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Easy and Hard Problems



Least squares (LS)

minimize ‖Ax − b‖2
2

A ∈ Rm×n, b ∈ Rm are parameters; x ∈ Rn is variable

• have complete theory (existence & uniqueness, sensitivity analysis . . . )

• several algorithms compute (global) solution reliably

• can solve dense problems with n = 1000 vbles, m = 10000 terms

• by exploiting structure (e.g., sparsity) can solve far larger problems

. . . LS is a (widely used) technology
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Linear program (LP)

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

c, ai ∈ Rn are parameters; x ∈ Rn is variable

• have nearly complete theory
(existence & uniqueness, sensitivity analysis . . . )

• several algorithms compute (global) solution reliably

• can solve dense problems with n = 1000 vbles, m = 10000 constraints

• by exploiting structure (e.g., sparsity) can solve far larger problems

. . . LP is a (widely used) technology
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Quadratic program (QP)

minimize ‖Fx − g‖2
2

subject to aT
i x ≤ bi, i = 1, . . . , m

• a combination of LS & LP

• same story . . . QP is a technology

• solution methods reliable enough to be embedded in real-time
control applications with little or no human oversight

• basis of model predictive control
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The bad news

• LS, LP, and QP are exceptions

• most optimization problems, even some very simple looking ones, are
intractable
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Polynomial minimization

minimize p(x)

p is polynomial of degree d; x ∈ Rn is variable

• except for special cases (e.g., d = 2) this is a very difficult problem

• even sparse problems with size n = 20, d = 10 are essentially intractable

• all algorithms known to solve this problem require effort exponential in n
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What makes a problem easy or hard?

classical view:

• linear is easy

• nonlinear is hard(er)
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What makes a problem easy or hard?

emerging (and correct) view:

. . . the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.

— R. Rockafellar, SIAM Review 1993
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Convex optimization

minimize f0(x)
subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

x ∈ Rn is optimization variable; fi : Rn → R are convex:

fi(λx + (1 − λ)y) ≤ λfi(x) + (1 − λ)fi(y)

for all x, y, 0 ≤ λ ≤ 1

• includes LS, LP, QP, and many others

• like LS, LP, and QP, convex problems are fundamentally tractable
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Example: Robust LP

minimize cTx
subject to Prob(aT

i x ≤ bi) ≥ η, i = 1, . . . , m

coefficient vectors ai IID, N (ai,Σi); η is required reliability

• for fixed x, aT
i x is N (aT

i x, xTΣix)

• so for η = 50%, robust LP reduces to LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , m

and so is easily solved

• what about other values of η, e.g., η = 10%? η = 90%?
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Hint

{x | Prob(aT
i x ≤ bi) ≥ η, i = 1, . . . , m}

η = 10% η = 50% η = 90%
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That’s right

robust LP with reliability η = 90% is convex, and very easily solved

robust LP with reliability η = 10% is not convex, and extremely difficult

moral: very difficult and very easy problems can look quite similar
(to the untrained eye)
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Convex Analysis and Optimization



Convex analysis & optimization

nice properties of convex optimization problems known since 1960s

• local solutions are global

• duality theory, optimality conditions

• simple solution methods like alternating projections

convex analysis well developed by 1970s Rockafellar

• separating & supporting hyperplanes

• subgradient calculus
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What’s new (since 1990 or so)

• primal-dual interior-point (IP) methods
extremely efficient, handle nonlinear large scale problems,
polynomial-time complexity results, software implementations

• new standard problem classes
generalizations of LP, with theory, algorithms, software

• extension to generalized inequalities
semidefinite, cone programming

. . . convex optimization is becoming a technology
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Applications and uses

• lots of applications
control, combinatorial optimization, signal processing,
circuit design, communications, . . .

• robust optimization
robust versions of LP, LS, other problems

• relaxations and randomization
provide bounds, heuristics for solving hard problems
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Recent history

• 1984–97: interior-point methods for LP

– 1984: Karmarkar’s interior-point LP method
– theory Ye, Renegar, Kojima, Todd, Monteiro, Roos, . . .
– practice Wright, Mehrotra, Vanderbei, Shanno, Lustig, . . .

• 1988: Nesterov & Nemirovsky’s self-concordance analysis

• 1989–: LMIs and semidefinite programming in control

• 1990–: semidefinite programming in combinatorial optimization
Alizadeh, Goemans, Williamson, Lovasz & Schrijver, Parrilo, . . .

• 1994: interior-point methods for nonlinear convex problems
Nesterov & Nemirovsky, Overton, Todd, Ye, Sturm, . . .

