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Abstract— Receding horizon control (RHC), also known as
model predictive control (MPC), is a general purpose control
scheme that involves repeatedly solving a constrained optimiza-
tion problem, using predictions of future costs, disturbances,
and constraints over a moving time horizon to choose the
control action. RHC handles constraints, such as limits on
control variables, in a direct and natural way, and generates
sophisticated feed-forward actions. The main disadvantage of
RHC is that an optimization problem has to be solved at each
step, which leads many control engineers to think that it can
only be used for systems with slow sampling (say, less than one
Hz). Several techniques have recently been developed to get
around this problem. In one approach, called explicit MPC,
the optimization problem is solved analytically and explicitly,
so evaluating the control policy requires only a lookup table
search. Another approach, which is our focus here, is to
exploit the structure in the optimization problem to solve it
efficiently. This approach has previously been applied in several
specific cases, using custom, hand written code. However, this
requires significant development time, and specialist knowledge
of optimization and numerical algorithms. Recent developments
in convex optimization code generation have made the task
much easier and quicker. With code generation, the RHC
policy is specified in a high-level language, then automatically
transformed into source code for a custom solver. The custom
solver is typically orders of magnitude faster than a generic
solver, solving in milliseconds or microseconds on standard
processors, making it possible to use RHC policies at kilohertz
rates. In this paper we demonstrate code generation with two
simple control examples. They show a range of problems that
may be handled by RHC. In every case, we show a speedup of
several hundred times from generic parser-solvers.

I. INTRODUCTION

Receding horizon control (RHC) or model predictive con-

trol (MPC) [1], [2], [3], [4] is a form of feedback control

system that first became popular in the 1980s. With RHC, we

solve an optimization problem at each time step to determine

a plan of action over a fixed time horizon, and then apply

the first input from this plan. At the next time step we

repeat this, solving a new optimization problem, with the

time horizon shifted one step forward. Estimates of future

quantities, based on available measurements and data, enter

the optimization; this provides feedback (i.e., the use of real-

time measurements or other information in determining the

input).

RHC is a nonlinear control policy that naturally handles

input constraints, output constraints, and a variety of control

objectives. Systems can thus be controlled near their physical

limits, obtaining performance superior to linear control. RHC

has given excellent results in a wide range of practical

settings, including industrial and chemical process control

[5], supply chain management [6], stochastic control in

economics and finance [7], and revenue management [8].

A drawback of RHC is the comparatively long time

required to solve the planning problem using conventional

numerical optimization techniques, as compared to, say, the

time required to compute the control action in a traditional

linear controller. Thus, RHC has been mostly limited to slow

systems with sample times measured in seconds, minutes,

or hours. Many methods have been proposed to speed up

the solution of the optimization problems that arise in RHC.

When the problem dimensions (the numbers of states, inputs,

and constraints) are small, one approach is explicit MPC

[9], [10], where symbolic solutions are generated offline and

saved for later use. The online algorithm then reduces to

a lookup table search, followed by a simple linear control

law evaluation, which can be made extremely fast. Another

method, applicable to a problem of any size, is to code

custom online optimization solvers that exploit the particular

problem structure that arises in RHC applications [11], [12],

[13], [14]. These custom solvers can yield computation times

that are several orders of magnitude faster than generic

solvers, but require time-consuming hand coding, and sig-

nificant expertise in optimization algorithms and numerical

computation.

In this paper, we describe recent advances that make it

much easier to develop custom RHC solvers. By combining

a high-level specification language for optimization and

recently-developed code generation tools, a user of RHC can

quickly specify and generate fast, reliable custom code. Since

the user does not require much optimization expertise, many

more people can use RHC, and in new settings—including

applications with kilohertz sample rates.

We do not claim that RHC, or any other modern control

method, will always outperform traditional control meth-

ods. In many cases, a skilled designer can achieve sim-

ilar performance by carefully tuning a conventional PID

(proportional-integral-derivative) or other linear controller,

suitably modified to handle the constraints. In our opinion,

the main advantage of RHC is the simple design process, that

handles constraints directly (indeed, by simply specifying

them), and requires far less tweaking and adjustment than

is typically required with conventional controller design.

