Math. C 1 Signals S 1989) 2: 207-219 .
at. Control Signals Systems {1969) Mathematics of Control,

Signals, and Systems

© 1989 Springer-Verlag New York inc.

A Bisection Method for Computing the H_, Norm of a
Transfer Matrix and Related Problems*

S. Boyd,t V. Balakrishnan,t and P. Kabambat

Abstract. We establish a correspondence between the singular values of a transfer
matrix evaluated along the imaginary axis and the imaginary eigenvalues of a
related Hamiltonian matrix. We give a simple linear algebraic proof, and alsc a
more intuitive explanation based on a certain indefinite quadratic optimal control
problem. This result yields a simple bisection algorithm to compute the H,, norm
of a transfer matrix. The bisection method is far more efficient than algorithms
which involve a search over frequencies, and the usual problems associated with
such methods (such as determining how fine the search should be) do not arise.
The method is readily extended to compute other quantities of system-theoretic
interest, for instance, the minimum dissipation of a transfer matrix. A variation of
the method can be used to solve the H,, Armijo line-search problem with no more
computation than is required to compute a single H,, norm.
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1. Preliminaries

Throughout this paper A4, B, C, D will be real matrices of sizes n x n,n x m, p x n,
and p x m, respectively. We refer to the linear dynamical system

X = Ax + Bu,
(1)
y=Cx+ Du
as the system {A, B, C, D}. We refer to H(s) = C(sI — A)™'B + D as the transfer
matrix of the system {4, B, C, D}.
A is stable means that all eigenvalues of A have negative real part. If A is stable,
we define the H,, norm of the transfer matrix H(s) to be
IH| o = SUp Omar(H(s) = SUP Ornax(H(jo)) @

Re s>0

where g,.,,(*) denotes the maximum singular value of a matrix, that is, 6, (F) =
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AyZ (F*F). The H,, norm of a transfer matrix arises often in control theory; indeed,
there has been considerable recent interest in designing controllers that minimize
the H,, norm of some closed-loop transfer matrix of a system (e.g., [ZF] and [V3]).
One important interpretation of ||H||,, is as the L, or RMS gain of the system (1)
(see, e.g., [BD]): whenever x, w, y satisfy (1), x(0) = 0, and T, > 0, we have

T T

f "y de < IHI f "ty ue) . 3)

o (]

Much research has focused on the numerical computation of these H_ optimal
controllers; nevertheless little attention has been paid to the relatively easier problem
of the numerical computation of ||H||, given the matrices A, B, C, and D. | H||, is
usually “computed” by searching for the maximum of o, (H(jw)) over we R.
Omax(H{ jw)) is computed for many values of w; a logarithmic spacing with, say, 20
points per decade over a range spanning five decades is common. Often a plot
(referred to as a singular-value or SV plot) is drawn from these computed values.
Obvious problems associated with such a method are (a) determining the range and
spacing of the frequencies to be checked, and (b) the large number of computations
involved (a singular-value decomposition (SVD} is often performed at each fre-
quency point). The problem (a) is particularly evident when A has eigenvalues
with small real part, as happens when (1) represents a lightly damped mechanical
structure,

Several techniques can substantially reduce the number of computations involved
in an SV plot. First, the transfer matrix can be evaluated using Laub’s method [L1]
for efficient computation of H{(s) for many values of s. Second, instead of computing
an entire SVD of each H( jw,) from scratch, a power method [GV] can be applied
to the Hermitian positive semidefinite matrix

|: 0 H(jwk):!
H(jw, ) 0

to compute its maximum eigenvalue, which is ¢2,,(H( jw,)). The previously com-
puted eigenvector of

0 H{jwy,_,)
H{jay_,)* 0

can be used as an initial vector for the power method. Still, computing a,,, (H( jw))
for many values of w requires considerable computation, and, as mentioned above,
there is no good way to know how well max, a,.,(H( jw,)) approximates |H|,.

We propose instead a bisection method inspired by Byers’ bisection method for
measuring the distance of a stable matrix to the set of unstable matrices [B2]. The
bisection method not only involves less computation, but has the advantage of
computing |H||, with a guaranteed accuracy.

