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Abstract

Given a network of processes where each node has an initial scalar value, we consider the problem of computing their average
asymptotically using a distributed, linear iterative algorithm. At each iteration, each node replaces its own value with a
weighted average of its previous value and the values of its neighbors. We introduce the Metropolis weights, a simple choice for
the averaging weights used in each step. We show that with these weights, the values at every node converge to the average,
provided the infinitely occurring communication graphs are jointly connected.
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1 Introduction

We consider a set of interconnected processes (nodes of
a network) NV = {1,2,...,n}, each with an initial scalar
value z;(0). The goal is to (asymptotically) compute
the average value, (1/n) > 1, 2;(0), at each node. The
allowed communication pattern of the processes varies
with time, and is specified by the set of active edges £(t)
at time ¢t = 0,1,2,.... The edges are undirected, with
{i,j} € £(t) meaning that processes i and j can commu-
nicate with each other at time ¢. We focus on distributed,
linear iterative algorithms of the following form

zi(t+1) = WaHz(t) + Y Wi(t)a;(t), (1)
JEN()

fori =1,...,n. Here W;;(t) is the linear weight on x(t)
at node i, and NV;(¢t) = {7 | {i,7} € £(t)} denotes the set
of neighbors of node i at time ¢. The question is how to
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choose the weights W;; (t) such that every x;(t) converges
to the average of their initial values; i.e.,

n

tlirroloxl(t) = (1/n)2xi(0), i=1,...,n. (2)

i=1

This problem falls into a broader class of distributed con-
sensus or agreement problems in multi-agent coordina-
tion and flocking, which have received a fair amount of
attention recently; see, e.g., [12,17,24,10,15,18]. In gen-
eral consensus or agreement problems, the asymptotic
values of x;(t) must be the same for all ¢, but need
not be the average. This relaxed requirement gives more
freedom in choosing the weights. Tsitsiklis et al. [21,22]
gave a systematic study of agreement algorithms of the
type (1) in an asynchronous distributed environment.
The recent work [2] summarizes the key results and es-
tablishes some new extensions.

Theoretical development on convergence conditions has
been a main focus of research on distributed consensus
or agreement problems. On the other hand, it is also very
important to construct specific weights in applications,
especially weights that allow distributed computation
and work with time-varying communication graphs. A
well-studied method for choosing weights is the nearest
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neighbor rule proposed in [23]

Wi;(t) =

{1/(1+di(t>> Ghpesori=j

0 otherwise

where d;(t) = |NV;(t)| is the degree of node 4 at time ¢.
This method of choosing weights was analyzed in de-
tail in [12], and several variations were considered, e.g.,
in [15,18]. We note that the nearest neighbor rule does
not preserve the average, and the value of asymptotic
agreement depends on the initial values z;(0), as well
as the sequence of time-varying communication graphs

{V,€(1)}20-

While preserving the average is not necessary for many
coordination and agreement tasks, it is an essential re-
quirement for many others. Examples of such applica-
tions include distributed load balancing (with divisible
tasks) in parallel computers (e.g., [5,3]) and distributed
data fusion in sensor networks (e.g., [19,25,20]). In this
note, we introduce the Metropolis weights, which pre-
serve the average, are easily computed, and guarantee
asymptotic average consensus under mild conditions on
the sequence of the time-varying communication graphs.

2 Metropolis weights

We define the Metropolis weights on a time varying
graph (N, E(t)) as follows:

1/(1 + max{d;(t),d;(t)}) {i,j} € E(?)
1= ken oy Wik(t) =] (4)
0 otherwise.

Wi;(t) =

In other words, the weight on each edge is one over one
plus the larger degree at its two incident nodes, and
the self-weights W;;(¢) are chosen so the sum of weights
at each node is 1. This method of choosing weights is
adapted from the Metropolis algorithm ([13,9]) in the
literature of Markov chain Monte Carlo; see also [6,4].