Roughly speaking, with RHC the designer simply lists the

constraints, whereas in a conventional design process, the de-

signer tweaks controller gains (or design weights in a modern

method) to indirectly handle the constraints. We believe RHC

via automatic code generation offers an attractive framework

for rapid design of sophisticated controllers; especially for

problems with challenging constraints, and even for problems

with relatively fast sample rates.

In the remainder of the paper, we give a high-level
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overview of RHC, briefly explain code generation for RHC

using the software package CVXGEN [15], and illustrate

the ideas with two examples. The examples are simple,

and chosen to show the variety of problems that can be

addressed. Our discussion will avoid unnecessary detail, so

we refer the interested reader to [16] for a more detailed

account of convex optimization, [17] for more on disciplined

convex programming, and [18], [19] for a discussion of code

generation for convex optimization.

We restrict our attention to systems with linear dynamics

and convex objectives and constraints, for several reasons.

First, many real systems can be reasonably modeled in this

restricted form. Secondly, standard linearization techniques

can be used to extend these methods to many nonlinear

systems. (Indeed, almost all commercial MPC systems for

process control rely on linearization around an operating

point.) And finally, many of the techniques we discuss could

be applied to general nonlinear systems. For some work in

this area, see [20], which describes the software package

NEWCON; an example of automatic code generation applied

to nonlinear RHC [21], or a more recent approach by the

same author applied to a two-link robot arm in [22]. Also

see the ACADO system [23].

II. FORMULATING RHC PROBLEMS

A. System dynamics and control

System dynamics. Each of the examples in this paper

applies RHC to a discrete-time linear dynamical system of

the form

xt+1 = Atxt +Btut + ct,

where xt ∈ Rn is the system state, ut ∈ Rm is the control

action or input, and ct ∈ Rn is an exogenous input. The

matrices At ∈ Rn×n and Bt ∈ Rn×m are the dynamics

and input matrices, respectively. The subscripts on At, bt,
and ct indicate that they may change with time, but in many

applications some of these data are constant and known.

Constraints and objective. The state and input must satisfy

some constraints, expressed abstractly as

(xt, ut) ∈ Ct,

where Ct ⊆ Rn×Rm is the constraint set. The instantaneous

cost depends on both the current state and control action, and

is denoted ℓt(xt, ut). We judge the quality of control by the

average cost,

J = lim
T→∞

1

T

T−1
∑

t=0

ℓt(xt, ut),

where we assume the limit exists. If ℓt(xt, ut) is a random

variable, we replace ℓt(xt, ut) with E ℓt(xt, ut). Like the

dynamics data, we subscript the constraint set and objective

function with the time t, to handle the case when they vary

with time. But in many applications they are constant and

known.

Information available for control. The control input ut is

determined using the information available to the controller

at time t, including estimates of any quantities (or functions)

that are not known, based on information that is known. We

will denote these estimates as

Âτ |t, B̂τ |t, ĉτ |t, Ĉτ |t, ℓ̂τ |t, x̂t|t,

where the notation ẑτ |t means our estimate of zτ , based

on information available to us at time t, where τ ≥ t.
‘Information available at time t’ includes conventional data

in a control system, such as those available from sensor

measurements, or known coefficients. It can also include

other relevant information, such as historical usage patterns,

weather, and price trends, which are not traditional data in

control systems.

These estimates can be obtained in many ways. In the

simplest case, we know the quantity being estimated, in

which case we simply replace the estimates with the known

value. For example, if the system dynamics matrices At

and Bt have known and constant values A and B, we take

Âτ |t = A and B̂τ |t = B. If the controller has access to the

(exact) current state xt, we take x̂t|t = xt.

