optimal linear Gaussian estimation problem. In linear

Gaussian estimation

gt(zt−1, zt) =
1

2
||yt − Ctzt||

2
Φt

+
1

2
||zt −Atzt−1||

2
Ψt
, (4)
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where yt is the observed data; zt is the estimated state; At

and Ct are the state update and the observation matrices,

respectively; we use the notation ‖x‖2Q = xTQx, and Φt,

Ψt are the inverse covariance matrices of the observation

and process noise, respectively. As T grows, the solution

for problem (4) can be recursively computed using the well-

known Kalman filter approach.

This paper pursues a moving horizon estimation (MHE)

approach to solve the time-staged QP (1). For each T the

MHE solves the problem

minimize VT−N (zT−N ) +
∑T

t=T−N+1 gt(zt−1, zt)
subject to F eqzt = Geqzt−1 + heq

F ineqzt � Gineqzt−1 + hineq

t = T −N + 1, . . . , T,
(5)

where N is fixed, and the time interval t ∈ [T −N + 1, T ]
is called the receding horizon of length N . The arrival cost

VT−N (zT−N ) in (5) is computed through a recursive update.

The arrival cost update is the key contribution of this paper

and is described below. Unlike the recursive Kalman filter

solution, which is exact, the MHE solution is approximate,

because the arrival cost update is approximate. This paper

proposes a very accurate approximation of the arrival cost.

B. Motivation

Time-staged QP problems of the form (1) arise in many

nonlinear estimation applications, such as robotics, image

processing, process monitoring, navigation, and other filter-

ing and trend estimation applications. This QP formulation

includes state and observation constraints, which makes it

more versatile than the standard Kalman filter.

An important source of the time-staged QP formulations

are problems related to compressed sensing or robust esti-

mation. Such problem impose penalty functions to shape the

error residuals. Common examples include the Huber and ℓ1
penalty function. One well-known example is total-variation

denoising in which an ℓ1 penalty is used to promote sparsity

in labeling data segments. We consider the total-variation

denoising example in Section III-B of this paper.

Time-staged QPs also arise in order-restricted inference

problems and bioequivalence problems in drug testing.

For increasing T , these problems eventually require trun-

cating the size of the QP problem solved. The MHE offers

a systematic approach to such streaming data processing.

A brief discussion of some earlier work on MHE is

presented in the next subsection. It is worth noting that many

(perhaps even most) examples in the published MHE work

consider QP formulations that can be described by (1).
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C. Previous work

Some of the important earlier work on MHE includes

[1], [2], [3], [4], where the MHE problems and solutions

are established as the (estimation) dual to receding horizon

control, or model predictive control (MPC). In [5] and later

work, the stability of MPC is established by introducing a

quadratic approximation for the cost-to-go at the terminal

state of the receding horizon. As a dual problem, the MHE

ability to track the full horizon solution (stability) requires

adding a quadratic arrival cost penalty at the beginning of

the receding horizon. For MPC, this line of reasoning is well

discussed in [6], where further references can be found.

For MHE, a quadratic approximation of the arrival cost

leads to an extended Kalman filter (EKF) update for the

arrival cost. Such an update is used in much of the existing

work in MHE. In the presence of constraints, however, the

quadratic approximation of the arrival cost used in EKF

might be inaccurate. This is especially true if the inequality

constraints switch between being active and inactive at the

optimal solution. As a result, tuning the EKF update in MHE

is more of an art than science. It is well recognized that

improperly tuned arrival cost update can render the MHE

update unstable [7].

This paper proposes a new approach to approximating

the arrival cost that is aware of the constraints changing

from active to inactive as the optimization horizon moves.

The earlier paper [8] discussed a special case of the MHE

approach proposed in this paper in application to isotonic

regression estimation. The MHE arrival cost update in [8]

uses knowledge about the constraints being active or inactive

based on the previous MHE update. This paper develops an

extension of this idea to a general class of QP-representable

MHE problems.

D. Contribution of the paper

This paper establishes a class of staged QP problems (1)–

(3). This class includes many MHE problems in particular

the problems with ℓ1 regularization where the optimal MHE

estimation allows us to perform on-line segmentation of

streaming data. Two examples of such problems are con-

sidered in Section III.

