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Design of Affine Controllers via Convex Optimization
Joëlle Skaf, Member, IEEE, and Stephen P. Boyd, Fellow, IEEE

Abstract—We consider a discrete-time time-varying linear
dynamical system, perturbed by process noise, with linear noise
corrupted measurements, over a finite horizon. We address the
problem of designing a general affine causal controller, in which
the control input is an affine function of all previous measurements,
in order to minimize a convex objective, in either a stochastic or
worst-case setting. This controller design problem is not convex
in its natural form, but can be transformed to an equivalent
convex optimization problem by a nonlinear change of variables,
which allows us to efficiently solve the problem. Our method is
related to the classical -design procedure for time-invariant,
infinite-horizon linear controller design, and the more recent
purified output control method. We illustrate the method with
applications to supply chain optimization and dynamic portfolio
optimization, and show the method can be combined with model
predictive control techniques when perfect state information is
available.

Index Terms—Affine controller, dynamical system, dynamic
linear programming (DLP), linear exponential quadratic Gaussian
(LEQG), linear quadratic Gaussian (LQG), model predictive con-
trol (MPC), proportional-integral-derivative (PID).

I. INTRODUCTION

W E consider a discrete-time time-varying linear dynam-
ical system operating over a finite horizon, perturbed

by process noise, with linear noise corrupted measurements of
the state, and a cost function that is convex in the state and
input trajectories. We will consider two models of the process
and measurement noises: stochastic, with the objective mea-
sured as the mean cost; and worst-case, in which the distur-
bances lie in a given set, and the objective is the maximum
cost, over all possible disturbances. We require that the input
or action must be causal, i.e., a function (or policy) of the pre-
viously observed measurements. With a stochastic noise model,
the problem of finding a policy that minimizes the objective is
the general stochastic control problem, also called stochastic
optimization with recourse [3], [14], [18], [57], [75]. With a
worst-case noise model, it is called robust optimization with re-
course or robust dynamic programming [9], [11], [12], [78].

Even with linear dynamics and convex underlying cost func-
tion, the stochastic control problem is very difficult to solve. In
the special case when noise-free measurements of the state are
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available, the optimal control policy is a function of the current
state, which can, in principle, be determined by solving the dy-
namic programming or Bellman equation to find the cost-to-go
function [4], [5]. While this gives us much insight, it does not
lead to a practical method, except when the state dimension is
very small (say, no more than 3). Another special case in which
we obtain a practical solution is when the cost is quadratic and
the disturbances are Gaussian, i.e., the linear quadratic Gaussian
(LQG) problem. In this special case, the optimal control policy
is affine, i.e., a linear function of the past measurements, plus
a constant [2], [63]. Another case in which the optimal control
policy is known, and affine, is when the cost is the exponen-
tial of a quadratic function, and the disturbances are Gaussian,
which is the linear exponential quadratic Gaussian (LEQG) or
risk-sensitive LQG problem [75, vol. 1, §19].

Many methods have been proposed to find suboptimal
policies that can work well in practice. Perhaps the simplest
methods are those from classical linear feedback control tech-
niques, such as proportional-integral-derivative (PID) control
[35]. One very effective technique that can be used when
a noiseless measurement of the state is available is model
predictive control (MPC) [6], [50], [53], [75], which goes
by many other names, including dynamic matrix control [29],
rolling horizon planning [28], and dynamic linear programming
(DLP) [66]. MPC is based on solving a convex optimization
problem at each step, with the unknown future disturbances
replaced with estimates available at the current time (such
as conditional means); but only the current action or input is
used. At the next step, the same problem is solved, this time
using the exact value of the current state, which is now known
from the measurement. Another approach goes under the name
approximate dynamic programming [13], [14], [55], in which
some estimate of the optimal value function, or optimal policy,
is found. While many of the methods assume that perfect state
measurements are available, they can be used with an estimate
of the state, obtained by an observer or state estimator [19].
(The optimal controller in the very special case of LQG can be
expressed as an optimal state feedback, applied to an optimal
estimate of the state; but in essentially all other cases, such a
separation principle does not hold.) Of course, there are many
custom methods for specific problems.

