Advances in Convex Optimization: Interior-point Methods, Cone Programming, and Applications

Stephen Boyd

Electrical Engineering Department Stanford University

(joint work with Lieven Vandenberghe, UCLA)

CDC 02 Las Vegas 12/11/02

Easy and Hard Problems

Least squares (LS)

minimize $||Ax - b||_2^2$

 $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$ are parameters; $x \in \mathbf{R}^n$ is variable

- have complete theory (existence & uniqueness, sensitivity analysis . . .)
- several algorithms compute (global) solution reliably
- can solve dense problems with $n=1000 \ {\rm vbles}, \ m=10000 \ {\rm terms}$
- by exploiting structure (e.g., sparsity) can solve far larger problems

... LS is a (widely used) technology

Linear program (LP)

minimize $c^T x$ subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

 $c, a_i \in \mathbf{R}^n$ are parameters; $x \in \mathbf{R}^n$ is variable

- have nearly complete theory (existence & uniqueness, sensitivity analysis . . .)
- several algorithms compute (global) solution reliably
- can solve dense problems with $n=1000 \ {\rm vbles}, \ m=10000 \ {\rm constraints}$
- by exploiting structure (e.g., sparsity) can solve far larger problems
- ... LP is a (widely used) technology

Quadratic program (QP)

minimize
$$||Fx - g||_2^2$$

subject to $a_i^T x \leq b_i$, $i = 1, \dots, m$

- $\bullet\,$ a combination of LS & LP
- same story . . . QP is a technology
- solution methods reliable enough to be embedded in real-time control applications with little or no human oversight
- basis of model predictive control

The bad news

- LS, LP, and QP are **exceptions**
- most optimization problems, even some very simple looking ones, are **intractable**

Polynomial minimization

minimize p(x)

p is polynomial of degree d; $x \in \mathbf{R}^n$ is variable

- except for special cases (e.g., d = 2) this is a very difficult problem
- even sparse problems with size n = 20, d = 10 are essentially intractable
- all algorithms known to solve this problem require effort exponential in n

What makes a problem easy or hard?

classical view:

- **linear** is easy
- **nonlinear** is hard(er)

What makes a problem easy or hard?

emerging (and correct) view:

... the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity.

- R. Rockafellar, SIAM Review 1993

Convex optimization

minimize
$$f_0(x)$$

subject to $f_1(x) \le 0, \dots, f_m(x) \le 0$

 $x \in \mathbf{R}^n$ is optimization variable; $f_i : \mathbf{R}^n \to \mathbf{R}$ are **convex**:

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$$

for all x, y, $0 \le \lambda \le 1$

- includes LS, LP, QP, and many others
- like LS, LP, and QP, convex problems are fundamentally tractable

Example: Robust LP

minimize $c^T x$ subject to $\mathbf{Prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

coefficient vectors a_i IID, $\mathcal{N}(\overline{a}_i, \Sigma_i)$; η is required reliability

- for fixed x, $a_i^T x$ is $\mathcal{N}(\overline{a}_i^T x, x^T \Sigma_i x)$
- so for $\eta=50\%,$ robust LP reduces to LP

minimize
$$c^T x$$

subject to $\overline{a}_i^T x \leq b_i$, $i = 1, \dots, m$

and so is easily solved

• what about other values of η , e.g., $\eta = 10\%$? $\eta = 90\%$?

Hint

 $\{x \mid \mathbf{Prob}(a_i^T x \le b_i) \ge \eta, \ i = 1, \dots, m\}$

That's right

robust LP with reliability $\eta = 90\%$ is convex, and **very easily solved**

robust LP with reliability $\eta = 10\%$ is not convex, and **extremely difficult**

moral: **very difficult** and **very easy** problems can look **quite similar** (to the untrained eye)

Convex Analysis and Optimization

Convex analysis & optimization

nice properties of convex optimization problems known since 1960s

- local solutions are global
- duality theory, optimality conditions
- simple solution methods like alternating projections

convex analysis well developed by 1970s Rockafellar

- separating & supporting hyperplanes
- subgradient calculus

What's new (since 1990 or so)

- primal-dual interior-point (IP) methods extremely efficient, handle nonlinear large scale problems, polynomial-time complexity results, software implementations
- new standard problem classes generalizations of LP, with theory, algorithms, software
- extension to generalized inequalities semidefinite, cone programming
- ... convex optimization is becoming a technology

Applications and uses

• lots of applications

control, combinatorial optimization, signal processing, circuit design, communications, . . .