The contribution of the paper is twofold: first, we introduce

the approximation hypothesis that the optimal solution of a

time-staged QP problem deep inside the horizon (i.e., far

back enough in the filter history) is insensitive to the last

stage of the problem. In particular, the active set of the

inequality constraints becomes fixed after a particular time as

the problem horizon grows. This hypothesis holds for most

problems in practice.

Second, we introduce an iterative update of the arrival cost

in the MHE solution. The iterative update uses a quadratic

approximation of the arrival cost and active/inactive con-

straint information from the previous step. In the absence

of the constraints, the update becomes the familiar Kalman

filter in information form. In the presence of the constraints,

the update requires solving linear systems of varying size.

This paper demonstrates that our approximation hypoth-

esis holds well in practice and the proposed arrival cost

update leads to good estimates in our numerical examples.

A theoretical proof of our approximation hypothesis is not

included in this paper; note that stability proofs for MPC

appear well after MPC’s adoption.

II. MOVING HORIZON ESTIMATION

A. Exact arrival cost function

Since minimizing the full problem is equivalent to mini-

mizing over a partially minimized problem, the full horizon

problem (1)–(3) can be presented in the form (5). This

requires using an arrival cost VT−N (zT−N ) = V ⋆
T−N (zT−N )

obtained by partial minimization with respect to the decision

variables z0, z1, . . . , zT−N−1.

V ⋆
T−N (zT−N ) =

min
z0,z1,...,zT−N−1

(

g0(z0) +
∑t=T−N

t=1 gt(zt−1, zt)
)

subject to F eqzt = Geqzt−1 + heq

F ineqzt � Gineqzt−1 + hineq

t = 1, . . . , T −N

(6)

We will further call V ⋆
T−N (zT−N ) in (6) the exact arrival

cost at T −N to distinguish it from the approximate arrival

cost introduced below.

A recursive update for the exact arrival cost from t−1 to t
can be obtained by extending the partial minimization to the

next decision variable zt. This yields the Bellman equation

V ⋆
t (u) = min

v
V ⋆
t−1(v) + gt(u, v)

subject to F eqv = Geqv + heq

F ineqv � Gineqv + hineq,

(7)

where u corresponds to zt and v to zt−1.

B. Arrival cost and active constraints

Because of the inequality constraints in (6), the exact

arrival cost V ⋆
t (u) is a complicated piecewise quadratic

function of its argument. Transitions between the quadratic

segments corresponds to the inequality constraints in (1)

switching between being active and inactive. Calculating the

arrival cost function in (6) involves solving an inequality

constrained QP in the decision variables z0, z1, . . . , zT−N−1.

As the number T −N of decision variables grows, in most

cases we can no longer effectively calculate V ⋆
T−N (u) in (6)

for all u ∈ Rn.

The proposed approach is to use quadratic approximation

of the arrival cost in the vicinity of the optimal solution

Z∗(T ) = (z⋆
0|T , . . . , z

⋆
t|T ). If Z∗(T ) were known ahead of

time, then we could replace the affine inequality constraints

in (6) with equality constraints whenever we know that the

constraint is tight for Z⋆(T ). When the inequality constraint

is not tight for the solution Z⋆(T ), we could drop the

constraint.

For the constraints in (6), consider the index set At|T of

the inequality constraints that are active at step t for the
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solution Z⋆(T ) of the full-horizon problem with the horizon

T . The active constraint set At|T can be described as

At|T = {i | F ineq
i z⋆t = Gineq

i z⋆t−1 + hineq
i }, (8)

for t = 1, . . . , T . Note that the the set of active constraints

At|T depends on the horizon T . As T grows, the set At|T

of the constraints active at time step t may change.

By replacing the constrains in (6) with the affine equality

constraints, the arrival cost becomes a solution of equality

constrained QP - a quadratic function. Unfortunately, finding

the set of active constraints At|T exactly requires solving the

full-horizon inequality constrained QP in the first place.