A traditional method for obtaining the estimates is from

a statistical model of the unknown data, in which case the

estimates can be conditional expectations or other statistical

estimates, based on the data available at time t. For example,

the additive terms ct are often modeled as independent zero

mean random variables, with natural estimate ĉτ |t = 0.

The estimates need not be derived from statistical models;

for example, future prices (entering the objective through

ℓt, say) could be obtained from a futures market, or from

analysts who predict trends. Another source of the estimates

comes up when the system to be controlled is nonlinear.

In this case Âτ |t, Bτ |t, and cτ |t can be a linearization of

(nonlinear) dynamics, along a trajectory.

Controller design problem. The controller design problem

is to find a control policy or control law that chooses the

input ut as a function of the quantities known at time t, in

such a way that the constraints are always (or almost always)

satisfied, and that the average cost J is minimized, or at least

made small.

We have not fully specified the uncertainty model, so our

description of the control problem is informal, and we cannot

really talk about an optimal control policy. But when we

give a full mathematical description of the uncertainty, for

example as a statistical model, we can talk about the optimal

control policy, i.e., the policy that minimizes J , among all

policies that map the information available into a control

action while respecting the constraints.

B. Receding horizon control

The basic RHC policy is very simple. At time t, we

consider an interval extending T steps into the future: t, t+
1, . . . , t + T . We then carry out several steps (which we

briefly summarize, then describe again in more detail):

1) Form a predictive model. Replace all unknown quanti-

ties over the time interval with their current estimates,

using all data available at time t.
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2) Optimize. Solve the problem of minimizing the (pre-

dicted) objective, subject to the (predicted) dynamics

and constraints.

3) Execute. Choose ut to be the value obtained in the

optimization problem of step 2.

Steps 1 and 2. The RHC optimization problem in step 2

takes the form

minimize 1
T+1

∑t+T
τ=t ℓ̂τ |t(x̂τ , ûτ )

subject to x̂τ+1 = Âτ |tx̂τ + B̂τ |tûτ + ĉτ |t,

(x̂τ , ûτ ) ∈ Ĉτ |t, τ = t, . . . , t+ T
x̂t = x̂t|t,

(1)

with variables x̂t, . . . , x̂t+T+1 and ût, . . . , ût+T . The data in

this RHC optimization problem are the estimates

Âτ |t, B̂τ |t, ĉτ |t, Ĉτ |t, ℓ̂τ |t,

for τ = t, . . . , t+ T , and the current state estimate, x̂t|t. (In

most applications, we can use known, exact values for many

of the parameters.)

We can interpret û⋆
t , . . . , û

⋆
t+T , the optimal values from

the RHC optimization problem (1), as a plan of action for

the next T steps.

Step 3. We then choose ut = û⋆
t to be our RHC action.

At the next time step, the process is repeated, with

(possibly) updated estimates of the current state and future

quantities. We make a few comments about the RHC policy.

Terminal constraints or cost terms. It is common to add a

final state constraint, or an extra final state cost, to the RHC

problem. In the former case, we add an equality constraint

of the form xT+1 = xfinal, or a final constraint set condition

xT+1 ∈ Cfinal. In the latter case, we add V (xT+1) to the

objective, with V a cost function for the final state. This can

allow simpler, shorter-horizon controllers to approximate the

behavior of controllers with longer horizons.

Optimality. The RHC policy is generally not an optimal

control policy, even when we have a formal model of

the uncertainty. Instead, RHC is merely a (sophisticated)

heuristic which works very well in many applications.

Convexity. We will assume that Ct and ℓt are convex, which

means that the RHC problem (1) is a convex optimization

problem. This means that we can solve it efficiently, using

standard convex optimization tools [16].

Requirements. To specify an RHC policy, we must de-

scribe the prediction method (i.e., the method for estimating

unkown quantities from current data), the horizon T , and any

terminal cost or constraint.