In this paper we describe another method that yields a sub-
optimal controller, that, like many of the others listed above,
can work well in practice. We limit our search to affine con-
trollers, in which the control policy functions are all affine. Such
controllers are characterized by a constant portion, and a set
of controller gains that relate current and past measurements to
the current input or action; in particular, they are parametrized
by a finite number of real parameters. While affine policies are
known to be optimal in the LQG case, they are certainly not
optimal in the general case. In the language of stochastic pro-
gramming with recourse, affine controllers are very specialized
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and limited; the only recourse we have is linear in the mea-
surements. While there is limited theoretical basis to expect that
such controllers will work well (e.g., see [15] for proof of op-
timality of affine controllers in the context of one-dimensional,
constrained, multi-stage robust optimization), examples suggest
that in many cases they work quite well. This should not be too
surprising, since PID control (a very special case of affine con-
trollers) is widely used in industrial control.

In any case, the point of this paper is not to endorse or rec-
ommend affine controllers, especially over the other suboptimal
techniques described above. The main point of this paper is to
show that the globally optimal affine controller can be effec-
tively computed by convex optimization. More accurately, we
reduce the problem to solving a convex stochastic or worst-case
robust optimization problem. In some cases such problems can
be solved exactly; in many others, an approximation method,
such as sampling, must be used. These approximations can be
made arbitrarily tight (at the cost of computational effort), and
often yield very good results with nominal effort.

Computing the optimal affine controller (coefficients) re-
quires solving a single convex stochastic or worst-case robust
optimization problem offline, so the time required to solve the
problem is not critical. When the affine controller is running
online, the computational load is extremely small, and consists
of evaluating an affine function of the observed outputs; thus,
the affine controller can be run online at very high speeds, if
needed. In contrast, MPC methods require solving an optimiza-
tion problem at each time step, i.e., online.

The affine controller design problem is not convex in its nat-
ural form, but can be transformed to an equivalent convex opti-
mization problem by a nonlinear change of variables, which al-
lows us to efficiently solve the problem. Our method is related to
the classical -design procedure, or Youla parametrization [76],
[77] for time-invariant, infinite-horizon linear controller design
[1], [32], [33], [45], [47], [49], [73]. The book [20] and survey
paper [21] describes this method, and the use of convex opti-
mization to design continuous-time, time-invariant controllers,
in detail; the Notes and References trace the ideas back into
the 1960s. The books [30], [34] use these methods to minimize
the worst-case output, with unknown but bounded input, which
can be cast (after -parametrization) as an norm minimiza-
tion problem, and then solved using linear programming. The
method is also related to the more recent purified output control
method [7], [8]. While the method described in this paper is cer-
tainly related to the results given in these books and papers, the
specifics are somewhat different.

The design of affine controllers in the context of discrete-time
systems has received recent attention. It has been addressed in
the context of robust optimization and robust controller design
in [7], [8], [10], in the context of receding horizon control in
[58], [59], for single-asset multistage investments with affine
recourse and transaction costs in [67], for portfolio allocation
problems with affine recourse in [24], for improved linear deci-
sion rules for stochastic programming in [27], and in the context
of decentralized control over Banach spaces in [60].

We now mention what we believe is the closest work to the
methods described in this paper, in the stochastic noise model
setting. In the unpublished report [46], Hansson et al. describe
a -parametrization method for computing an affine controller,
for a static (i.e., nondynamic) problem that satisfies some

second moment stochastic constraints, which can be expressed
exactly (in the transformed variables) using second-order cone
constraints. In a series of papers [68]–[71], van Hessen and
Bosgra describe -parametrization methods for stochastic
affine recourse MPC methods (as in our Section VIII). They
approximate stochastic constraints, including chance con-
straints, as second moment constraints, which then translate
into second-order cone constraints. Sung [64] applies their
affine recourse MPC method to constrained portfolio optimiza-
tion. Work similar in flavor to van Hessen’s and Bosgra’s was
published by Wang et al. [74] and Goulart and Kerrigan [42] in
which -parametrization is used to design affine recourse MPC
methods for the special case of a convex quadratic objective
function.