We will next discuss how a quadratic approximation of the

arrival cost function and the approximate set of the active

constraints At|T can be computed recursively without the

need to solve the full horizon problem.

C. Approximation hypothesis

The MHE update relies on representing the full horizon

problem (1) in the form (5), where N is fixed and the horizon

T is growing. In what follows, we assume that N is fixed

and T > N . For each T , the arrival cost is computed based

on the MHE solution and the arrival cost that have been

obtained at the previous step, for T − 1. After that, the new

MHE solution to the N -step QP problem is computed.

The proposed MHE update is based on the following ap-

proximation hypothesis: for N large enough and t ≤ T −N ,

At|T = At|T+d for any d > 0. This approximation implies

that, as T grows, the active constraint set for t ≤ T−N does

not change and that At|T = At, where At is independent of

T for T large enough.

Assuming that At is known, the combined equality and

inequality constraints in (6) for t = 1, . . . , T − N can be

changed to the equality constraints

Ftzt = Gtzt−1 + ht, (9)

where the matrices Ft, Gt, and ht are defined as

Ft =

[

F eq

F ineq
At

]

, Gt =

[

Geq

Gineq
At

]

, ht =

[

heq

hineq
At

]

, (10)

and FAt
denotes the sub-matrix of F formed from the rows

Fi for all i ∈ At.

The approximation hypothesis is a stylized fact that is not

exactly true, but appears to hold in practice for reasonably

large N . As is shown below, it allows us to obtain very accu-

rate MHE approximations of the exact full-horizon solution.

D. Update of the approximate arrival cost

Assuming that the introduced approximation hypothesis

holds and At is known, the approximate arrival cost Vt can

be found via an approximate Bellman iteration. By replacing

the constraints in (7) with the equality constraints (9), we get

the approximate Bellman update as

Vt(v) = minu Vt−1(u) + gt(u, v)
subject to Ft−1v = Gt−1u+ ht−1

(11)

At each horizon T , the proposed MHE approach solves

the problem (5), where the (approximate) arrival cost VT−N

is updated according to (11). The arrival cost update (11)

depends on the active constraint set AT−N through (10). At

each horizon T , we take AT−N = AT−N |T = AT−N |T−1,

the active set for the solution that was computed at horizon

T − 1. Such update of the active constraint set follows the

approximation hypothesis described in Section II-C.

Unlike the exact Bellman update (7) that has inequality

constraints, the approximate update (11) has affine equality

constraints only. Starting with V0(v) = g0(v), the approxi-

mate arrival cost function obtained in such update is always

quadratic and can be presented in the form

Vt(v) = vTPtv − 2qTt v + α, (12)

where matrix Pt and vector qt fully define the approximate

arrival cost; the scalar constant α has no impact on the

optimization problem.

The approximate arrival cost update (11) can be formu-

lated as an update for Pt, qt in (12). Consider the partial

minimization problem for the approximate Bellman iteration

(11), where Vt−1 is given by (12) and gt(u, v) is given by (2).

The Karush-Kuhn-Tucker (KKT) conditions for optimality

yield




Pt−1 +Rt Qt FT
t

QT
t Mt −GT

t

Ft −Gt 0









u
v
µ



 =





qt−1 + st
rt
−ht



 ,

Eliminating the variables u and µ from these conditions

yields a quadratic form in v that describes Vt(v) (12). The

expressions for Pt and qt can be extracted from this quadratic

form. The obtained recursive update for Pt and qt has the

form

Pt = Mt −

[

QT
t

Ft

]T [

Pt−1 +Rt −GT
t

−Gt 0

]−1 [

QT
t

Ft

]

qt = rt −

[

QT
t

Ft

]T [

Pt−1 +Rt −GT
t

−Gt 0

]−1 [

qt−1 + st
−ht

]

.

This, along with (10) and the active constraint set AT−N

update, fully specifies the arrival cost update (11). In contrast

to the familiar Kalman filter, the matrices updated and

inverted in our equations have varying size. The size of the

matrices Ft, Gt, and ht changes depending on the number

of the inequality constrains that are active at time t.