- robust optimization robust versions of LP, LS, other problems
- relaxations and randomization provide bounds, heuristics for solving hard problems

Recent history

- 1984–97: interior-point methods for LP
 - 1984: Karmarkar's interior-point LP method
 - theory Ye, Renegar, Kojima, Todd, Monteiro, Roos, . . .
 - practice Wright, Mehrotra, Vanderbei, Shanno, Lustig, . . .
- 1988: Nesterov & Nemirovsky's self-concordance analysis
- 1989-: LMIs and semidefinite programming in control
- 1990–: semidefinite programming in combinatorial optimization *Alizadeh, Goemans, Williamson, Lovasz & Schrijver, Parrilo, . . .*
- 1994: interior-point methods for nonlinear convex problems Nesterov & Nemirovsky, Overton, Todd, Ye, Sturm, . . .
- 1997-: robust optimization Ben Tal, Nemirovsky, El Ghaoui, . . .

New Standard Convex Problem Classes

Some new standard convex problem classes

- second-order cone program (SOCP)
- geometric program (GP) (and entropy problems)
- semidefinite program (SDP)

for these new problem classes we have

- complete duality theory, similar to LP
- good algorithms, and robust, reliable software
- wide variety of new applications

Second-order cone program

second-order cone program (SOCP) has form

 $\begin{array}{ll} \mbox{minimize} & c_0^T x \\ \mbox{subject to} & \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \dots, m \end{array}$

with variable $x \in \mathbf{R}^n$

- includes LP and QP as special cases
- nondifferentiable when $A_i x + b_i = 0$
- new IP methods can solve (almost) as fast as LPs

Example: robust linear program

minimize $c^T x$ subject to $\mathbf{Prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

where $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$

equivalent to

minimize $c^T x$ subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le 1, \quad i = 1, \dots, m$

where Φ is (unit) normal CDF robust LP is an SOCP for $\eta \ge 0.5$ ($\Phi(\eta) \ge 0$)

CDC 02 Las Vegas 12/11/02

Geometric program (GP)

log-sum-exp function:

$$\mathbf{lse}(x) = \log\left(e^{x_1} + \dots + e^{x_n}\right)$$

... a smooth **convex** approximation of the max function

geometric program:

minimize
$$\operatorname{lse}(A_0x + b_0)$$

subject to $\operatorname{lse}(A_ix + b_i) \leq 0, \quad i = 1, \dots, m$

 $A_i \in \mathbf{R}^{m_i \times n}$, $b_i \in \mathbf{R}^{m_i}$; variable $x \in \mathbf{R}^n$

Entropy problems

unnormalized negative entropy is convex function

$$-\operatorname{entr}(x) = \sum_{i=1}^{n} x_i \log(x_i/\mathbf{1}^T x)$$

defined for
$$x_i \ge 0$$
, $\mathbf{1}^T x > 0$

entropy problem:

minimize
$$-\operatorname{entr}(A_0x + b_0)$$

subject to $-\operatorname{entr}(A_ix + b_i) \le 0, \quad i = 1, \dots, m$

 $A_i \in \mathbf{R}^{m_i \times n}$, $b_i \in \mathbf{R}^{m_i}$

Solving GPs (and entropy problems)

- GP and entropy problems are **duals** (if we solve one, we solve the other)
- new IP methods can solve large scale GPs (and entropy problems) almost as fast as LPs
- applications in many areas:
 - information theory, statistics
 - communications, wireless power control
 - digital and analog circuit design

CMOS analog/mixed-signal circuit design via GP

given

- circuit cell: opamp, PLL, D/A, A/D, SC filter, . . .
- **specs**: *power*, *area*, *bandwidth*, *nonlinearity*, *settling time*, . . .
- IC fabrication process: *TSMC* 0.18µm mixed-signal, . . .

find

- electronic design: device L & W, bias I & V, component values, . . .
- physical design: placement, layout, routing, GDSII, . . .