The Metropolis weights are very simple to compute and
are well suited for distributed implementation. In par-
ticular, each node only needs to know the degrees of its
neighbors to determine the weights on its adjacent edges.
The weights can computed in any time slot with two
rounds of communication between every pair of neigh-
boring nodes. In the first round, each node calculates
its degree by counting the number of its (instantaneous)
neighbors. In the second round, each node sends its de-
gree information to all its neighbors. The nodes do not
need any global knowledge of the communication graph,
or even the number of nodes n.

3 Convergence

In this section we state and prove the main convergence
result. We will use vector notation to simplify presenta-
tion. Let z(t) = (z1(¢),...,2n(t)). The distributed av-
eraging algorithm (1) can be written as

o(t+1) = W(t)z(t), (5)

where the weight matrix W (¢t) € R"*" is given by the
Metropolis weights (4).

For a finite collection of graphs with a common node set
N and edge sets &, k = 1,...,p, we call them jointly
connected if (N, U}_, E}) is a connected graph. We note
that for a network of n nodes, the number of all possible
communication graphs is finite.

Theorem 1 If the collection of communication graphs
that occur infinitely often are jointly connected, then for
any z(0) € R", the iteration (5) converges and we have

lim z(¢) = ((1/n)172(0)) 1, (6)

t—o0
where 1 denotes the vector with all components 1.
We make the following remarks on Theorem 1.

e An equivalent, and more concise statement of the con-
vergence condition is that the graph (N, Us>:E(s)) is
connected for all t > 0. Similar conditions were estab-
lished for the convergence of consensus or agreement
problems where the common limit may not be the av-
erage of the initial values (e.g., [12,2,15,18]).

e Equation (6) is the vector form of (2). With the defi-
nition of a t-step transition matrix
() =W(t—-1)---W(1HW(0),
we have x(t) = ®(t)z(0). Equation (6) holding for all
x(0) € R"™ is equivalent to
Jim ®(t) = (1/n)117.

We prove Theorem 1 by using a convergence result for
nonhomogeneous infinite products of paracontracting
matrices [7], which we explain next. (Theorem 1 will be
proved in §3.2.)

3.1 Infinite products of paracontracting matrices

The concept of paracontracting matrices was introduced
in [16]. A matrix M € R™" is called paracontracting
with respect to a vector norm || - || if

Mz#z < |[Mz| <[] (7)



It is clear that a symmetric matrix is paracontracting
with respect to the Euclidean norm if and only if all its
eigenvalues lie in the interval (—1,1].

For a paracontracting matrix M, let H(M) denote its
fixed-point subspace, i.e., its eigenspace associated with
the eigenvalue 1,

H(M)={zeR" | Mz = z}.
The following is a key result in [7].

Theorem 2 ([7]) Consider a set of paracontracting ma-
trices {W1, ..., Wy }. Let {i(t)}$24, with 1 < i(t) <r, be
a sequence of integers, and denote by J the set of all in-
tegers that appear infinitely often in the sequence. Then
for any x(0) € R™, the sequence of vectors

x(t+1) =

Wiz (t), t=0,1,2,...,

has a limit * € ;e 7 H(W5).

Intuitively, each paracontracting matrix preserves vec-
tors in its fixed-point subspace, and is contractive for all
other vectors. If some paracontracting matrices occur in-
finitely often in the iterative process, then the limit can
only be in the intersection of their fixed-point subspaces.
For more background on the convergence of infinite ma-
trix products, see the book [8] and references therein.

3.2 Proof of Theorem 1

To use the result of Theorem 2, we need to prove the
following two lemmas.

Lemma 1 The Metropolis weight matriz W (t) is para-
contracting with respect to the Fuclidean norm.