2. Singular Values of a Transfer Matrix via a Hamiltonian Matrix

We start by establishing a connection between the singular values of the transfer
matrix and the imaginary eigenvalues of a certain Hamiltonian matrix. Let y > 0,
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and not a singular value of D. Define

A 0 B 0 =D 3y J'[C o
M, = r|t T T T
0 —4 0 —CT|| 31 -D 0 B
_[A—BR7'DTC —yBR™'BT
| yC'’ST'C —AT+ CTDRT'BY )
where R = (D'D — y*I)and § = (DD" — y2I). M, is a Hamiltonian matrix, meaning

(4)

0 I
JIIMJ = —M] where J=|: | 0:|.

The following theorem relates the singular values of H{jw) and the imaginary
eigenvalues of M.,

Theorem 1.  Assume A has no imaginary eigenvalues, y > O is not a singular value
of D, and wq € R. Then, y is a singular value of H( jw,) if and only if (M, — jwoI) is
singular.

Proof. Let y be a singular vaue of H{ jw,). Then we have a nonzero u such that

H(jwy)u = yu,

. (5)
H{jwg)*v = yu,
so that
(C(jwol — A)'B + D)u = yu,
T : Ty-1pT (6)
(BT (~jwol — ATYICT + DTYv = yu.
Define
r = (jwel — A)"'Bu,
(7}

s={—jwed — ATy !C"p.

Now solving for «# and v in terms of r and s,
ul [=D oI '[C O][r ®)
v| | yI -DT 0 BT||s]|
Note that (8) guarantees that
r 2 0
§ 0|

(jwel — A}r = Bu,
(—jwol — AT)s = C™v.

From (7)

9

From (8) and (9), we obtain

[ERRARA e P
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T A
H(s) | 7! |-+ H(-s)

Fig. 1. H, gain-normaiized closed-loop feedback system.

M[;:I — o, m ()

This proves one direction of Theorem 1.
Now we prove the converse. Suppose that M, has eigenvalue jay, that is, (10)

Thus

holds for some [r] # I:gj| Define u and v by equation (8); clearly, [uT vT] # 0.
s

Then from (8) and (10), we conclude (6}, which establishes that y is a singular value
of H(jw,). |

Remark 1. There are no observability, controllability, or stability conditions on
the system {4, B, C, D}.

Remark 2. Let us give an intuitive explanation of this theorem. Consider the
feedback system shown in Fig. 1. If y is a singular value of H(jw,), this system has
a nonzero solution of the form ue/o'_ If H(s) is the transfer matrix of {A, B, C, D}
then H(- s)" is the transfer matrix of { — A", — C”, B", D"}, and a realization of the
system above is

%] [A—BRT'DTC —yBR'BT x]_ap |
il 7| yCTsic — AT+ CTDRIBT || 4| T A
Thus we see that y is a singular value of H( jw,) if and only if M, has eigenvalue jo,.
Remark 3. 1t is often the case that D = 0, in which case M, has the simple form
A y*BBT
Mw=|:_},—1CTC _ 4T :| (12)
A simple consequence of Theorem 1 is

Theorem 2. Let A be stable and v > 6,,,,(D). Then ||H||, = v if and only if M, has
imaginary eigenvalues (i.e., at least one).

Proof. Since y > o0,,,(D) = lim, ., 6,..(H(jw)) and &, (H(jw}) is a continu-
ous function of w, we have ||H||,, >y if and only if there exists o, such that
Omax(H(jwo)) = y. Hence Theorem 2 follows immediately from Theorem 1. ]
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Remark 4. There is a connection between the H,, norm of H, the Hamiltonian
matrix M,, and the following indefinite quadratic optimal control problem:

min J:D (?uTu — yTy) dr. (13)
X = AX + Bu,
y = Cx + Du,
x(0)y = 0.
First, recail that
[HIZ = ma r YTy di (14)
1]

subjecttoX = Ax + Bu,y = Cx + Du,x(0) = 0,and |5 u"u dt < 1(see[DV]). Thus
we see that |H||,, > y implies that the minimum value of (13) is — o0, whereas if the
minimum value of (13) is greater than —co (and hence zero), we have |H|,, < 7.

The Hamiltonian matrix associated with the quadratic optimal control problem
(13) is simply M, (see [W]), and aside from some technical details, the condition
that the minimum value of (13) be finite is equivalent to M, not having any imaginary
eigenvalues.

Indeed, if M, has no imaginary eigenvalues then it can be put in the Schur form:

Q*M,Q = diaglAy.. ... Ay — iy =] + N,

where @ is unitary, N is strictly upper triangular, and Rei; < 0,i=1,...,n If we

partition Q as
_ Q. QO
¢- [Qﬂ sz]

(each Q,;is n x n), then it can be shown that P = Q,, Q{1 is symmetric and positive
definite, and the function ¥(x) = $x " Px satisfies

d
g Vo) < vuTu —yTy

whenever X = Ax + Bu, y = Cx + Du. Thus when x(0) = 0 and T, > 0 we have

Ty
uTu dr.