E. MHE update summary

To recap, the proposed MHE approach approximately

solves the time-staged QP problem (1)–(3). At each horizon

T , it provides a solution Zmhe(T ) that approximates the

optimal solution Z⋆(T ). For T ≤ N , we solve the full prob-

lem (1). For T > N , the N -step QP problem (5) is solved

with the approximate arrival cost function VT−N (zT−N ) of

the form (12), where matrices Pt−N and qt−N are defined

recursively as described in Section II-D. The solution to the

QP problem (5) can be obtained using any suitable QP solver.

For T > N the N -step solution to (5) defines

the last N decision vectors zmhe
t|T in Zmhe(T ) =

  3



(zmhe
0|T , zmhe

1|T , . . . , zmhe
T |T ). The decision vectors for t < T −N

are taken from Zmhe(T − 1) such that zmhe
t|T = zmhe

t|T−1
.

III. EXAMPLES

A. Kalman filter

Consider a linear Gaussian estimation problem for a

dynamical system

xt+1 = Atxt + wt

yt = Ctxt + vt,

where xt is the time-dependent state vector, yt is the obser-

vation vector, and At and Ct are matrices of appropriate

sizes. The noise vectors wt and vt are assumed to be

Gaussian with distribution N (0,Ψ−1
t ) and N (0,Φ−1

t ), re-

spectively. The initial state x0 is assumed to have distribution

N (P−1q, P−1).

The problem of maximum likelihood estimation of the

state zt, given the observations yt has the form (1) with no

constraints, where gt(zt−1, zt) is described by (4), and can

be presented in the form (2) with

Mt = Ψt + CT
t ΦtCt, Qt = −ΨT

t At,

Rt = AT
t ΨtAt, rt = CT

t Φtyt, st = 0.

In this example, there are no constraints and all approxima-

tions are exact. The update (7) for the (exact) arrival cost

function V ⋆
t can be performed by the recursive iteration

Pt = Ψt + CT
t ΦtCt −ΨtAt(Pt−1 +AT

t ΨtAt)
−1AT

t Ψt

qt = CT
t Φtyt +ΨtAt(Pt−1 +AT

t ΨtAt)
−1qt−1.

In this case, our approximation hypothesis holds exactly

(since there are no constraints), and any choice of N in the

MHE formulation (5) with the exact arrival cost will yield the

same solution. These recursive estimation equations provide

information form of the Kalman filter, where Pt is the

inverse covariance matrix (information matrix). The standard

Kalman filter corresponds to the update with N = 0, and

provides the last point of the optimal full-horizon solution

as z⋆
T |T = P−1

T qT .

B. Total variation denoising

Consider the estimation problem

minimize xT
0 Px0 − 2qTx0+

∑T

t=1 λ‖xt − xt−1‖1+
∑T

t=0 ‖yt − Cxt‖2Φ,

(13)

where xt ∈ Rn, t = 0, . . . , T are the decision variables,

yt ∈ Rm, t = 0, . . . , T are the raw data, C ∈ Rm×n is the

observation matrix, and Φ ∈ Rm×m is a positive definite

weight matrix. The ℓ1-norm is used to induce sparsity of

changes in the solution xt and force segmentation of the

solution into several intervals with constant xt. Problem (13)

is known as total-variation denoising and is important for

many applications.

To implement the MHE update of Section II-E, we for-

mulate an equivalent problem

minimize xT
0 Px0 − 2qTx0 +

∑T

t=1 λ1
Tat+

∑T

t=0(yt − Cxt)
TΦ(yt − Cxt)

subject to −at � xt − xt−1

at � xt − xt−1

t = 1, . . . , T.

Using decision variable vectors zt = (xt, at), we can express

this as the time-staged QP problem

minimize zT0 P0z0 − 2qT0 z0 +
∑T

t=1 gt(zt−1, zt)
subject to F ineqzt � Gineqzt−1,

t = 1, . . . , T,

where

P0 =

[

P + CTΦC 0
0 0

]

, q0 =

[

q + CTΦy0
0

]

,

F ineq =

[

−I −I
I −I

]

, Gineq =

[

−I 0
I 0

]

.