Proof. By the definition (4), W(t) is a (symmetric)
stochastic matrix and W;;(t) > 1/n for all 4. Therefore
W (t)—(1/n)I is a nonnegative matrix with row and col-
umn sums equal to (n—1)/n. This implies that all eigen-
values of W (t) — (1/n)I (all real) have absolute value no
larger than (n — 1)/n (e.g., [11, §8.1]). Thus all eigen-
values of the symmetric matrix W (¢) lie in the interval
[—(n — 2)/n,1]. This means that W(t) is paracontract-
ing with respect to the Euclidean norm. [ ]

Lemma 2 If a collection of graphs G1, ..., G, are jointly
connected, then their corresponding Metropolis weight

matrices Wi, ..., W), satisfy

p

ﬂ H(W;) = span{1}. (8)
i=1

Proof. By the definition (4), the Metropolis weight ma-
trices are symmetric and stochastic, so we have 1 €
H(W;) for i = 1,...,p. Therefore

span{1} C [ H(W,). (9)

i=1

Notice that if Wiz = x fori = 1,...
(1/p) le W;x = x. Therefore

< 1/p) Z Wl> (10)

By assumption, the graphs Gi,...,G, are jointly con-
nected. This implies that the matrix (1/p) >t Wi is
symmetric, stochastic and irreducible. This means that
it has a simple eigenvalue 1 with associated eigenvector 1
(e.g., [11, §8.4]). In other words,

(1/1?21):

i=1

,, then we have

) = span{1}. (11)

Putting the equations (9), (10) and (11) together, we get
the desired result (8). L]

Now we are ready to prove Theorem 1. By Theorem 2,
the iteration (5) converges and we have

lim x(t) = cl

t—o0

where ¢ is a constant depending on the initial con-
dition x(0) and possibly on the sequence of matrices
{W(t)}s2,. However, by the definition (4), every ma-
trix W (t) preserves the average. Thus the constant ¢
can only be (1/n)17z(0), which is independent of the
sequence of weight matrices. This finishes the proof for
Theorem 1.

3.8 On convergence rate

Under the assumption of Theorem 1, the convergence of
the sequence z(t) may not be geometric. In other words,
there may not exist a constant 0 < v < 1, such that
() — el < 7'[2(0) — Ll t=0,1,2,... (12)
where ¢ = (1/n)1T2(0). In particular, as an upper
bound of ~, the joint spectral radius of the matrices
Wi — (1/n)117, k = 1,...,r, may not be strictly less
than one (see, e.g., [2]).

To have geometric convergence, we have to impose more
conditions on how often joint connectedness occurs. For
example, if there exists an integer T > 0 such that the
graph (N, Ui<,<¢4+7E(T)) is connected for all ¢, then it
can be shown that there exist a «y strictly less than one
such that (12) holds.



4 Concluding remarks

In this note we have used a result on infinite products
of paracontracting matrices to prove the convergence of
the node values using Metropolis weights. For this par-
ticular rule of choosing weights, convergence can also be
established by applying techniques developed in [21,22].
The main idea is to show that the sequences max; x;(t)
and min; z;(¢t) are monotone decreasing and increasing,
respectively, and their difference converges to zero. The
proof relies on the fact that the matrices are stochastic;
thus nonnegativity of the weights are essential to ob-
tain contraction properties by taking convex combina-
tions. See [1, §7.3.1] for a simplified version and [2] for a
overview of the technique. For symmetric weight matri-
ces, however, the technique of paracontracting matrices
can be more powerful in certain respects. For example,
it may establish convergence in cases where some of the
edge weights are negative. As shown in [24], for a fixed
graph, the fastest convergence is often obtained when
some of the weights are negative. We could imagine that
similar things can happen for time-varying graphs.

The simple model for average consensus used in this
paper does not include communication delays. If there
is no specific requirement on the final value of agree-
ment, communication delays can be readily handled in
the framework of asynchronous and distributed comput-
ing developed in [21,22,1]. In this case, the final value of
agreement in general depends on the initial condition,
the sequence of communication graphs, as well as the se-
quences of communication delays at every node. Inclu-
sion of communication delays makes it very hard to pre-
serve the average, and more sophisticated interprocess
protocols are needed for distributed average consensus.
One promising approach in this direction is the recent
work on consensus propagation [14].