T; T,
J yTyde < y? f uTudt — V(x(T;)) < y? j

0 0 0
Along with (14), this provides another proof that if M, has no imaginary eigenvalues
then |H||, < 7.

Remark 5. Theorem 2 may also be derived from certain results of the 1960s
concerning spectral factorization, and so is known to several researchers,! though

! John Doyle, personal communication.
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we are unaware of its appearance in the literature. Specifically, we note that
| Hll.. < yiland only if the transfer matrix y2I - H(—s)"H(s) has a spectral factori-
zation [A], [F], that is, if there exists a transfer matrix G such that

721 — H(=$)TH(s) = G(—5)TG(s). (15)

Following [F], it can be shown that in attempting a spectral factorization of
v — H(—s)TH(s), M, arises naturally as a matrix similar to the system matrix of
the inverse system (y2] — H(—s)" H(s))™". The necessary and sufficient condition for
the spectral factorization [A] turns out to be the nonexistence of imaginary eigen-
values of M,.

Remark 6. If A is stable, then

B(A) = inf{6,,,(E) E € C"*" and A + E has imaginary eigenvalues}

is referred to as the distance to the nearest unstable matrix in the numerical analysis
literature [B2], [V2]. Note that

B(A) = inf inf{o,,.(E)|4 + E — jol is singular}
weR

Il

inf o, (A — jel)

we

-1
{SUP Omar((J02I — A)_l)} = ll(sI — A)7M "
we R

Thus B(A4)™" is simply the H_ norm of the resolvent of 4, and Theorem 2 yields
Byers’ result [B2],

plA) = inf{a

A ol o _
Cal — AT has imaginary eigenvalues >.

Remark 7. If A is not stable, but has no imaginary cigenvalues, then Theorem 2
remains true when the H, norm is replaced with the L, norm, where

“H”L, = sup Gmax(H(jw))-
we R

Remark 8. The imaginary eigenvalues of M, are exactly the frequencies for
which g, (H(jw)) = |H|,,.

Remark 9. M, has imaginary eigenvalues if and only if M} has real nonpositive
eigenvalues.
3. A Bisection Algorithm

Theorem 2 suggests a bisection algorithm for computing || H| . Let y,, and y,, be
some lower and upper bounds, respectively, on | H| .. For example, we could use
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the bounds derived by Enns and Glover,
ylb = max{amax(D)a GHI}’ yub = amax(D) + 2 Z UH:" (16)

where oy; are the Hankel singular values of the system {A4, B, C, D} [E], [G].
The bisection algorithm is as follows:

YL = Yibs
YU = Yoo
repeat |
yi=+ wlid
Form M.;
if M, has no imaginary eigenvalues, y, := v,
elsey =y}
until { v — 3 < 2ep }.

Note that we always have y_ < ||H||,, < yy; moreover, after M iterations,
Yo — =2 (e — M) On exit, (y, + y4)/2 is guaranteed to approximate | H||,
within a relative accuracy of g, that is,

I+ 2)/2 — I1H|| < ellHl.

Let us briefly discuss the computation involved in this algorithm. Enns’ and
Glover’s bounds can be computed by solving the observability and controllability
grammian Lyapunov equations [GNV],

ATW, + W,4 + C'C =0,

R (17)
AW, + W, AT + BB" =0

and then computing the eigenvalues of W, W,, which are the squares of the Hankel
singular values. An alternative which avoids this eigenvalue computation is to set

Yo = max{amax(D)’ v Tr VVCVVO/H}’ Tub = O—max(D) + 2\/ nTr sz:ufo

The work in computing R~ and S™' while forming M, in the D # 0 case is
reduced to a minimum by the following initial transformation on {4, B, C, D}. Let
D =UZV" be an SVD of D, where U is p x p, V is m x m and orthogonal. Of
course,

1Hll, = WUTH{$s)V (|, = [UTC(sI — A)T'BV + Z|,.

The bisection algorithm is then applied to the transformed system {A, BV, UTC, z}
For this system, R and S are diagonal, so computing R™! and $~! is fast.