The challenges

- complex, multivariable, highly nonlinear problem
- dominating issue: robustness to
 - model errors
 - parameter variation
 - unmodeled dynamics

(sound familiar?)

- **design variables:** *device lengths & widths, component values*
- **constraints/objectives**: *power*, *area*, *bandwidth*, *gain*, *noise*, *slew rate*, *output swing*, . . .

Op-amp design via GP

- express design problem as GP (using change of variables, and a few good approximations . . .)
- 10s of vbles, 100s of constraints; solution time $\ll 1 \text{sec}$

robust version:

- take 10 (or so) different parameter values ('PVT corners')
- replicate all constraints for each parameter value
- get 100 vbles, 1000 constraints; solution time $\approx 2 {\rm sec}$

Minimum noise versus power & BW

CDC 02 Las Vegas 12/11/02

Cone Programming

Cone programming

general cone program:

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \preceq_K b \end{array}$

- generalized inequality $Ax \preceq_K b$ means $b Ax \in K$, a proper convex cone
- LP, QP, SOCP, GP can be expressed as cone programs

Semidefinite program

semidefinite program (SDP):

minimize $c^T x$ subject to $x_1 A_1 + \dots + x_n A_n \preceq B$

 B, A_i are symmetric matrices; variable is $x \in \mathbf{R}^n$

- constraint is **linear matrix inequality** (LMI)
- inequality is matrix inequality, i.e., K is positive semidefinite cone
- SDP is special case of cone program

Early SDP applications

(around 1990 on)

- control (many)
- combinatorial optimization & graph theory (many)

More recent SDP applications

- structural optimization: Ben-Tal, Nemirovsky, Kocvara, Bendsoe, . . .
- signal processing: Vandenberghe, Stoica, Lorenz, Davidson, Shaked, Nguyen, Luo, Sturm, Balakrishnan, Saadat, Fu, de Souza, . . .
- circuit design: El Gamal, Vandenberghe, Boyd, Yun, . . .
- algebraic geometry: Parrilo, Sturmfels, Lasserre, de Klerk, Pressman, Pasechnik, . . .
- communications and information theory: *Rasmussen, Rains, Abdi, Moulines, . . .*
- quantum computing: *Kitaev, Waltrous, Doherty, Parrilo, Spedalieri, Rains, . . .*
- finance: Iyengar, Goldfarb, . . .

Convex optimization heirarchy

Relaxations & Randomization

Relaxations & randomization

convex optimization is increasingly used

- to find good bounds for hard (i.e., nonconvex) problems, via relaxation
- as a heuristic for finding good suboptimal points, often via **randomization**

Example: Boolean least-squares

Boolean least-squares problem:

minimize
$$||Ax - b||^2$$

subject to $x_i^2 = 1, \quad i = 1, \dots, n$

- basic problem in digital communications
- could check all 2^n possible values of $x \ldots$
- an NP-hard problem, and very hard in practice
- many heuristics for approximate solution

Boolean least-squares as matrix problem

$$||Ax - b||^2 = x^T A^T A x - 2b^T A x + b^T b$$

= $\mathbf{Tr} A^T A X - 2b^T A^T x + b^T b$

where $X = xx^T$

hence can express BLS as

minimize
$$\operatorname{Tr} A^T A X - 2b^T A x + b^T b$$

subject to $X_{ii} = 1, \quad X \succeq x x^T, \quad \operatorname{rank}(X) = 1$

. . . still a very hard problem

SDP relaxation for **BLS**

ignore rank one constraint, and use

$$X \succeq x x^T \iff \left[\begin{array}{cc} X & x \\ x^T & 1 \end{array} \right] \succeq 0$$

to obtain **SDP relaxation** (with variables X, x)

minimize
$$\operatorname{Tr} A^T A X - 2b^T A^T x + b^T b$$

subject to $X_{ii} = 1, \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$

- optimal value of SDP gives lower bound for BLS
- if optimal matrix is rank one, we're done