The cost function gt has the form (2) with

Mt =

[

CTΦC 0
0 0

]

, Qt = Rt = 0,

rt =

[

CTΦyt
−(λ/2)1

]

, st = 0.

Using this representation, we solve an instance of problem

(13) with scalar state xt and scalar data yt, with C = 1, Φ =
1, P = 0, q = 0, and T = 200. We use the moving horizon of

N = 20 and λ = 20. The time series yt, t = 0, . . . , T was

obtained by adding random noise to a piecewise constant

signal. We implement the MHE update of Section II-E to

solve this total variation denoising problem.

Figure 1 shows the raw data yt as dots and the state

xt in the full-horizon solution Z⋆(T ) for T = 200 as a

piece-wise constant dashed line. The uneven solid line in the

plot corresponds to the x-component of the final state zmhe
t|t

estimated at each step t of the MHE update. In this plot, the

MHE solution overlaps with the full horizon solution, we

have zmhe
t|t = z⋆

t|t within the accuracy of the computations.

The vertical lines in Figure 1 delineate change points where

some of the constrains change between active and inactive.

C. ℓ1 trend filtering

We now consider the ℓ1 trend filtering problem described

in [9]. The problem can be formulated as

minimize xT
0 Px0 − 2qTx0+

∑T

t=2 λ|xt − 2xt−1 + xt−2|+
∑T

t=0(yt − xt)
2,

(14)

where xt is a scalar decision variable and time series

yt, t = 0, . . . , T represents the data to be filtered. This

problem places an ℓ1 penalty on the second difference

xt − 2xt−1 + xt−2 to make it sparse. The solutions of (14)

follow a piecewise linear trend with sparse kink points. The

segmentation of the solution into affine intervals (straight
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Fig. 1. MHE filtering results for total variation denoising

line segments) facilitates data interpretation, compression,

and forecasting.

Similar to the previous subsection, the problem can be

transformed into a time-staged QP. An equivalent form of

problem (14) is

minimize xT
0 Px0 − 2qTx0 +

∑T

t=2 λat+
∑T

t=0(yt − xt)
2

subject to |xt − 2xt−1 + xt−2| ≤ at
t = 2, . . . , T.

With the decision variable zt = (xt, xt−1, at), we can

express the problem as

minimize zT0 P0z0 − 2qT0 z0 +
∑T

t=1 gt(zt−1, zt)
subject to F ineqzt � Gineqzt−1

F eqzt = Geqzt−1, t = 2, . . . , T,

where

P0 =





P + 1 0 0
0 0 0
0 0 0



 , q0 =





q + y0
0
0





F ineq =

[

−1 1 −1
1 −1 −1

]

, Gineq =

[

−1 1 0
1 −1 0

]

,

F eq =
[

0 1 0
]

, Geq =
[

1 0 0
]

.

The representation (2) for the cost function gt is given by

Mt =





1 0 0
0 0 0
0 0 0



 , Qt = Rt = 0,

rt =





yt
0

−(λ/2)



 , st = 0.

Figure 2 shows the result of applying the MHE algorithm

of Section II-E to problem (14) with λ = 50, P = 0, q =
0. The data yt, t = 0, . . . , T is shown as dots. The solid

line shows the optimal filtering solution z⋆t|t. In this case,

the MHE solution zmhe
t|t = z⋆

t|t (within the accuracy of the

computations) for all t = 0, . . . , 200. The vertical lines in

Figure 2 delineate the change points.

0 50 100 150 200

4

3

2

1

0

−1

T
Fig. 2. MHE filtering results for ℓ1 filter.

x− x⋆
tx− x⋆

t

00

t = 50 t = 150

00

250250

500500

−2−2 22 44

Fig. 3. The true V ⋆

t
(x) (dashed) and the approximate Vt(x) (solid) arrival

costs.