• 1997–: robust optimization Ben Tal, Nemirovsky, El Ghaoui, . . .
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New Standard Convex Problem Classes



Some new standard convex problem classes

• second-order cone program (SOCP)

• geometric program (GP) (and entropy problems)

• semidefinite program (SDP)

for these new problem classes we have

• complete duality theory, similar to LP

• good algorithms, and robust, reliable software

• wide variety of new applications
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Second-order cone program

second-order cone program (SOCP) has form

minimize cT
0 x

subject to ‖Aix + bi‖2 ≤ cT
i x + di, i = 1, . . . , m

with variable x ∈ Rn

• includes LP and QP as special cases

• nondifferentiable when Aix + bi = 0

• new IP methods can solve (almost) as fast as LPs
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Example: robust linear program

minimize cTx
subject to Prob(aT

i x ≤ bi) ≥ η, i = 1, . . . , m

where ai ∼ N (āi,Σi)

equivalent to

minimize cTx

subject to āT
i x + Φ−1(η)‖Σ1/2

i x‖2 ≤ 1, i = 1, . . . , m

where Φ is (unit) normal CDF

robust LP is an SOCP for η ≥ 0.5 (Φ(η) ≥ 0)
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Geometric program (GP)

log-sum-exp function:

lse(x) = log (ex1 + · · · + exn)

. . . a smooth convex approximation of the max function

geometric program:

minimize lse(A0x + b0)
subject to lse(Aix + bi) ≤ 0, i = 1, . . . , m

Ai ∈ Rmi×n, bi ∈ Rmi; variable x ∈ Rn
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Entropy problems

unnormalized negative entropy is convex function

− entr(x) =
n∑

i=1

xi log(xi/1Tx)

defined for xi ≥ 0, 1Tx > 0

entropy problem:

minimize − entr(A0x + b0)
subject to − entr(Aix + bi) ≤ 0, i = 1, . . . , m

Ai ∈ Rmi×n, bi ∈ Rmi
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Solving GPs (and entropy problems)

• GP and entropy problems are duals (if we solve one, we solve the other)

• new IP methods can solve large scale GPs (and entropy problems)
almost as fast as LPs

• applications in many areas:

– information theory, statistics
– communications, wireless power control
– digital and analog circuit design
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CMOS analog/mixed-signal circuit design via GP

given

• circuit cell: opamp, PLL, D/A, A/D, SC filter, . . .

• specs: power, area, bandwidth, nonlinearity, settling time, . . .

• IC fabrication process: TSMC 0.18µm mixed-signal, . . .

find

• electronic design: device L & W , bias I & V , component values, . . .

• physical design: placement, layout, routing, GDSII, . . .
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The challenges

• complex, multivariable, highly nonlinear problem

• dominating issue: robustness to

– model errors
– parameter variation
– unmodeled dynamics

(sound familiar?)
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Two-stage op-amp

M1 M2

M3 M4

M5

M6

M7M8

Ibias

Vdd

Vss

CL

CcRc

Vin+ Vin−

• design variables: device lengths & widths, component values

• constraints/objectives: power, area, bandwidth, gain, noise, slew rate,
output swing, . . .
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Op-amp design via GP

• express design problem as GP
(using change of variables, and a few good approximations . . . )

• 10s of vbles, 100s of constraints; solution time ¿ 1sec

robust version:

• take 10 (or so) different parameter values (‘PVT corners’)

• replicate all constraints for each parameter value

• get 100 vbles, 1000 constraints; solution time ≈ 2sec
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Minimum noise versus power & BW
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Cone Programming



Cone programming

general cone program:

minimize cTx
subject to Ax ¹K b

• generalized inequality Ax ¹K b means b − Ax ∈ K, a proper convex
cone

• LP, QP, SOCP, GP can be expressed as cone programs
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Semidefinite program

semidefinite program (SDP):

minimize cTx
subject to x1A1 + · · · + xnAn ¹ B

B, Ai are symmetric matrices; variable is x ∈ Rn

• constraint is linear matrix inequality (LMI)

• inequality is matrix inequality, i.e., K is positive semidefinite cone

• SDP is special case of cone program
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Early SDP applications

(around 1990 on)

• control (many)

• combinatorial optimization & graph theory (many)
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More recent SDP applications

• structural optimization: Ben-Tal, Nemirovsky, Kocvara, Bendsoe, . . .

• signal processing: Vandenberghe, Stoica, Lorenz, Davidson, Shaked,
Nguyen, Luo, Sturm, Balakrishnan, Saadat, Fu, de Souza, . . .

• circuit design: El Gamal, Vandenberghe, Boyd, Yun, . . .

• algebraic geometry:
Parrilo, Sturmfels, Lasserre, de Klerk, Pressman, Pasechnik, . . .

• communications and information theory:
Rasmussen, Rains, Abdi, Moulines, . . .

• quantum computing:
Kitaev, Waltrous, Doherty, Parrilo, Spedalieri, Rains, . . .

