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A Certainty Equivalent Merton Problem
Nicholas Moehle and Stephen Boyd , Fellow, IEEE

Abstract—The Merton problem is the well-known
stochastic control problem of choosing consumption over
time, as well as an investment mix, to maximize expected
constant relative risk aversion (CRRA) utility of consump-
tion. Merton formulated the problem and provided an ana-
lytical solution in 1970; since then a number of extensions
of the original formulation have been solved. In this note we
identify a certainty equivalent problem, i.e., a deterministic
optimal control problem with the same optimal value func-
tion and optimal policy, for the base Merton problem, as
well as a number of extensions. When time is discretized,
the certainty equivalent problem becomes a second-order
cone program (SOCP), readily formulated and solved using
domain specific languages for convex optimization. This
makes it a good starting point for model predictive control,
a policy that can handle extensions that are either too cum-
bersome or impossible to handle exactly using standard
dynamic programming methods.

Index Terms—Finance, stochastic optimal control,
optimization, predictive control for linear systems.

I. INTRODUCTION

WE REVISIT Merton’s seminal 1970 formulation (and
solution) of the consumption and investment decisions

of an individual investor. We present a formulation of Merton’s
problem as a deterministic convex optimal control problem,
and in particular, a second-order cone program (SOCP) when
time is discretized. Even though the Merton problem was first
solved more than 50 years ago, its reformulation as a deter-
ministic convex optimization problem provides fresh insight
into the solution of the stochastic problem that may be use-
ful for formulating other multiperiod investment problems as
convex optimization problems.

We also see two practical advantages to the certainty equiva-
lent formulation. First, for extensions of the Merton problem for
which a solution is known, working out the optimal policy can
be complex and error prone. To handle these extensions with the
certainty equivalent form, we simply add the appropriate terms
to the objective or constraints, to obtain the optimal policy.
The problem specification is straightforward and transparent,
especially when expressed in a domain specific language (DSL)
for convex optimization, such as cvxpy [1].
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The second and perhaps more significant advantage is that
the certainty equivalent problem can be used as a start-
ing point for further extensions of the Merton problem, for
which no closed-form solutions are known. In this case,
the certainty equivalence property is lost, and solving the
deterministic problem no longer solves the corresponding
stochastic problem exactly. We can, however, still use model
predictive control (MPC), a method that involves online
convex optimization, to develop a policy that handles the
extension. MPC policies are simple, easy to implement, fully
interpretable, and have excellent (if not always optimal)
practical performance.

A. Previous Work

1) Merton’s Problem: Merton’s consumption–investment
problem dates back to his original 1970 paper [2]. Many
extensions to the basic Merton problem exist, some of which
were covered in Merton’s original paper. (These include deter-
ministic income and general HARA utility.) Some proposed
extensions have a closed-form solution (e.g., life insurance
and annuities; see [3]), but most do not. We note that
many of these extensions individually lead to complicated
solutions, and deriving the optimal policy when several exten-
sions are combined may be very inconvenient for a practical
implementation.

2) Certainty Equivalence: Rarely, stochastic control prob-
lems have a certainty equivalent formulation, i.e., a determin-
istic optimal control problem with the same optimal policy.
The most famous example is the linear quadratic regulator
(LQR) problem, in which the dynamics are affine, driven by
additive noise, and the stage costs are convex quadratic [4],
[5, Sec. 3.1], [6, Sec. 3]. In this case, the certainty equivalent
problem is obtained by simply ignoring the stochastic noise
term. Many extensions to linear quadratic control also have a
certainty equivalent reformulation. Examples include the linear
quadratic Guassian problem, in which the state is imperfectly
observed [6, Sec. 5], and linear exponential quadratic regulator
(LEQR) problem, which uses a risk-sensitive cost function [7].
For the Merton problem, the certainty equivalent formulation
is similar to that of LEQR in that the uncertain quantity is
chosen adversarially. [7, Sec. 10.2]. (For the Merton problem,
the uncertain quantity is the investment returns.)

3) Model Predictive Control: In model predictive control,
unknown values of future parameters are replaced with esti-
mates or forecasts over a planning horizon extending from the
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current time to some time in the future, resulting in a deter-
ministic optimal control problem. This problem is solved, with
the result intrepretable as a plan of action over the planning
horizon. The MPC policy simply uses the current or first value
in the plan of action. This planning is repeated when updated
forecasts are available, using the updated forecasts and cur-
rent state. When applied in the context of stochastic control,
MPC policies are not optimal in general, but often exhibit
excellent practical performance, and are widely used in several
application areas. MPC is discussed in detail in [8].

