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Abstract—In this letter, we show that worst-case robust beam-
forming, with uncertain weights subject to multiplicative varia-
tions, can be cast as a convex optimization problem. We interpret
this problem as a weighted complex 1-regularization of the nom-
inal beamforming problem, and show that it can be solved with
the same computational complexity as nominal beamforming, ig-
noring the variations. We derive a simple lower bound on how
much worse the robust beamformer will be compared to the nom-
inal beamformer solution with no weight uncertainty. We demon-
strate the robust approach with a simple narrowband beamformer.

Index Terms—Regularization, robust beamforming, robust opti-
mization, robust sensor array signal processing.

I. BEAMFORMING

WE consider an array of sensor elements. Let
be the array response to a wave of unit amplitude

parametrized by , where is the set of all possible wave
parameters. A simple example is an array in a plane, where

corresponds to the arrival angle of a plane wave.
In a more complicated example, is a vector that models wave
parameters such as wavelength, polarization, range, etc. In the
sequel, we refer to the wave parameter as the direction, even
though it can be more general and multidimensional. The com-
posite output of the array is a complex weighted sum ,
where is the vector of weights and

denotes the conjugate transpose. The magnitude
of the array output is called the array gain or array sensitivity
in the direction .

Next, we describe our beamforming problem. We re-
quire a unit array gain in a given desired direction , i.e.,

. We also require the array gain to be small
for , where is a given set of directions (not
containing ), called the rejection band. The maximum array
gain over the rejection band
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is called the rejection level of the array. The problem of choosing
the weight vector to minimize the rejection level, subject to unit
array gain in the desired direction can now be formulated as the
optimization problem

(1)

with variable . A solution of this problem is called a
nominal optimal beamformer.

The beamforming problem (1) is not a convex optimization
problem, since the equality constraint is not linear. However, we
can transform it to an equivalent convex problem

(2)

where denotes the real part. This is a convex problem since
the objective is a convex function (it is a pointwise supremum
over an infinite set of convex functions [4, ch. 3]), and the in-
equality constraint is linear. In particular, when the rejection
level is approximated as

where are sample points in the rejection band,
the corresponding approximate beamforming problem becomes
a second-order cone program (SOCP), which can be solved with
great efficiency [8], [10].

We establish the equivalence of the problems (1) and (2). For
any , we have

Suppose is feasible for (2), i.e., . This
implies that , so is
feasible for (1), and satisfies

. Conversely, suppose that is feasible for (1), i.e.,
. Then the point

is feasible for (2), and satisfies . Thus, from any
feasible point for either problem, we can construct a feasible
point for the other problem, with equal or lower objective value,
so we conclude equivalence.

II. ROBUST BEAMFORMING WITH UNCERTAIN WEIGHTS

In the beamforming problem (2), we assume that the array
response is perfectly known, and that the weights can be
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implemented with perfect precision. It is well known that the
nominal optimal beamformer can be extremely sensitive to vari-
ation in or .

The goal of robust beamforming is to choose weights such
that the beamformer performs well despite variations in or
implementation errors in . Robust beamforming has been
considered from the beginning of array signal processing [6].
One widely used robust beamforming technique is the diagonal
loading method [1], [5], where an -regularization term is
added to the objective

(3)

Here, is the regularization parameter and is the uncer-
tainty (noise) power. More recently, ideas from the (worst-case)
robust optimization [2], [7], [3] have been applied to robust
beamforming; for example, in robust minimum variance beam-
forming [11], [12], [9] and in robust array pattern synthesis [13,
Sec. IV].

While most researchers have focused on uncertainty in the
array response , in this letter, we consider uncertainty in the
weights . While the ideas in this letter can be extended to un-
certainty in both and , our goal is not to come up with a
general solution, but to point out that the robust beamforming
problem with multiplicative uncertainty in the weights can be
solved exactly. In addition, this solution can be interpreted as a
regularization method.

Thus, we consider robust beamforming with multiplicative
uncertainty in the weights

Here, are the weights chosen by the designer, and are the
actual implemented weights. The complex numbers are the
relative errors between the intended and actual weights. The
relative error in implementing weight can be as large as in
magnitude, so is a measure of the maximum relative error in
implementing . For example, means, roughly, that
the implementation error for can be as large as 5%. This cor-
responds (roughly) to a maximum magnitude variation around

, and a maximum phase variation around .
(The actual uncertainty set is a circle in the complex plane.) The
set of weight vector uncertainties consistent with this model is
denoted

We take a worst-case robust optimization approach to
problem (2) with the multiplicative uncertainty model de-
scribed above: We require the constraint in (2) to hold for all
weight vectors consistent with our model, and we judge the
objective by its worst-case value over all possible , i.e., the
worst-case rejection level

This leads us to the robust beamforming problem

(4)

with variable . Any solution is called a robust optimal
beamformer.

We note that this problem is convex, since the objective is
the pointwise supremum of a family of convex functions, and
the constraint is convex, since it consists of a family of linear
inequalities, parametrized by . But it appears to be a
difficult problem, since the objective is given by a supremum,
and the constraint is semi-infinite (given by an infinite number
of constraints).