C. Computer modeling of RHC

The two substantial design tasks required for RHC are

system modeling, and creating the method to solve the opti-

mization problem (1). The former task involves choosing a

system model and appropriate cost functions and constraints,

and has been tackled extensively in the literature [24], [25],

[26]. A wide range of computing tools are available to accel-

erate development of that phase. That leaves the onerous task

of solving (1) at an acceptable speed. This is needed during

development and testing, and, especially, for implementa-

tion in a real-time system. Many convenient software tools

[27], [28], [29] are available for solving convex problems,

during development and testing. These parser-solvers take

a high-level specification, and perform the necessary trans-

formations for solution by a standard convex optimization

solver, e.g., [30], [31], [32]. This allows quick iteration, with

the engineer able to change the optimization problem and

immediately see results. However, during development, the

demands on the software are not onerous, since an engineer

is ‘in the loop’, and must formulate and evaluate each design.

Thus, high speed or accuracy is not especially relevant.

Once a design is final and it is time for deployment, solver

speed can be of critical importance, particularly when the

sampling rate is high. If the solver speed is much faster

than that required, we can use a less powerful processor,

or a processor performing other tasks. While a parser-solver

may be suitable for some, slow applications, they are usually

unsuitable for online RHC. The traditional route is custom

code development, either using a toolbox (see [11], or the

references in [33]), or from scratch. This process is very

difficult for most users, especially those without a numerical

optimization background. Additionally, if the problem state-

ment changes, even slightly, all code modifications must be

made laboriously, by hand. Small changes in the formulation

can lead to dramatic changes in the code. After that, testing

and correcting the code must be done all over again.

Here we focus on an alternative: CVXGEN [15]. It

combines a simple, natural modeling language with a code

generator for general convex quadratic programs. It can be

used much like a parser-solver, but instead of performing the

transformation to and from the standard form just once, it

generates code for performing both the transformation and

the actual solution for a specific convex optimization problem

family. This allows much faster design iteration, and can

involve the code generator much earlier in the process. That

means that even simulation and testing can take place at

greatly accelerated speeds.

In the remainder of the paper, we describe two RHC

application examples, giving CVXGEN code for each one.

CVXGEN results are collected together in Table II in §IV.

III. EXAMPLES

A. Pre-ordering

Problem statement. We consider the problem of meeting

a fluctuating demand for a perishable commodity, by pre-

ordering it with different lead times and also purchasing it

on the spot market, all at (possibly) different prices. When

we place an order, we will specify delivery for between 1 and

n periods in the future. (Here, faster delivery typically incurs

a higher unit cost.) Let ut ∈ Rn
+ represent new orders, where

(ut)i is the amount, ordered in period t, to be delivered in

period t + i. Our state will be the order book xt ∈ Rn
+,

where (xt)i is the quantity scheduled to arrive in period

t + i − 1; in particular, (xt)1 is the stock at hand. The

system dynamics are xt+1 = Axt+But, where A is a matrix

with ones on the upper diagonal and zeros everywhere else,
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and B = I . The constraint has the form ut ≥ 0, which is

convex. (In our general model, we take Ct = Rn×Rn
+.) Thus,

in this example, there is no uncertainty in the dynamics or

constraints.

Our stage cost has two terms: The cost of placing orders

for future delivery (which we recognize immediately), and

the cost of making up any unmet demand by purchasing on

the spot market. The first term has the form pTt ut, where

(pt)i ≥ 0 is the price of ordering one unit of the commodity

for delivery in period t + i. The unmet demand is (dt −
(xt)1)+, where dt ≥ 0 is the demand in period t, and (·)+
denotes the positive part. The cost of meeting the excess

demand on the spot market is pspott (dt − (xt)1)+, where

pspott ≥ 0 is the spot market price at time t. Thus the overall

stage cost is

ℓt(xt, ut) = pTt ut + pspott (dt − (xt)1)+,

which is a convex function of xt and ut. Typically the prices

satisfy pspott > (pt)1 > · · · > (pt)n, i.e., there is a discount

for longer lead time.