While MPC has been used in practical applications for
decades, recent advances make it very attractive, and easy, to
develop and deploy. First, DSLs for convex optimization allow
the control policy to be expressed in a few lines of very sim-
ple and clear code, that express the dynamics, objective, and
constraints, which makes it easier to develop, debug, and main-
tain (for example by adding or updating a constraint). Code
generation systems such as cvxgen [9] can be used to gener-
ate low-level code that solves the specified problem, which is
suitable for use in high-speed embedded applications [10]. In
the context of this letter, this means that the MPC policy we
propose in Section VI can be very conveniently implemented.

4) Multi-Period Portfolio Optimization: It is instructive to
compare our certainty equivalent problem to popular for-
mulations of multi-period portfolio allocation (See [11] and
references therein). There are two features present in our cer-
tainty equivalent problem that we do not see in practical
multiperiod portfolio construction problems in the literature.

1) The risk term (which is quadratic in the dollar-valued
asset allocation vector xt), is normalized by the total
wealth wt, which is also is a decision variable. This risk
term is jointly convex in xt and wt (and is in fact SOCP
representable). With this normalization, risk preferences
are consistent even as the wealth wt changes over the
investment horizon.

2) The risk term is included as a penalty in the dynam-
ics, i.e., by taking more risk now, one should expect to
have lower wealth in the future. This contrasts with the
tradition of penalizing risk in the objective function.

We believe these to be valuable improvements to standard
multi-period portfolio construction formulations, especially in
cases when the control or optimization is over a very long
time period.

B. Outline

In Section II, we give the base Merton problem and
review its solution, for future reference. In Section III, we
give a certainty equivalent problem and prove equivalence.
In Section IV, we discuss several extensions to the Merton
problem, and show how each one changes the certainty equiv-
alent formulation. In Section VI, we discuss how to use the
certainty equivalent problem for model predictive control.

II. MERTON PROBLEM

In this section we discuss the Merton problem and its solu-
tion. To keep the proofs concise, we consider the most basic
form of this problem; extensions are considered in Section IV.

Our formulation is in continuous time and relies on stochastic
calculus. However, to maintain both brevity and accessibility,
we are cavalier about the technical details, with the assump-
tion that a sophisticated reader can fill in the gaps, or consult
other references.

a) Dynamics: An investor must choose how to invest and
consume over a lifetime of T years. The investor has wealth
wt > 0 at time t, and consumes wealth at rate ct > 0, for t ∈
[0, T], with the remaining wealth invested in a portfolio with
mean rate of return μt and volatility σt. The wealth dynamics
are a geometric random walk,

dwt = (μtwt − ct)dt + σtwt dzt,

where zt is a Brownian motion. The initial condition is w0 =
winit > 0.

b) Investment portfolio: The portfolio consists of n assets,
with an investment mix given by the fractional allocation θt,
with 1Tθt = 1 (where 1 is the vector with all entries one). Thus
we invest (wtθt)i dollars in asset i, with a negative value denot-
ing a short position. The portfolio return rate and volatility are
given by

μt = μTθt, σt = (θT
t �θt)

1/2,

where μ ∈ Rn is the mean of the return process, and � is
the symmetric positive definite covariance. (Note that we use
the time-varying scalar μt to denote the portfolio return as
a function of time, and the vector μ to denote the constant
expected return rates of the n assets.)

The investment allocation decision θt satisfies 1Tθt = 1,
as well as other investment constraints, which we summarize
as θt ∈ �, where � is a convex set. These could include risk
limits, sector exposure limits, or concentration limits. (See [11,
Sec. 4.4] for an overview of convex investment constraints.)
For notational convenience, we assume every θt ∈ � satisfies
1Tθt = 1.