References

[1] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed
Computation. Prentice-Hall, Englewood Cliffs, New Jersey,
1989.

[2] V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis.
Convergence in multiagent coordination, consensus, and
flocking. In Proceedings of the 44th IEEE Conference on
Decision and Control, Seville, Spain, 2005.

[3] J. Boillat. Load balancing and Poisson equation in a graph.
Concurrency: Practice and Ezperience, 2:289-313, 1990.

[4] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov
chain on a graph. SIAM Review, problems and techniques
section, 46(4):667-689, 2004.

[5] G. Cybenko. Load balancing for distributed memory
multiprocessors. Journal of Parallel and Distributed
Computing, 7:279-301, 1989.

[6] P. Diaconis and L. Saloff-Coste. What do we know about
the Metropolis algorithms. Journal of Computer and System
Sciences, 57:20-36, 1998.

[7] L. Elsner, I. Koltracht, and M. Neumann. On the convergence
of asynchronous paracontractions with applications to
tomographic reconstruction from incomplete data. Linear
Algebra Appl., 130:65-82, 1990.

[8] D. Hartfiel. Nonhomogeneous Matriz Products. World
Scientific Publishing Co. Pte. Ltd., Singapore, 2002.

[9] W. Hastings. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57:97-109, 1970.

[10] Y. Hatano and M. Mesbahi. Agreement over random
networks. In Proceedings of 43rd IEEE Conference on
Decision and Control, pages 2010-2015, Atlantis, Paradise
Island, Bahamas, December 2004.

[11] R. Horn and C. Johnson. Matriz Analysis. Cambridge
University Press, 1985.

[12] A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules.
IEEE Transactions Automatic Control, 48(6):988-1001, June
2003.

[13] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. Equations of state calculations by fast computing
machines. Journal of Chemical Physics, 21:1087-1092, 1953.

[14] C. Moallemi and B. Van Roy. Consensus propagation.
Submitted for publication, 2006.

[15] L. Moreau. Stability of multiagent systems with time-
dependent communication links. [EEE Transactions on
Automatic Control, 50:169-182, 2005.

[16] S. Nelson and M. Neumann. Generalization of the
projection method with applications to SOR theory for
Hermitian positive semidefinite linear systems. Numerische
Mathematik, 51:123-141, 1987.

[17] R. Olfati-Saber and R. Murray. Consensus problems in
networks of agents with switching topology and time-delays.
IEEFE Transactions on Automatic Control, 49(9):1520-1533,
September 2004.

[18] W. Ren and R. Beard. Consensus seeking in multi-agent
systems under dynamically changing interaction topologies.
IEEEFE Transactions on Automatic Control, 50:655—-661, 2005.

[19] D. Scherber and H. Papadopoulos. Locally constructed
algorithms for distributed computations in ad-hoc networks.
In Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks, pages 11-19,
Berkeley, CA, April 2004. ACM Press, New York.

[20] D. Spanos, R. Olfati-Saber, and R. Murray. Distributed
sensor fusion using dynamic consensus. In Proceedings of The
16th IFAC World Congress, Prague, July 2005. Elsevier.

[21] J. Tsitsiklis. Problems in Decentralized Decision Making
and Computation. PhD thesis, Department of EECS,
Massachusetts Institute of Technology, 1984.

[22] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed
asynchronous deterministic and stochastic gradient
optimization algorithms. IEEE Transactions on Automatic
Control, 31(9):803-812, September 1986.

(23] T. Viesek, A. Czirdk, E. Ben-Jacob, I. Cohen, and
O. Schochet. Novel type of phase transitions in a system
of self-driven particles. Physical Review Letters, 75(6):1226—
1229, 1995.

[24] L. Xiao and S. Boyd. Fast linear iterations for distributed
averaging. Systems and Control Letters, 53:65—78, 2004.

[25] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed
sensor fusion based on average consensus. In Proceedings of
the 4th International Conference on Information Processing
in Sensor Networks, pages 63-70, Los Angeles, California,
USA, April 2005.