• finance: Iyengar, Goldfarb, . . .
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Convex optimization heirarchy

convex problems

cone problems

SDP

SOCP GP

LPQP

LS

more general

more specific
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Relaxations & Randomization



Relaxations & randomization

convex optimization is increasingly used

• to find good bounds for hard (i.e., nonconvex) problems, via relaxation

• as a heuristic for finding good suboptimal points, often via
randomization
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Example: Boolean least-squares

Boolean least-squares problem:

minimize ‖Ax − b‖2

subject to x2
i = 1, i = 1, . . . , n

• basic problem in digital communications

• could check all 2n possible values of x . . .

• an NP-hard problem, and very hard in practice

• many heuristics for approximate solution
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Boolean least-squares as matrix problem

‖Ax − b‖2 = xTATAx − 2bTAx + bT b

= TrATAX − 2bTATx + bT b

where X = xxT

hence can express BLS as

minimize TrATAX − 2bTAx + bT b
subject to Xii = 1, X º xxT , rank(X) = 1

. . . still a very hard problem
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SDP relaxation for BLS

ignore rank one constraint, and use

X º xxT ⇐⇒
[

X x
xT 1

]
º 0

to obtain SDP relaxation (with variables X, x)

minimize TrATAX − 2bTATx + bT b

subject to Xii = 1,

[
X x
xT 1

]
º 0

• optimal value of SDP gives lower bound for BLS

• if optimal matrix is rank one, we’re done
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Interpretation via randomization

• can think of variables X, x in SDP relaxation as defining a normal
distribution z ∼ N (x, X − xxT ), with E z2

i = 1

• SDP objective is E ‖Az − b‖2

suggests randomized method for BLS:

• find X?, x?, optimal for SDP relaxation

• generate z from N (x?, X? − x?x?T )

• take x = sgn(z) as approximate solution of BLS
(can repeat many times and take best one)

CDC 02 Las Vegas 12/11/02 36



Example

• (randomly chosen) parameters A ∈ R150×100, b ∈ R150

• x ∈ R100, so feasible set has 2100 ≈ 1030 points

LS approximate solution: minimize ‖Ax − b‖ s.t. ‖x‖2 = n, then round

yields objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

• best of 20 samples: 3.1% over SDP bound

• best of 1000 samples: 2.6% over SDP bound
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Interior-Point Methods



Interior-point methods

• handle linear and nonlinear convex problems Nesterov & Nemirovsky

• based on Newton’s method applied to ‘barrier’ functions that trap x in
interior of feasible region (hence the name IP)

• worst-case complexity theory: # Newton steps ∼ √
problem size

• in practice: # Newton steps between 10 & 50 (!)
— over wide range of problem dimensions, type, and data

• 1000 variables, 10000 constraints feasible on PC; far larger if structure
is exploited

• readily available (commercial and noncommercial) packages
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Typical convergence of IP method
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Typical effort versus problem dimensions

• LPs with n vbles, 2n
constraints

• 100 instances for each of
20 problem sizes

• avg & std dev shown
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Computational effort per Newton step

• Newton step effort dominated by solving linear equations to find
primal-dual search direction

• equations inherit structure from underlying problem

• equations same as for least-squares problem of similar size and structure

conclusion:

we can solve a convex problem with about the same effort as
solving 30 least-squares problems
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Problem structure

common types of structure:

• sparsity

• state structure

• Toeplitz, circulant, Hankel; displacement rank

• Kronecker, Lyapunov structure

• symmetry
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Exploiting sparsity

• well developed, since late 1970s

• direct (sparse factorizations) and iterative methods (CG, LSQR)

• standard in general purpose LP, QP, GP, SOCP implementations

• can solve problems with 105, 106 vbles, constraints
(depending on sparsity pattern)
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Exploiting structure in SDPs

in combinatorial optimization, major effort to exploit structure

• structure is mostly (extreme) sparsity

• IP methods and others (bundle methods) used

• problems with 10000 × 10000 LMIs, 10000 variables can be solved

Ye, Wolkowicz, Burer, Monteiro . . .
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Exploiting structure in SDPs

in control

• structure includes sparsity, Kronecker/Lyapunov

• substantial improvements in order, for particular problem classes

Balakrishnan & Vandenberghe, Hansson, Megretski, Parrilo, Rotea, Smith,
Vandenberghe & Boyd, Van Dooren, . . .

. . . but no general solution yet
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Conclusions



Conclusions

convex optimization

• theory fairly mature; practice has advanced tremendously last decade

• qualitatively different from general nonlinear programming

• becoming a technology like LS, LP (esp., new problem classes), reliable
enough for embedded applications

• cost only 30× more than least-squares, but far more expressive

• lots of applications still to be discovered
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Shameless promotion

Convex Optimization, Boyd & Vandenberghe

• to be published 2003

• good draft available at Stanford EE364 (UCLA EE236B) class web site
as course reader

CDC 02 Las Vegas 12/11/02 49