We also mention the closest work to the methods described in
this paper, in the worst-case noise model setting. The idea that
a -parametrization-like method can be used for minimax con-
troller design in MPC was introduced in [51], [52]. It was then
analyzed and extended in [41], [43], where Goulart et al. de-
scribe and analyze a -parametrization method for computing
affine state feedback control policies in the context of linear dis-
crete-time systems, which are subject to unknown but bounded
state disturbances and mixed constraints on the state and input.
They also show that such a formulation results in a stabilizing
control law.

As described in the previous paragraphs, many of the ideas
and techniques described in this paper are known, in general or
other settings, such as infinite horizon, continuous-time time-
invariant systems. Our contribution is to work out these ideas in
detail, in a particular setting: discrete-time, finite horizon, time-
varying system, with general convex objective and constraint
functions, and arbitrary disturbance distribution. As far as we
know, the case presented here has not appeared in the literature.

Although not directly related to our topic, we also mention
two areas of research that share some similarities with our ap-
proach. Our method uses a (matrix) bilinear change of variables
to convexify a non-convex controller design problem; this idea
also came up in [39], [40], where a different change of vari-
ables is used to solve problems in the synthesis of state feedback
gains, with LMI-based performance metric; see [22, §7.2.1].
The other area we mention is control-Lyapunov functions [36],
[37], [56], [61], [62] in which a suboptimal control law can be
found by convex optimization (in this case, over a set of approx-
imate value functions).

Finally, we mention that there is a large literature on multi-
stage stochastic linear programming, which can be used to solve
(exactly or approximately) some versions of our problem (with
piecewise linear objectives and polyhedral constraints); see
[16], [17], [26], [31], [38], [44], [48], [65], [72]. The proposed
methods range from decomposition and partitioning methods
to sampling-based approximation algorithms, and are usually
limited to short horizons.

In Sections II and III, we describe our model and the con-
troller design problem in detail. We derive the formulas that re-
late the disturbances to the state and inputs in Section IV, and
in Section V, we describe our convex formulation of the con-
troller design problem. In the next two sections we illustrate the
method with applications: a supply chain optimization problem
in Section VI, and a dynamic portfolio optimization problem
in Section VII. In Section VIII, we explain how the affine con-
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troller synthesis method can be combined with a model predic-
tive control technique.

II. SYSTEM MODEL

We consider a discrete-time linear time-varying system (or
plant), over the time interval , with dynamics

(1)

where is the system state, is the process
noise or exogenous input, and is the control input,
all at time step . The sensor or measured output is given by

(2)

where , and is the sensor noise at time period
. We will also be interested in the special case of perfect state

measurements, in which and , i.e.,
, for .

With slight abuse of notation, we will use , , , , and to
denote the associated trajectories

We define , with , and

where forms a block diagonal matrix from its argu-
ments. The system (1) and (2) can then be written as

(3)

where

...
. . .

...

...
. . .

...

(Entries not shown in these matrices are zero.)
We say that a matrix is block lower triangular if it can

be written as a block matrix with each block , and all blocks
above the diagonal vanish. If in addition the diagonal blocks

vanish, we say the matrix is block strictly lower triangular.
(For , these correspond to the usual lower triangular
and strictly lower triangular matrices.) We note for future use
that is block strictly lower triangular, and is
block strictly lower triangular.

III. CONTROLLER DESIGN

A. Causal and Affine Controllers

We will consider causal output feedback controllers, for
which has the form

The family of functions , for
, is called the control policy. We will

focus on the special case of affine causal output feedback, in
which the functions are affine, i.e., have the form

(4)

(5)

We refer to as the constant or open-loop part of the
control, and we refer to as the feedback
control gain. We interpret as the input we apply if all pre-
vious measurements were zero, and we interpret as the
control or recourse gain from measurement to input .
If is small, for example, it means that our choice of
is not heavily influenced by the measurement .

We can also express the control law in ’shifted form’. Let
be some (arbitrary) nominal value of the output signal. We can
express the control law (4) as

for , where

In this form we interpret as the discrepancy between
the measurement at time and the nominal output value at time
. We interpret as the input we apply at time if all previous

discrepancies were zero, i.e., all previous measurements were
equal to their nominal values. We interpret as the gain
from past discrepancies to the current input.