With the portfolio return and volatility we obtain the wealth
dynamics

dwt = (μTθtwt − ct)dt + (
θT

t �tθt
)1/2

wt dzt. (1)

c) Utility: The investor has lifetime consumption utility∫ T
0 cγ

t /γ dt and bequest utility wγ
T/γ . (The bequest utility

encodes the utility from leaving wealth to heirs upon death
at time T .) The risk aversion parameter γ satisfies γ < 1 and
γ �= 0. The investor’s total expected utility is

U = E
(

β

γ
wγ

T +
∫ T

0

1

γ
cγ

t dt

)
. (2)

The parameter β > 0 trades off consumption and bequest
utility.

d) Stochastic control problem: At each time t, the investor
chooses the consumption ct and the investment allocation θt.
A policy maps the time t and the current wealth wt to the
consumption ct and the allocation θt, which we write as

(ct, θt) = πt(wt), (3)

where for each t ∈ [0, T], πt : R++ → R++ × �. (Here R++
denotes the set of positive real numbers.) The Merton problem
is to choose a policy πt, t ∈ [0, T], to maximize U.
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A. Solution via Dynamic Programming

We review here the solution of the Merton problem via
dynamic programming, for completeness and also for future
reference.

a) Value function: The value function Vt : R++ → R, for
t ∈ [0, T], is defined as

Vt(w) = E
(

β

γ
wγ

T +
∫ T

t

1

γ
cγ
τ dτ

)
,

with cτ and θτ following an optimal policy for τ ∈ [t, T], and
initial condition wt = w. We define VT(w) = (β/γ )wγ for
w > 0.

If the value function is sufficiently smooth, it satisfies the
Hamilton-Jacobi-Bellman PDE

− V̇t(w) = sup
c,θ∈�

(
1

γ
cγ + V ′

t (w)(μTθw − c)

+ 1

2
V ′′

t (w)(θT�θ)w2
)

(4)

for w > 0. (See [12, Ch. 5, Th. 5.1].)
Conversely, any function satisfying (4) and the terminal con-

dition VT = (β/γ )wγ is the value function (See [12, Ch. 5,
Th. 5.1]). Here V̇t denotes the partial derivative of V with
respect to time, and V ′

t and V ′′
t denote the first and second

partial derivatives with respect to the wealth.
As we will prove below, the value function for the Merton

problem is

Vt(w) = at
wγ

γ
, (5)

where at is a function of time. To obtain at, we first solve a
Markowitz portfolio allocation problem,

maximize μTθ + γ − 1

2
θT�θ

subject to θ ∈ �, (6)

with variable θ . (Since γ −1 < 0, the second term is a concave
risk adjustment.) We let rce denote the optimal value, and we
denote the solution as θce. We then have, for t ∈ [0, T],

at =
(

1 − γ

γ rce

(
1 − C exp

(
γ rce

1 − γ
(T − t)

)))1−γ

, (7)

where C = 1 − γ rceβ
1/(1−γ )/(1 − γ ).

b) Optimal policy: The optimal policy can be expressed in
terms of the value function as

π

t (w) = (ct, θt)

= argmax
c,θ∈�

(
1

γ
cγ + V ′

t (w)(μTθw − c)

+ 1

2
V ′′

t (w)(θT�θ)w2
)

.

With the value function (5), we obtain the following optimal
policy. The consumption has the simple form

ct = a1/(γ−1)
t wt,

and the optimal investment mix is constant over time,

θt = θce.

(In extensions of the Merton problem, described below, the
optimal investment mix is not constant over time.)

c) Proof of optimality: Here we show that the function (5)
satisfies the Hamilton-Jacobi-Bellman PDE. (This result is due
to Merton [2].) To do this, first we substitute V̇ , V ′

t and V ′′
t

into (4) to obtain

−ȧt
wγ

γ
= sup

c,θ∈�

(
1

γ
cγ + atw

γ−1(μTθw − c)

+1

2
at(γ − 1)wγ−2(θT�θ)w2

)
.

By pulling out wγ−1 from the last two terms and simplifying,
we obtain

−ȧt
wγ

γ

= sup
c,θ∈�

(
1

γ
cγ + atw

γ−1
((

μTθ + γ − 1

2
θT�θ

)
w − c

))
.

(8)

The maximizing θ is the solution θce to problem (6). The
quantity in the inner parantheses of (8) is the optimal value
rce of this problem, which can be intrepreted as the certainty
equivalent return. We now have

−ȧt
wγ

γ
= sup

c

(
1

γ
cγ + βtw

γ−1(rcew − c)

)
.

The supremum over c is obtained for c = a1/(γ−1)
t w.