We consider the simple case in which the pre-order and

spot market prices are known and do not vary with time

(i.e., pt = p ∈ Rn
+, pspott = pspot ≥ 0), and demand is

modeled as a stochastic process. We assume that demand is

a stationary log-normal process, i.e., log dt is a stationary

Gaussian process with

E log dt = µ, E(log dt − µ)(log dt+τ − µ)) = rτ ,

so the mean demand is E dt = exp(µ+ r0/2).

In period t, the controller has access to the current order

book xt, and the current and last N values of demand,

dt, dt−1, . . . , dt−N , in addition to the various constants: the

prices p and pspot, the log demand mean µ, and the log

demand autocovariances rτ . The orders made in period t
must be based on this information.

Receding horizon policy. Our RHC policy requires esti-

mates of future stage cost, which depends on the (unknown)

future demand. We will take

d̂τ |t = expE(log dτ |dt, . . . , dt−N ),

i.e., the exponential of the conditional mean of log demand,

given the previous N demand values. (Since we know the

current demand, we simply take d̂t|t = dt.) Since we have

assumed the demand is a stationary log-normal process, the

conditional expectation of log dτ is an affine (linear plus

constant) function of log dt, . . . , log dt−N :

d̂τ |t = exp
(

aTτ−t(log dt, . . . , log dt−N ) + b
)

, . . . ,

for τ = t+ 1, . . . , t+ T , where aj ∈ RN+1 and b ∈ R can

be found from the data µ and r0, . . . , rN+T+1.

For this example we will also add a terminal constraint,

1
T x̂t+T+1 = nE dt, where E dt = exp(µ + r0/2). This

ensures that we won’t run out the inventory at the end of the

horizon to avoid paying for the commodity.

The RHC optimization problem (1) becomes

minimize 1
T+1

∑t+T
τ=t p

T ûτ + pspot(d̂τ |t − (x̂τ )1)+
subject to x̂τ+1 = Ax̂τ + ûτ , τ = t, . . . , t+ T

ûτ ≥ 0, τ = t, . . . , t+ T
1
T x̂t+T+1 = nE dt, x̂t = xt,

with variables x̂t, . . . , x̂t+T+1 and ût, . . . , ût+T . This is a

convex optimization problem, and can be reduced to a linear

program (LP).

Constant order policy. We will compare the RHC pol-

icy with a simple policy: At each time t, we let ut =
(0, . . . , 0, ū), i.e., we order a constant amount with the max-

imum delivery time. We will use ū = E dt = exp(µ+r0/2),
i.e., we order with maximum lead-time (presumably, at the

lowest price) an amount equal to the average demand.

1) Related work: Much work has been done on supply

chain planning. For an overview of the field, though without

the optimization component, see [34]. For the application

of RHC to the supply chain, see [35], or [6] with covers

multi-factory supply chains. In [36], the authors use extensive

simulation of MPC to test sensitivity of various policies,

while [37] explore various levels of decentralization. Finally,

for supply chain optimization with mixed-integer constraints

see [38], and for planning under uncertainty see [39].

2) Numerical example: Our example has n = 5 order lead

times, with prices

pspot = 1, p = (γ, γ2, γ3, γ4, γ5),

with γ = 0.7. (Thus, we get a constant 30% discount for each

period of lead time.) The demand process data are µ = 0,

and rτ = 0.1(0.95τ ). Our RHC controller will use horizon

T = 30, and we estimate future demand using the last N =
100 demands.

Results. We simulate both the RHC and constant ordering

policies for 1000 steps (with the same demand realization).

The constant order policy incurs an average cost J = 0.37,

while, as expected, the RHC policy performs considerably

better, with an average cost J = 0.28. Some example trajec-

tories are shown in Figure 2. We compare the costs incurred

by the RHC policy (blue) and constant policy (red), over 500
time steps. The plots are (from top to bottom): demand (dt),
pre-order cost (pTut), spot market cost (pspot(dt− (xt)1)+),

and overall stage cost (ℓ(xt, ut)).