IV. ACCURACY OF APPROXIMATION

A. Accuracy of arrival cost approximation

Consider the total-variation denoising problem (13) dis-

cussed as Example 2 in Section III-B. This is a one-

dimensional example with the scalar state xt, scalar obser-

vation yt, C = 1, Φ = 1, and λ = 20. In this example,

an MHE update with window of N = 20 is applied to data

time series of the length T = 200. We calculate the exact

arrival cost function V ⋆
t (·), t = 0, . . . , 200 by gridding, and

compare it to the approximate arrival cost functions, obtained

using our method. Figure 3 compares the exact arrival cost

function V ⋆
t (x) and the proposed quadratic approximation

of the arrival cost function Vt(x) used in the MHE. The

plots show these two value functions for t = 50 (left) and

t = 150 (right). On the x-axis, we plot the deviation of the

state variable from the exact full horizon solution. The y-axis

is the arrival cost function value offset by a constant (which

is inconsequential for the optimization problem). We observe

that the exact arrival cost function V ⋆
t and the approximate

arrival cost function Vt match very well in the vicinity of

the operating point x = 0.

B. Accuracy of segmentation

Consider the ℓ1 trend filtering problem (14), discussed in

Section III-C. In this formulation, the proposed MHE update

algorithm provides a piecewise linear segmentation of the

underlying trend from streaming data. The segmentation is
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Fig. 4. Segmentation for ℓ1 trend filtering: a (blue) dot indicates a change
point where our MHE solution agrees with the full horizon solution, a (red)
‘x’ represents false negatives where our MHE solution failed to detect a
change point, and a (green) ‘o’ represents false positives where our MHE
solution erroneously detected a change point.

described by the change points (kinks) in the solution. Using

the proposed MHE update, we are able to obtain online

segmentation of streaming data as the problem size T grows

out of bounds for a batch solution.

Figure 4 shows the change points detected using the

proposed MHE algorithm for the same simulation results as

shown in Figure 2. The change points were detected as points

where |xt − 2xt−1 + xt−2| > ǫ, where ǫ is defined by the

accuracy of the QP optimization solution.

The dots show the detected change points. The points

where the full-horizon solution Z⋆(T ) and our MHE algo-

rithm do not agree are indicated with an ‘x’ (false negative)

or an ‘o’ (false positive). The horizontal axis represents the

horizon length T , while the vertical axis shows time t inside

the full horizon [1, T ]. The dotted diagonal represents the

causality boundary: the solution is obtained for t ≤ T .

The MHE filtering solution in Figure 4 does match the full

horizon solution extremely accurately. The differing change

points have the solution that is very close to the constraint,

close to the QP solver accuracy limit.

C. Accuracy of optimal solution approximation

Checking the accuracy of the arrival cost approximation

in Section IV-A needs to be complemented by verification

of optimal solution approximation. Furthermore, if decision

vector zt has dimension larger than 2, visualizing the value

function is not practical. We compare the performance of

the MHE with proposed arrival cost approximation against

the performance of an estimator that solves the full-horizon

problem at each step.

We again consider the total variation denoising example

(13), but we use a larger problem dimension, with xt and

yt having size of n = m = 5, C = I , Φ = I , and λ =
20. We consider an MHE update with window of N = 50
applied to the data time series yt of the length T = 200.

Figure 5 shows the results. For each t, we plot all n = 5
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Fig. 5. Comparison of the error between the full horizon estimates (x⋆

t|t
)

and the moving horizon estimates (xmhe

t|t
).

entries of the estimate obtained. The last state estimated with

our MHE update xmhe
t|t is plotted along the horizontal axis.

The estimation error xmhe
t|t − x⋆

t|t is shown on the vertical

axis. The small error observed is on the order of accuracy

of the QP solver. Furthermore, the numerical QP solution is

more accurate for the MHE solution that requires to solve

the problem of small size (50 steps) compared to the full-

horizon solution (200 steps). This result means that the MHE

performance with the proposed approximation of the arrival

cost is practically identical to the full-horizon estimator, at

least in this example.

V. CONCLUSION

This paper has presented a moving horizon estimator

(MHE) for staged QP problems suitable for streaming data

processing. The MHE update is based on the approximation

assumption that the active constraint set remains fixed far

enough in the past from the last time stage. This assumption

allows us to derive an explicit Bellman update for the arrival

cost. The update is a generalization of Kalman filter update;

with a difference that at each step the dimensions of the

updated matrices change depending on the number of active

inequality constraints.
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