One method for determining whether M, has imaginary eigenvalues is simply to
compute the eigenvaiues and check. Special methods which exploit the Hamiltonian
structure can be used; see [V1] and [B1]. Computing the eigenvalues by these
methods require roughly as much computation as one SVD (several tens of n? flops),
so that each iteration of the bisection is comparable to computing the SVD of H( jw)
at a single frequency. Thus the computational savings of the bisection method over
an SV-plot method is very roughly the number of frequency samples in the plot
divided by the number of bisection iterations, which is typically under 20,
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4. A Sturm/Routh Test for Imaginary Eigenvalues

Needicss to say, the eigenvalues of M, cannot be exactly computed in a finite num-
ber of steps, even with exact arithmetic computations. Nevertheless, it is possible
to determine whether M, has imaginary eigenvalues in a finite number of steps,
without actually computing the eigenvalues.

Let r(s) be the characteristic polynomial of M., that is, r(s) = det(s/ — M.). Since
M, is Hamiltonian, r(s) is a polynomial in 52, so r(s) = p(—s?) for some degree n
polynomial p. p could be computed from M, by the Leverrier-Faddeeva algorithm
(K, pp. 657-658]. M, has imaginary eigenvalues if and only if p has real nonnegative
ToOts.

A Sturm method can be used to test whether p has real nonnegative roots (see,
e.g., [H]). We assume that p(0) is nonzero, since otherwise p has the nonnegative
real root 0. First we apply the Euclid algorithm to p and p": let p, = p, p,_, = p’
and recursively divide:

Pu = q41Pp-1 = Pp-2»
Pn-1 = 42Pp—2 — Pn-3»

Do 18 constant.

Then p,, pui, ..., Po 18 a Sturm sequence. Let v, be the number of sign changes
in the leading coefficients of p,, ..., py, and let v, be the number of sign changes in
the constant coefficients of p,,, ..., p,.

Fact 1. p has exactly v,, — v, distinct real nonnegative roots. In particular, M, has
no imaginary eigenvalues if and only if v, = v,.

This Sturm test can be implemented using a Routh array in which the divisions
required in the Euclid algorithm are avoided (see [BS]).

5. Some Extensions

The results presented so far, and various generalizations, have many applications
in computing other quantitites of system-theoretic interest; we mention three in this
section. We show how a similar method can be used to compute the minimum
dissipation of a transfer matrix, or the H,, norm of a transfer matrix over a restricted
frequency range. Our third extension concerns numerical optimization—we estab-
lish a bisection method for a fast line search.

5.1. Minimum Dissipation
First we consider the minimum dissipation, diss(H), of a transfer matrix defined by
diss(H) = inf A, ((H(s) + H(s)*)/2).
Res>0
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The one-parameter Hamiltonian matrix for the dissipation problem is
A 0 B -
N":|:O _AT]+[_CT}(251—(D+DT)) '[c BT, (18)

defined if and only if 4 is not an eigenvalue of (D + DT)/2.
The following theorem relates the eigenvalues of (H(jw) + H{jw)*)/2 and the
imaginary eigenvalues of N;.

Theorem 3. Assume A has no imaginary eigenvalues, 8 is not an eigenvalue of
(D + D"Y2, and wy € R. Then, § is an eigenvalue of (H{jwo) + H{jwg)*)/2 if and
only if (Ng — jwol) is singular.

The proof follows the pattern of the proof of Theorem 1 and is left to the reader.
The analog of Theorem 2 is simply:

Theorem 4. Let A be stable and 6 < 2,,;,((D + D7)/2). Thendiss(H) < & if and only
if Ny has imaginary eigenvalues.

A bisection algorithm for computing diss(H) is readily designed.

3.2, H,, Norm Over an Interval

The second extension we discuss concerns computing the maximum of the maxi-
mum singular value of the transfer matrix evaluated between two frequency limits.
Suppose it is required to compute
”H‘I[a,ﬂ] = SUP Gmax(H(jw))a
aswsf

where 0 < o < fi. The bisection algorithm presented in Section 3 is modified as
follows: first, the a priori lower bound is changed to ¥, = max {0, (H(jx)),
Gmax{ H(jf)) }; and, second, the eigenvalue test is modified to:

if M, has no imaginary eigenvalues between jo and jf, ...