Substituting in this value and simplifying, we obtain

−ȧt = (1 − γ )aγ /(γ−1)
t + γ atrce.

It can be verified that the definition of at in (7) is indeed a
solution to this differential equation with terminal condition
aT = β.

III. CERTAINTY EQUIVALENT PROBLEM

In this section we present a deterministic convex optimal
control problem that is equivalent to the Merton problem in
the sense that it has the same value function and same optimal
policy.

This certainty equivalent problem is

maximize
β

γ
wγ

T +
∫ T

0

1

γ
cγ

t dt

subjectto ẇt ≤ μTxt − ct + (γ − 1)

2

xT
t �xt

wt
, t ∈ [0, T]

xt/wt ∈ �, t ∈ [0, T]

w0 = winit. (9)

The variables are the consumption ct : [0, T] → R++, wealth
wt : [0, T] → R++, and xt : [0, T] → Rn, which is the dollar-
valued allocation of wealth to each asset. (In the notation of
Section II, we have xt = wtθt, and θt = xt/wt.) Note that the
constraint xt/wt ∈ � implies 1Txt = wt, i.e., the total wealth
is the sum of the dollar-valued asset allocations.

The objective is the lifetime utility, but without expectation
since this problem is deterministic. The first constraint resem-
bles the dynamics of the stochastic process (1), and we call
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this the dynamics constraint. We will see that for any solu-
tion to (9), this inequality constraint holds with equality, in
which case the dynamics constraint becomes a (deterministic)
ODE. (When constraint is changed to an equality, however,
the problem is not convex.)

a) Interpretation: The problem can be interpreted in the
following way. We plan for a single outcome of the stochastic
process (1). In particular, the dynamics constraint restricts the
growth rate of the wealth to be no greater than the μTxt −
ct (the mean growth rate in the stochastic process (1)), but
reduced by the additional term (1/2)(γ −1)xT

t �xt/wt. Because
γ < 1, this term is negative. With the change of variables
θt = xt/wt, we have

xT
t �xt

wt
= wtθ

T
t �θt,

i.e., this adjustment term is proportional to the variance of the
portfolio growth rate with investment allocation θt = xt/wt. In
other words, we are pessimistically planning for bad invest-
ment returns, with the degree of pessimism depending on the
risk aversion parameter γ and the risk of our portfolio.

In fact, in problem (9), we plan for the returns

rt = μ + γ − 1

2wt
�xt = μ + γ − 1

2
�θt.

The coefficients in front of �xt and �θt are negative, and the
entries of �xt and �θt are typically positive. The vector �θt

can be interpreted as the risk allocation to the individual assets
in the portfolio, since

θT
t �θt =

n∑

i=1

(θt)i(�θt)i.

In other words, the planned asset returns are the mean returns,
reduced in proportion to the marginal contribution of each
asset to the portfolio variance. This is related to the concept
of risk parity [13].

b) Convexity: Convexity of (9) follows from the fact that the
risk penalty term xT

t �xt/wt is a quadratic-over-linear function,
with is jointly convex in xt and wt [14, Sec. 3.1.5]. Also, the
set

{
(xt, wt) ∈ Rn × R++ | xt/wt ∈ �

}

is the perspective of �, which is convex when � is
[14, Sec. 2.3.3]. In fact, in most practical portfolio construc-
tion problems, � can described by a collection of linear
and quadratic constraints [11, Sec. 4.4]. In this case, when
problem (9) is discretized, it becomes an SOCP, which we
describe in Section VII.

c) Equivalence to Merton problem: The Merton problem
and problem (9) are equivalent in the sense that they have the
same value function and optimal policy.

To see this, we first consider a modified version of (9) in
which we convert the dynamics to an equality constraint using
a slack variable ut ≥ 0:

ẇt = μTxt − ct + (γ − 1)

2

xT
t �xt

wt
+ ut.

The new control input ut can be interpreted as the rate at
which we discard wealth. (We will see that at optimality ut =
0.) For this modified problem, the Hamilton-Jacobi-Bellman
equation is

−V̇(w) = sup
c,x∈w�,u≥0

(
1

γ
cγ + V ′

t (w)

((
μT x + γ − 1

2w
xT�x

)
w − c − u

))
.