In the perfect state measurement case, the controller reduces
to an affine causal state feedback controller, for which is

Refer to as state feedback control gain.
Once we fix the control policy, the input trajectory and the

state trajectory are functions of and , the process and mea-
surement noises. We will consider two generic types of prob-
lems, which differ in how the unknown process and noise dis-
turbances are modeled.
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B. Stochastic Control

In the stochastic model, the process and sensor noises are
random variables, with some known joint distribution. As a re-
sult, the input and state trajectories are also random variables.
Let be a convex objective function
of the state and input trajectories. We judge our control perfor-
mance by the expected value of this objective function

where the expectation is over and . We treat constraints in a
similar way. Let ,
be a set of convex constraint functions. Our control design con-
straints are

Such constraints, which require the expected value of a func-
tion to be less than zero (say) are called stochastic constraints.
But the same form can be used to enforce an almost-sure con-
straint, such as almost surely. Here we simply define

for , and for ;
the stochastic constraint is then equivalent to

almost surely.
The stochastic controller design problem are expressed as

(6)

In the general case of causal output feedback control, the op-
timization variables are the control policy functions , so the
controller design problem is infinite dimensional. In the special
case of affine causal feedback controllers, the optimization vari-
ables are and . In this case the problem is finite dimen-
sional. Here .

C. Worst-Case Robust Control

We can also model and using an unknown-but-bounded
model. In this model, we are given a set of possible values
of , and we judge the objective by the worst (i.e., largest)
value of a convex function over the set of possible disturbances

The constraints are handled the same way: we require

The worst-case robust controller design problem is thus

(7)

As in the stochastic controller design problem, the variables are
the policy functions (in the general case), or the matrices

and the vector (in the affine controller case).

IV. CLOSED-LOOP SYSTEM

We now derive the explicit dependence of and on and
, when the controller is affine. We define feedback matrix as

...
. . .

which is block lower triangular. We then have

(8)

From (3) and (8) we can solve for and in terms of and
, to get

(9)

where

The matrix is block strictly lower triangular (there-
fore also strictly lower triangular), so is invertible.

We refer to as the closed-loop matrix, as the closed-loop
state trajectory, and as the closed-loop control trajectory. Ev-
idently and are the (closed-loop) state and input trajectories
when the process and noise disturbances are zero. The matrices

and tell us how sensitive the state trajectory is to the
process and sensor noises, respectively. The matrices and

tell us how sensitive the input trajectory is to the process
and sensor noises.

Using (9), we can express the objective and constraints in
terms of the closed-loop quantities , , and . In the stochastic
model, the objective is

which is a convex function of , , and . To see this, we note
that for any particular realizations of and ,

is a convex function of the closed-
loop quantities; the expectation of a family of convex function
is convex [23, §3.2.1].

The constraint functions can be written as

which, like the objective function, are convex functions of , ,
and . It follows that the stochastic controller design problem
(6) is convex in the closed-loop quantities , , and .
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In the worst-case robust model, the objective function is

and the constraint functions are

These are convex functions of , , and , since the supremum
over a family of convex functions is convex [23, §3.2.3]. Thus,
the worst-case robust controller design problem (7) is convex in
the closed-loop quantities , , and .

A. Perfect State Measurement Case

In the perfect state measurement case we have ,
where is an block lower triangular matrix

...
. . .

We then have

(10)

where

V. CONVEX FORMULATION

Problems (6) and (7) are in general not convex in our design
variables and . By a suitable change of variables, however,
these problems can be cast as convex optimization problems,
and therefore solved efficiently.

We define

(11)

the closed-loop matrix from to . The matrix is block
lower triangular. Conversely, suppose that is any block
lower triangular matrix in . We can then define

(12)

First we note that is block strictly lower triangular,
so is invertible and block lower triangular;
its inverse is therefore also block lower triangular, and
thus in (12) is block lower triangular. Thus, (11) and
(12) define a bijection between block lower triangular
and . In particular, we can use the variable , restricted to be

block lower triangular, in place of .

We also define

(13)

so that

(14)

We will use the variable instead of .
We can express the closed-loop matrices in terms of , and

the closed-loop responses in terms of and as

Now we make the critical observation that the closed-loop quan-
tities , , and are affine functions of and . It follows that
the problems (6) and (7) are convex in the variable (restricted
to be block lower triangular) and .

The stochastic problem (6) can be cast as

(15)

Similarly the worst-case problem (7) can be cast as

(16)

The variables in (15) and (16) are and ; the expressions ,
, , , , are affine functions of these variables.