In Figure 3 we show the actual (black) and predicted (blue)

log-demand trajectories starting at t = 220. The vertical

lines show exp(log d̂t|220 ± σt), where σt = (E(log dt −

log d̂t|220))
1/2. We can see that while the predicted trajectory

captures the general trend, the prediction error is relatively

large.

The CVXGEN code takes up to 250 µs to solve at each

time step, which is 4000× faster than with plain CVX. This

speed is far faster than would ever be required. However, this

means that we could use extensive Monte-Carlo simulation

to test different scenarios and ordering stratgies. Further

computation performance details are collected in Table II.
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dimensions

T = 30; n = 5

end

parameters

A (n,n); p (n,1)

d[t], t=0..T

pspot positive; ubar

x[0] (n)

end

variables

x[t] (n), t=1..T+1

u[t] (n), t=0..T

end

minimize

(1/(T+1))*sum[t=0..T](p'*u[t]

+ pspot*pos(d[t] - x[t][1]))

subject to

x[t+1] == A*x[t] + u[t], t=0..T

u[t] >= 0, t=0..T

sum(x[T+1]) == n*ubar

end

Fig. 1: CVXGEN code segment for the pre-ordering example.
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Fig. 2: Comparison of RHC policy (blue) and constant order policy
(red) for the pre-order example. From top to bottom: demand (dt),
pre-order cost (pTut), spot market cost (pspot(dt − (xt)1)+), and
stage cost (ℓ(xt, ut)).

B. Energy storage

Problem statement. We consider an energy storage system

that can be charged or discharged from a source with varying

energy price. A simple example is a battery connected to a

power grid. The goal is to alternate between charging and

discharging in order to maximize the average revenue.

Let qt ≥ 0 denote the charge in the energy store at time

period t. The energy store has capacity C, so we must have

qt ≤ C. We let uc
t ≥ 0 denote the amount of energy taken

from the source in period t to charge the energy store, and

we let ud
t ≥ 0 denote the amount of energy discharged into

the source from our energy store. (We will see that in each

time period, at most one of these will be positive; that is, we

t
200 210 220 230 240 250 260 270

0.5

1

1.5

2

2.5

3

Fig. 3: Black: log dt; Blue: log d̂t|220 for the pre-order example.
Vertical lines show prediction error.

will never charge and discharge the store simultaneously.)

The charging and discharging rates must satisfy

uc
t ≤ Cmax, ud

t ≤ Dmax,

where Cmax and Dmax are the maximum charge/discharge

rates.

Charging increases the energy in our store by κcut, where

κc ∈ (0, 1) is the charge efficiency; discharging decreases

the energy in our store by ut/κ
d, where κd ∈ (0, 1) is the

discharge efficiency. In each time period the energy store

leaks, losing energy proportional to its charge, with leakage

coefficient η ∈ (0, 1). Incorporating all these effects, the

system dynamics are

qt+1 = ηqt + κcuc
t − ud

t /κ
d.

In the context of our general framework, the dynamics

matrices are A = η and B = (κc, 1/κd)T , with ut =
(uc

t , u
d
t ).

The revenue in period t is given by pt(u
d
t−uc

t), where pt is

the energy price at time t. To discourage excessive charging

and discharging, we add a penalty of the form γ(uc
t + ud

t ),
where γ ≥ 0 is a parameter. (An alternative interpretation of

this term is a transaction cost, with bid-ask spread γ: We buy

energy at price pt+ γ, and sell energy back at price pt− γ.)

Our stage cost (i.e., negative revenue, to be minimized) is

thus

ℓt(qt, ut) = pt(u
c
t−ud

t )+γ(uc
t+ud

t ) = (pt+γ)uc
t−(pt−γ)ud

t ,

which can be interpreted as the profit, at time t.
We will model the energy price as a stationary log-normal

process with

E log pt = µ, E(log pt − µ)(log pt+τ − µ) = rτ .