First note that with our value function candidate (5), we have
V ′(w) > 0, and therefore u = 0, as expected. Now, by using
the change of variables x = θw and plugging in our value
function candidate, this equation becomes (8). From this point
on, the proof that this candidate value function satisfies the
Hamilton-Jacobi-Bellman equation proceeds exactly as for the
(stochastic) Merton problem.

IV. EXACT EXTENSIONS

Here we consider several extensions to the Merton problem,
all of which are known in the literature and have closed-
form solutions. For each one, we describe how to modify
problem (9) to maintain the certainty-equivalence property.

a) Time-varying parameters: The Merton problem can be
solved when μ, �, and � change over time. To handle this
in the certainty equivalent problem, we simply replace these
parameters by μt, �t, and �t. (Here μt denotes the time-
varying vector of asset expected returns, a slight notation clash
with our previous use of μt as the scalar portfolio expected
return.) Similarly, if we discount the consumption utility of
the Merton problem:

U = E
(

β

γ
wγ

T +
∫ T

0

αt

γ
cγ

t dt

)
(10)

where αt > 0 is the discount of the consumption utility at
time t, then the objective of the certainty equivalent problem
will change to match (10) (but without the expectation).

b) Uncertain mortality: Here the terminal time tf ∈ [0, T]
is random with probability density pt and survival function

st = Prob(tf > t) =
∫ T

t
pt dt.

In this case, the investor’s utility is

U = E
(

β

γ
wγ

tf +
∫ tf

0

1

γ
cγ

t dt

)
.

Here the expectation is taken over tf as well as the paths of
the stochastic process (1).

With this modification, the objective of the certainty equiv-
alent problem changes to

∫ T

0

(
ptβ

γ
wγ

t + st

γ
cγ

t

)
dt.

We weight the consumption utility by the probability the
investor is still alive, i.e., we treat the survival function as a
discount factor. We also get utility for the bequest continuously
over the interval [0, T], weighted by the density function pt.

c) Annuities and life insurance: This extension is due to [1].
Continuing with the previous extension, we allow the investor
to purchase life insurance. The premium is lt, which the
investor can choose, and the payout of the plan is λtlt, where
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λt ≥ 0 is the payout-to-premium ratio at time t. When lt < 0,
we interpret this as an annuity. In particular, at time t, the
investor has −lt in the annuity account, which is lost on death,
in return for an additional return of −λtlt. The actuarially fair
value of λt is pt/st, which is called the force of mortality. (If
λt > pt/st, then life insurance is favorable and annuities are
unfavorable; if λt < pt/st, the reverse is true.)

With this modification, the objective of the certainty-
equivalant problem changes to

U =
∫ T

0

(
ptβ

γ
(wt + λtlt)

γ + st

γ
cγ

t

)
dt,

i.e., we add the insurance payout to the wealth in the bequest
utility. The dynamics change to

ẇt ≤ μTxt − ct − lt + (γ − 1)

2

xT
t �xt

wt
.

Here we subtract the insurance premium from the growth rate
of the wealth.

V. INEXACT EXTENSIONS

Here we discuss several extensions of problem (9) that
(to our knowledge) do not exactly solve any version of the
Merton problem. Some of these build on the exact extensions
of Section IV.

a) Modified utility: We can change the objective of (9) to use
any increasing, concave utility function for either consump-
tion or bequest. These utility functions need not be additive
over time. For example, we can maximize the minimum
consumption over the interval [0, T].

As a special case, we can add a minimum consumption
constraint

ct ≥ cmin
t ,

where cmin
t is the minimum allowable consumption amount

as a function of age. Similarly, we can enforce a minimum
bequest over some time window (say, to care for underage
dependents until they come of age).

b) Spending limit: We can limit consumption as a fraction
of income with the constraint

ct ≤ ηyt

for some parameter η > 0. For example, when η = 0.7, this
constraint means that we can’t consume more than 70% of our
income, i.e., we must have a savings rate of 30%.

This constraint can be adjusted to account for investment
income. To see this, take d ∈ Rn to be the vector of dividend
yields for each asset, which is constant and known in advance.
The modified constraint becomes

ct ≤ ηyt + dTxt.