Once we solve the problem (15) or (16), we can recover our
original design variables and using (12) and (14).

A. Perfect State Measurement Case

In the perfect state measurement case we define

where is block lower triangular. We
can then define

(17)

and recover as

(18)
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We can express the closed-loop matrices in terms of , and
the closed-loop responses in terms of and as

The stochastic problem (6) can be cast as

(19)

Similarly the worst-case problem (7) can be cast as

(20)

The variables in (19) and (20) are and ; the expressions , ,
, , are affine functions of these variables. Once we solve

the problem (19) or (20), we can recover our original design
variables and using (17) and (18).

B. Solving the Convex Controller Design Problem

The change of variables described above yields a convex sto-
chastic program [in the case of (6)], or a robust convex optimiza-
tion problem [in the case of (7)]. In some cases, these problems
can be solved by formulating them as standard convex optimiza-
tion problems, with no expectation or supremum. Simple exam-
ples include the case where and are (convex) quadratic
functions, and is Gaussian (in the stochastic case), or
known to lie in an ellipsoid (in the worst-case framework).

In other cases we can solve (6) and (7) approximately. In
the stochastic framework we can resort to sampling, i.e., re-
placing expectations by empirical means with values chosen
randomly from the given distribution. For more on stochastic
programming and stochastic control see [14], [18], [75]. In the
worst-case framework, we resort to robust convex optimization
techniques, both exact and approximate (see, e.g., [7]–[9], [11],
[25], [54], [78]).

C. Block Banded Design

We say that a matrix is block banded with bandwidth
if it can be written as a block matrix with each block

, and all blocks above the th upper diagonal and below the
th lower diagonal vanish. If all blocks above the main diagonal

and below the th lower diagonal vanish, the matrix is
block lower triangular and block banded with bandwidth . The

bandwidth can vary between 1 (i.e., is block diagonal) and
(i.e., is a full block lower triangular matrix).
We add the constraint that is block banded ( is then

block banded and block lower triangular). This does not mean
the controller has bounded memory; it means the closed-loop
response from to does. It is, of course, a convex constraint
on , and so can be handled as above.

Since we are restricting the possible values of , imposing
this condition evidently increases the objective, i.e., results in
poorer performance. Why would we do this? The main reason
is it reduces the size of the convex problem that we need to solve,
sometimes dramatically. For example, if we only constrain to
be lower triangular, the number of variables in (15) and
(16) is , which grows quadratically with . How-
ever, if we also constrain to be banded, with bandwidth
, the number of variables in (15) and (16) is ,

which grows linearly with .

VI. SUPPLY CHAIN OPTIMIZATION

We consider a single (divisible) commodity linear supply
chain problem, where, in each period, we can ship the com-
modity between a store and a factory to meet a (random)
demand. Our goal is to minimize the total cost incurred, taking
into consideration shipping cost, storage cost, and backlog cost.

We let be the amount of the commodity available
at the store at time , for , with meaning
a backlog of units of the commodity. The demand for
the commodity at time is denoted . The amount of the
commodity shipped to the store at time is denoted , with

meaning the amount is shipped back to the
factory from the store. The store inventory updates as

(21)

where .
The shipping cost is proportional to the amount shipped, i.e.,

, where is the shipping rate. The storage cost is pro-
portional to the inventory , when it is positive, i.e., .
When the inventory is negative, i.e., represents a backlog, the
cost is . (This might represent the cost of processing the
backlog, customer ill-will, etc.) The total cost incurred in time
period , for , is

At time , the cost incurred is

where is the salvage cost.
Our objective is to minimize the expected total cost, i.e.

(22)

where expectation is taken over the demand .
When the demands , , are independent,

the supply chain optimization problem (22) has an analytical
solution, and the optimal controller is an policy (see [14,
§4.2] for more details.) When the demands are correlated
across time, however, there is no general analytical solution.
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TABLE I
SIMULATION RESULTS FOR SUPPLY CHAIN EXAMPLE

We can find the optimal affine controller for (22) using sev-
eral methods, depending on the particular distribution of . If
has a discrete distribution, and can take on only finitely many
values (demand scenarios), the affine controller design problem
can be reduced to an LP and solved exactly. However, if has
a continuous distribution, the affine controller design problem
will have to be approximated by sampling from the distribution,
or by other stochastic optimization methods. If we replace the
expectation in (22) by the empirical mean over sample de-
mand trajectories , , the problem becomes

(23)
where the variables are still and , and , cor-
respond to the th state and control input trajectories at time
(corresponding to the th sample ).