Interpretation via randomization

- can think of variables X, x in SDP relaxation as defining a normal distribution $z \sim \mathcal{N}(x, X xx^T)$, with $\mathbf{E} z_i^2 = 1$
- SDP objective is $\mathbf{E} \|Az b\|^2$

suggests randomized method for BLS:

- find X^{\star} , x^{\star} , optimal for SDP relaxation
- generate z from $\mathcal{N}(x^{\star}, X^{\star} x^{\star}x^{\star T})$
- take $x = \mathbf{sgn}(z)$ as approximate solution of BLS (can repeat many times and take best one)

Example

- (randomly chosen) parameters $A \in \mathbf{R}^{150 \times 100}$, $b \in \mathbf{R}^{150}$
- $x \in \mathbf{R}^{100}$, so feasible set has $2^{100} \approx 10^{30}$ points

LS approximate solution: minimize ||Ax - b|| s.t. $||x||^2 = n$, then round yields objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

- best of 20 samples: 3.1% over SDP bound
- best of 1000 samples: 2.6% over SDP bound

Interior-Point Methods

Interior-point methods

- handle linear and **nonlinear** convex problems *Nesterov & Nemirovsky*
- based on Newton's method applied to 'barrier' functions that trap x in **interior** of feasible region (hence the name IP)
- worst-case complexity theory: # Newton steps $\sim \sqrt{\text{problem size}}$
- in practice: # Newton steps between 10 & 50 (!)
 over wide range of problem dimensions, type, and data
- 1000 variables, 10000 constraints feasible on PC; far larger if structure is exploited
- readily available (commercial and noncommercial) packages

Typical convergence of IP method

Typical effort versus problem dimensions

- LPs with *n* vbles, 2*n* constraints
- 100 instances for each of 20 problem sizes
- avg & std dev shown

Computational effort per Newton step

- Newton step effort dominated by solving linear equations to find primal-dual search direction
- equations inherit structure from underlying problem
- equations same as for least-squares problem of similar size and structure

conclusion:

we can solve a **convex problem** with about the same effort as solving **30 least-squares problems**

Problem structure

common types of structure:

- sparsity
- state structure
- Toeplitz, circulant, Hankel; displacement rank
- Kronecker, Lyapunov structure
- symmetry

Exploiting sparsity

- well developed, since late 1970s
- direct (sparse factorizations) and iterative methods (CG, LSQR)
- standard in general purpose LP, QP, GP, SOCP implementations
- can solve problems with 10^5 , 10^6 vbles, constraints (depending on sparsity pattern)

Exploiting structure in SDPs

in combinatorial optimization, major effort to exploit structure

- structure is mostly (extreme) sparsity
- IP methods and others (bundle methods) used
- problems with 10000×10000 LMIs, 10000 variables can be solved

Ye, Wolkowicz, Burer, Monteiro . . .

Exploiting structure in SDPs

in **control**

- structure includes sparsity, Kronecker/Lyapunov
- substantial improvements in order, for particular problem classes

Balakrishnan & Vandenberghe, Hansson, Megretski, Parrilo, Rotea, Smith, Vandenberghe & Boyd, Van Dooren, . . .

... but no general solution yet

Conclusions

Conclusions

convex optimization

- theory fairly mature; practice has advanced tremendously last decade
- qualitatively different from general nonlinear programming
- becoming a technology like LS, LP (esp., new problem classes), reliable enough for embedded applications
- cost only $30 \times$ more than least-squares, but far more expressive
- lots of applications still to be discovered

Some references

- Semidefinite Programming, SIAM Review 1996
- Applications of Second-order Cone Programming, LAA 1999
- Linear Matrix Inequalities in System and Control Theory, SIAM 1994
- Interior-point Polynomial Algorithms in Convex Programming, SIAM 1994, Nesterov & Nemirovsky
- Lectures on Modern Convex Optimization, SIAM 2001, Ben Tal & Nemirovsky

Shameless promotion

Convex Optimization, Boyd & Vandenberghe

- to be published 2003
- good draft available at Stanford EE364 (UCLA EE236B) class web site as course reader