The Sturm test presented in Section 4 (Fact 1}is readily modified to check whether
a Hamiltonian matrix has any imaginary eigenvalues between ja and j. Using the
notation of Section 4, iet v/, denote the number of sign changes in the sequence of
real numbers p,,(\/;), p,,_l(\\//@, ..+» Do, and similarly let v/p be the number of sign

changes in the sequence p,(./f), Pn~1(\/ﬁ), ..., pg. Then we have:

Fact 2. p has exactly v/ — U /a distinct real roots between \/& and \/E In particu-
lar, M, has no imaginary eigenvalues between jo and jf if and only if Vg = U /g

We note that this result concerning ||H |, 4 is not readily apparent from the
spectral factorization formulation mentioned above in Remark 5.
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5.3. Fast Line Search

Consider the problem of minimizing (or, at least, finding a local minimum of) the
H,, norm of a system {A(a), B(a), C(a), D(a)} which depends (differentiably) on a
parameter ¢ € R*. In a standard descent algorithm [L2, Chapter 7], each iteration
consists of two substeps: first, a descent direction da € R* is determined, and, second,
an appropriate stepsize h € R is determined. The parameter a is then replaced by
a + héa, and the process is repeated. The process of choosing the stepsize is often
called a line search, since it is equivalent to choosing the next parameter value
somewhere along the line through a in the direction éa.
By a descent direction, we mean da such that the function

@(h) = |[(H(a + héa, s)l|.,

has a right derivative at A = 0 which is negative: ¢/, (0) < 0.

One widely used method for determining an appropriate stepsize is the Armijo
rule [L2, p. 212]. Usually, the line search involves many function evaluations, since
@(h) is evaluated for many candidate stepsizes. We will demonstrate a simple
bisection method which simuitaneously computes an Armijo stepsize #* and com-
putes @(h*} with no more computation than computing (k) for a given 4. Thus the
H, Armijo line-search problem can be solved with no more effort than a single
function evaluation (i.e., an H,, norm computation).

Let us describe the Armijo rule. Consider the straight line defined by

(k) = @(0) + e@’ (O)h, (19)

where ¢ is a parameter chosen in (0, 1) (¢ = 0.2 is typical). Then & is an (exact)
Armijo step length if h > 0 and @(h) = Y (h), that is, it is a positive stepsize corre-
sponding to one of the points of intersection of the line described by (19) and
the function @(h). Thus, in Fig. 2, the exact Armijo step lengths are h,, h,, and
hs.

Slope e (0) ¢(h)

h—

Fig. 2. Armijo rule for line search: exact Armijo step lengths.
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We now present a bisection algorithm which determines an exact Armijo step
length and the corresponding function value. The following is an immediate conse-
quence of Theorem 2: if M, has no imaginary eigenvalues, then Wih) > ), if
M gy has imaginary eigenvalues, then y(h) < @(h).

Let

hy, =0, hyy = — @(0)/(eq’, (0)).

Of course, ¥(h,,,) < p(hy,) and hy, = 0 is not a valid Armijo stepsize.
The bisection algorithm is then:

hy o= hy,;
hU = hub;
repear |
h=(hy + hy)/2;
Form M
if My, has no imaginary eigenvalues, h; = h,
else iy =h; }
until { hy — h, < 2ch, }.

After k iterations we have y(hy) < o(hy), W(h) > @(h), and hy — h. =
27%p(0)/c| @ (0)]. Thus there is always at least one exact Armijo stepsize between
h, and hy,. This algorithm computes an exact Armijo step length h* with guaran-
teed accuracy &. Of course we have also computed ¢(h*), since @(h*) = y(h*) =
@(0) + e (0)h*.

If this bisection algorithm is applied to the ¢ shown above, we will compute
h* = h,.

In this discussion we have ignored the requirement that A4(h) be stable, but that
1s readily incorporated into the bisection algorithm above.

6. A Simple Example

We present a very simple example where we compute the H_ norm of the system
described by

—008 08 0 0 I
(| 08 —008 0 0 g_]0 0
| o 0 -07 9 | oy
0 0 -9 —07 0 0
04 0 04 0 03 0
Cz[o.s 01 OJ’ Dz[o —0.15]'

An SV plot for this system (25 points per decade) is shown in Fig. 3. Enns’ and
Glover’s bounds are 3.2022 < |H||,. < 15.1537, and 17 bisections are required to
compute [[H|, = 6.4405 with a relative accuracy exceeding 107 (i, all digits
correct). The maximum of the maximum singular values for the SV plot is 6.2126,
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101 v — T ——— T T — T

100

10'1:- --------------------------- m

10»2 n 1 S S A T ) 1 1 [ A | 1 ) bl )11

10-1 100 101 102
omega

Fig. 3. An 8V plot for the example system: the solid line is the maximum singular value and the dotted
line is the minimum (second) singular value.

so the relative accuracy is only about 3.5%;, even though this system does not have
particularly high Q resonances.
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