At time period t the controller has access to the current

charge level qt, the data

C, Cmax, Dmax, κc, κd, η, γ,
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the current and last N prices pt, pt−1, . . . , pt−N , as well as

the mean and autocovariance, µ and rτ . The future prices

are not known.

Receding horizon policy. To implement the receding hori-

zon policy, we take our estimates of the future prices to be

p̂τ |t = expE(log pτ |pt, . . . , pt−N ), τ = t+ 1, . . . , t+ T,

which is an affine function of log pt, . . . , log pt−N . (Note

that this is not the same as E(pτ |pt, . . . , pt−N ), which can

also be computed and used as estimates of future prices.)

Our estimates of the stage costs are

ℓ̂t(q̂τ , ûτ ) = (p̂τ |t + γ)ûc
τ − (p̂τ |t − γ)ûd

τ .

Thus, the RHC optimization problem becomes

minimize
∑t+T

τ=t ℓ̂t(q̂τ , ût)
subject to q̂τ+1 = ηq̂τ + κcûc

τ − ûd
τ/κ

d,
0 ≤ ûc

τ ≤ Cmax, 0 ≤ ûd
τ ≤ Dmax,

τ = t, . . . , t+ T
0 ≤ q̂τ ≤ C, τ = t, . . . , t+ T + 1
q̂τ = qt,

(2)

with variables q̂t, . . . , q̂t+T+1, ûc
t , . . . , û

c
t+T , ûd

t , . . . , û
d
t+T .

This is a convex optimization problem, and can be written

as an LP.

Thresholding policy. We will compare the receding hori-

zon policy with a simple thresholding policy, which works

as follows:

uc
t =

{

min(Cmax, C − q) pt ≤ pthc
0 otherwise

,

ud
t =

{

min(Dmax, q) pt ≥ pthd
0 otherwise

.

In other words, we charge at the maximum rate if the price

is below a threshold pthc, and we discharge at the maximum

rate if the price is above a threshold pthd. If the price is in

between we do nothing. We take the minimum to ensure we

do not charge above the capacity or discharge below zero.

1) Related work: There is a particularly diverse set of

work on optimization in energy storage and production. In

[40], the authors consider a distributed energy system where

individual grid-connected households use an MPC-based

controller to control ‘micro combined heat and power’ plants.

For more on distributed generation and variable pricing, see,

respectively, [41] and [42]. On the generation side, [43]

considers using MPC and batteries to smooth the power

produced by wind turbines. The paper includes a case study

with real data.

A different, but related application is for hybrid vehicles.

Here multiple power sources are available. See [44] or [45],

or for a vehicle with multiple different energy storage units

see [46].

2) Numerical example: We look at a particular numerical

instance with η = 0.98, κc = 0.98, κd = 0.98, Cmax = 10,

Dmax = 10, C = 50, γ = 0.02, q0 = 0, µ = 0,

rτ = 0.1(0.99τ cos(0.1τ)). For the receding horizon policy

dimensions

T = 50

end

parameters

eta; kappac; kappad; Cmax; Dmax

gamma; C; p[t], t=0..T; q[0]

end

variables

q[t], t=1..T+1

uc[t], t=0..T

ud[t], t=0..T

end

minimize

sum[t=0..T]((p[t] + gamma)*uc[t] - (p[t]

- gamma)*ud[t])

subject to

q[t+1] == eta*q[t] + kappac*uc[t]

- (1/kappad)*ud[t], t=0..T

0 <= q[t] <= C, t=1..T+1

0 <= uc[t] <= Cmax, t=0..T

0 <= ud[t] <= Dmax, t=0..T

end

Fig. 4: CVXGEN code segment for the storage example.

we used a time horizon of T = 50 steps, and N = 100
previous prices to estimate future prices.