When this constraint is tight, i.e., when we desire to consume
more than η times our income, there is added incentive to
invest in assets with high dividend yield.

c) Minimum cash balance: We can include a constraint that
the amount invested in cash be above a certain level, i.e.,

(xt)i ≥ (xmin
t )i,

where i is the index of the cash asset. This is similar to an
emergency fund constraint that we must keep six months worth
of consumption in cash, which is expressed as

(xt)i ≥ 0.5ct.

VI. APPLICATION TO MODEL PREDICTIVE CONTROL

Model predictive control is a technique for stochastic control
problems that leverages a deterministic approximation of the
stochastic problem. To evaluate an MPC policy, we first solve
this determistic problem to obtain a planned trajectory for the
state and control input over the planning horizon. We then
implement only the first control input in this plan, and rest of
the planned trajectory is discarded. To obtain future control
inputs, the policy is evaluated again, which requires solving a
new deterministic problem.

In the context of the Merton problem, the certainty equiva-
lent problem is used as a basis for a simple model predictive
control policy, which we denote π

mpc
t . We first define this

policy when t = 0, with initial wealth w0. We start by
solving the deterministic control problem (9) to obtain the
optimal trajectories ct and θt. The MPC policy then takes
π

mpc
0 (w0) = (c0, θ0). To define the MPC policy for t ∈ (0, T),

we first form a new instance of problem (9), which is defined
over the interval [t, T] and has initial wealth wt. Once again
we solve the deterministic optimal control problem (9), to
obtain optimal cτ and θτ over the interval τ ∈ [t, T]. We then
take π

mpc
t (wt) = (ct, θt). Evaluating the MPC policy there-

fore always requires solving a deterministic optimal control
problem of the form (9).

MPC is a convenient way to implement the optimal policy
for the basic problem or any of the extensions of Section IV. In
those cases, the MPC policy is optimal. When MPC is applied
with constraints and an objective that do not correspond to any
version of Merton problem, the MPC policy is a sophisticated
heuristic, and very useful in practice.

VII. DISCRETIZED PROBLEM

Here we show how to discretize problem (9), e.g., for use
in MPC. We do this for the basic problem only, but note that
the extensions can be handled similarly.

We let xk denote the value of xt in (9) at time t = hk,
k = 0, . . . , K, where h = T/K is the discretization interval.
(We index x with the subscript k to denote the discretized vari-
able, and index with t to denote the continuous variable.) We
similarly define the discretized variables ck and wk. Replacing
the time derivative ẇt with the forward Euler approximation
(wk+1 − wk)/h, and replacing the integral in the objective
with a Riemann sum approximation, we obtain the discretized
problem

maximize
β

γ
wγ

T +
K−1∑

k=0

h

γ
cγ

k

subject to
wk+1 − wk

h
≤ μTxk − ck + (γ − 1)

2

xT
k �xk

wk
xk/wk ∈ �

w0 = winit. (11)
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Listing 1. An implementation of the discretized certainty equivalent
problem (11) using cvxpy.

The variables are xk ∈ Rn and wk ∈ R++ for k = 0, . . . , K
and ck ∈ R++ for k = 0, . . . , K − 1. The first constraint
holds for k = 0, . . . , K − 1, and the second constraint holds
for k = 0, . . . , K. All of the extensions (exact and inexact)
discussed above can be discretized as well, but we do not
give the details here.

The discretized certainty equivalent problem (11) is a (finite-
dimensional) convex optimization problem, and can therefore
be easily expressed in a domain-specific language for con-
vex optimization, such as cvxpy. As an example, we give
a cvxpy implementation of (11) in Listing 1 when � is
given by

� = {θ | 1Tθ = 1}. (12)

For most practical portfolio construction problems, � is
SOCP representable, which means that problem (11) is an
SOCP [15]. To see this, note that the power utility cγ

k and the
quadratic-over-linear functions are SOCP representable; see
[16, Sec. 2.2.f] and [15, Sec. 2.4], respectively. The perspec-
tive of � can be represented using the same cones used to
represent � [17, Sec. 2].

To give some idea of the speed at which current solvers
can solve the discretized problem (11) (and its extensions),

consider a problem with n = 500 assets, K = 50 periods,
and covariance matrix � given as a typical factor model, with
25 factors. This problem has more than 100000 optimization
variables. With just a small modification of the code given in
Listing 1 to exploit the low rank plus diagonal structure of the
covariance matrix, the open-source solver ECOS [18] solves
the problem in around two seconds, on a single thread.
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