The main goal of this paper is to show that the robust beam-
forming problem (4) can be reformulated as

(5)

where

This is a convex problem [4, ch. 3]; moreover, after sampling
, the associated approximate robust beamforming

problem is an SOCP that is no harder to solve than the nominal
beamforming problem with the same sample points. (The extra
terms in the objective and the constraint add new diagonal
blocks to the Karush-Kuhn-Tucker (KKT) system. This diag-
onal structure can be exploited to solve the new system with
the same computational complexity required for the nominal
problem [4, App. C].)

The equivalence between (4) and (5) follows from

(6)

and

(7)

which we establish now. Observe that, for any and ,
we have
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Moreover, equality holds here with the choice of with its
th component being

Therefore, we have

which means that

In a similar way, with , we can
see that (7) holds.

We can interpret problem (5) in the following way. Its objec-
tive consists of the nominal objective and a weighted com-
plex -norm of . This makes sense since we want to penalize
large weights, which are more susceptible to multiplicative er-
rors. Adding a positive multiple of a norm to the objective is
called regularization; in our case, we have a weighted complex

-regularization of the nominal beamforming problem.
We close by making a comparison between the -regulariza-

tion used in (5) and -regularization used in diagonal loading
(3). While the -regularization is optimal in the worst-case
sense for our multiplicative uncertainty model, the -regular-
ization has a nice statistical interpretation: it minimizes the
power of the additive noise in the system.

III. A LOWER BOUND ON OPTIMAL REJECTION

We derive a simple lower bound on how much worse the
robust optimal beamformer will be compared to the nominal
beamformer. Let be the optimal value of the nominal
beamforming problem (2) and be the optimal value of
the robust beamforming problem (5) achieved for a robust
beamformer . Clearly, . We show that

(8)

where .
The bound is derived by considering the chain of inequalities

where is the desired lower bound and the optimal value of
the auxiliary problem

Here, the first inequality holds since and are always non-
negative, and by the optimality definition

and being a feasible point of the nominal problem. The
second inequality follows since the optimal value of the auxil-
iary problem is the minimum value of the difference
over the feasible set of the robust beamforming problem.

Next we derive an expression for . We can assume that
, since we can rotate each component by an angle

to accomplish this without changing the objective value. The
feasible set also stays the same, since the rotation angles
can be absorbed into , which can be further rotated until

. Thus, an equivalent problem is

This is a linear program with positive variables and data, for
which we can explicitly compute the optimal solution and the
optimal value (for similar LP problems see [4, ch. 4, p. 192]),
which gives and the right-hand side of (8).

As an example, consider the case when for all
and all , and . Then the bound (8) gives

(9)

For example, if (which corresponds to 5% uncertainty
in the weights), we find that

In particular, we cannot achieve a worst-case rejection level
smaller than , regardless of the
array geometry or the number of elements.

IV. EXAMPLE

We consider a narrowband beamformer with
on a rectangular 6 6 lattice in a plane.

The spacing between the sensor elements is , where
is the wavelength of plane waves arriving from angles

. We use a simple model for the array response,
, where is

the location of the th sensor element. We take and
. Thus, we want to reject waves

arriving from angles more than 20 away from the desired
direction .

We assume . We consider a family of prob-
lems where we vary from 0 (no uncertainty) to 0.15 (15%
relative error). For each value of , we compute the rejection
levels for the nominal beamformer and the robust beamformer.
In addition, for each , we solve -regularization problem (3)
with and with the value of that gives the smallest
worst-case rejection level. All solutions are obtained using an
SOCP solver, after we sample with 1 precision.

The nominal optimal beamformer, a solution of (2), achieves
, which corresponds to of rejection

without uncertainty. However, with uncertainty present, its re-
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Fig. 1. Worst-case rejection level versus � for the robust beamfomer (solid)
and the l -regularized beamformer (dashed). The lower bound on the worst-case
rejection level, given in (9), is also shown (dotted).

jection level degrades rapidly; the worst-case rejection level for
the nominal design exceeds 0 dB even for . Thus, the
nominal beamformer is useless for weight uncertainty as small
as 1%. On the other hand, the robust beamformer and the -reg-
ularized beamformer perform well even with much larger uncer-
tainty. The robust beamformer gives a worst-case rejection level
around even for 15% uncertainty in the weights.

A plot of worst-case rejection level versus , for the robust
and -regularized beamformers is shown in Fig. 1. The plot
shows that the worst-case rejection level of the -regularized
beamformer comes quite close (within around 0.5 dB) to that
achieved by the robust beamformer.

For this example, we have for all and all , so
(9) gives the lower bound

This is plotted as the dotted curve in Fig. 1.

V. CONCLUSIONS

In this letter, we have shown that worst-case robust beam-
forming with multiplicative uncertainty in the weights can
be cast as a tractable convex optimization problem, which
can be solved with the same computational cost as nominal
beamforming. This globally optimal solution is equivalent to
a weighted -regularization of the nominal problem. Thus, it
is not suprising that -regularization of the nominal problem,
i.e., diagonal loading, yields beamformer designs that are quite
robust to weight variation.
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