Results. The simulations were carried out for 1000 time

steps. Figure 5 shows the cumulative profit,

rt =

t
∑

τ=0

pτ (u
d
τ − uc

τ )− γ(ud
τ + uc

τ ),

for the RHC policy (blue) and the simple thresholding policy

(red), over 500 time steps. For the thresholding policy, we

adjusted the charge/discharge thresholds via trial and error to

achieve good performance. The final thresholds we used are

pthc = 0.8, pthd = 1.3. Clearly, the RHC policy outperforms

the thresholding policy. The average profit achieved for

the RHC policy is 0.23 per-period, whereas thresholding

achieves a profit of 0.029 per-period (averaged over 1000
time steps).

Figure 6 shows the actual (black) and predicted (blue) log-

price trajectories starting at t = 150. The vertical lines show

exp(log p̂t|150±σt), where σt = (E(log pt − log p̂t|150))
1/2

.

The CVXGEN code takes up to 360 µs to solve at each

time step, which is 3500× faster than with CVX. Again,

these speeds are much faster than is required in practice,

since prices would not usually vary on the time scale of

microseconds. However, these computation speeds are useful

for Monte Carlo simulations and scenario testing. Further

computation performance details are collected in Table II.

IV. CVXGEN PERFORMANCE

To give a rough guide to CVXGEN’s performance, we

tested CVXGEN code for each example on three different

computers. The given timings should not be taken too seri-

ously, since there are many things that could easily improve

performance, often reducing speed by an order of magnitude
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Fig. 5: Comparison of RHC policy (blue) and thresholding policy
(red) for the storage example. From top to bottom: price (pt), charge
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Fig. 6: Black: log pt; Blue: log p̂t|150 for the storage example.
Vertical lines show prediction error.

or more. First, single-precision floats could be used in place

of double-precision, since the scale of data is known ahead

of time. This would improve performance on a variety of

processors. Secondly, the time-horizon selected for the given

examples is relatively long. With a suitable choice of final

state cost as in [47], this could be reduced further, giving

a linearly proportional performance improvement. Finally,

we solve the problems to high accuracy (so that control

performance does not suffer from suboptimality), which

required up to 16 steps. With a small amount of tuning,

adequate control performance could easily be achieveable

using a fixed step limit of (say) 5 steps [11]. Thus, all of

the numerical results should be taken as preliminary upper

bounds on performance, and they will change over time.

Each computer’s properties are summarized in Table I.

We used gcc-4.4 on each processor, with the compiler

optimization flag -Os. We have not yet conducted tests with

OS Processor, cache Clock Power

1 Linux 2.6 Intel Atom, 512 kB 1.60 GHz 2 W

2 Linux 2.6 Intel Core Duo, 2 MB 1.66 GHz 31 W

3 OS X 10.6 Intel Core i7, 8 MB 3.46 GHz 95 W

TABLE I: Computer properties

preorder storage

CVX and Sedumi (ms) 971 1290

Variables, original 310 153

Variables, transformed 341 153

Constraints, transformed 373 357

KKT matrix nonzeros 1116 1121

KKT factor fill-in 1.64 1.45

Max steps required 10 16

CVXGEN, Computer 1 (ms) 2.34 4.01

CVXGEN, Computer 2 (ms) 0.96 1.98

CVXGEN, Computer 3 (ms) 0.25 0.36

TABLE II: CVXGEN performance

a real-time operating system.

In each case, we ensured the computer was idle, then

solved optimization problem instances continuously for at

least one second. We calculated the maximum time taken

for solving any instance, ensuring that each problem was

solved to within 0.5% of optimality. For a rough guide to

the speed of a traditional parser-solver (a somewhat unfair

comparison), we also tested the performance of CVX and

Sedumi on the fastest computer, Computer 3, using Matlab

7.9, CVX 1.2 and Sedumi 1.2. Results are summarized in

Table II.

V. CONCLUSION

This paper has shown two examples of code generation

in practice. In all cases we implemented a RHC policy, for-

mulating it as a convex optimization problem. We then used

CVXGEN to generate high-speed solvers specific to those

problems, and demonstrated typical results. In situations like

these, automatic code generation and RHC combine to make

a control system designer’s job easy and efficient. Significant

performance improvements are possible as well.
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