We can also find a lower bound on the optimal value of the
stochastic inventory control problem by assuming the controller
is prescient, i.e., that the entire demand trajectory is known at
time 0. The inventory updates (21) are then deterministic and the
optimal control trajectory , given , can be found by solving
the (deterministic) optimization problem

(24)

The expected value of the optimal value of this problem, over
the distribution of , gives a lower bound on the optimal value of
the inventory control problem, for any causal controller. We can
(accurately) estimate this by generating demand samples and
taking the average of the optimal values.

A. Example

We consider the case where has a lognormal distribution,
i.e., where . Here is applied entrywise,

, and . The conditional distribution of
given is also log normal, i.e.,

for . Here

where and are, respectively, the mean and covariance of
, and are, respectively, the mean

and covariance of , , , and is

the covariance of and . Note that all
the mentioned vectors are subvectors of and the mentioned
matrices are submatrices of .

We will compare the optimal affine controller obtained from
solving (22) to several rival approaches. We first consider the
naïve greedy controller which assumes that the demand at time

will be its mean

and chooses to minimize the corresponding stage cost at
. The naïve greedy control law is therefore

Note that the naïve greedy control law is affine in and therefore
will perform worse than the (optimal) affine controller obtained
from solving (22).

The second controller we consider is the greedy controller
that picks so as to minimize the expected stage cost at .
Let be

for . We take . The
greedy control law is therefore

Note that is not affine in and therefore
not affine in . The greedy control law is therefore not affine
in .

The last rival approach that we consider is certainty-equiva-
lent model predictive control (CE-MPC), explained in detail in
Section VIII.

We take , , , , , and we generate
and randomly: are independent identically distributed

(IID) on , and where and
IID .

We first generate 1000 samples from the distribution of
and solve (23). We then generate another 5000 samples from
the distribution of and test the performance of the affine con-
troller versus the performances of the three rival methods. The
results are shown in Table I, along with the performance of
the (non-causal) prescient controller, which provides a lower on
achievable performance. The optimal affine controller beats the
two greedy controllers by a substantial margin, and has perfor-
mance comparable to that of CE-MPC, and only around 12%
higher than the lower bound given by the (non-causal) prescient
controller.

Fig. 1 shows the histograms of the costs achieved by the op-
timal affine controller, the naïve greedy controller, the greedy
controller, CE-MPC, and, finally, the prescient controller.

VII. DYNAMIC PORTFOLIO OPTIMIZATION

We consider a dynamic portfolio optimization problem, in
which we buy and sell assets each period, in order to generate
an income stream, while at the same time keeping our portfolio
balanced, i.e., not too far from some target portfolio.

We let be our holding (in dollars) in asset in period ,
with meaning a short position, for ,

. We let be our target or desired portfolio;
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Fig. 1. Histograms of the total cost incurred using (a) the naïve greedy con-
troller, (b) the greedy controller, (c) CE-MPC, (d) the optimal affine controller,
and (e) the (non-causal) prescient control law.

one of our goals is to maintain , despite fluctuations
in returns. Our holdings update as

(25)

where is the return on asset in period , and is
amount of asset bought at the beginning of the period (or
sold, if ). The return vectors are IID, from some
known distribution, with almost surely, and mean

. We will refer to (25) as the nonlinear update
equations.

We will make some approximations to put the update (25)
into our linear dynamical system form. First we write (25) as

We now assume that and are small compared
to . Dropping these terms we have the approximate or lin-
earized update equations

(26)
(27)

Here can be thought of as the absolute return vector (since
its entries are in dollars, not percentages); these are IID, from
a known distribution. We will refer to (26) and (27) as the lin-
earized update equations in the sequel.

In addition to requiring to be close to in each
time period , we also require that the budget be conserved
at each step, in expectation, i.e., that for

.
At the beginning of time period , the net cash taken out of

the portfolio (or put into it, if it is negative) is . From
this we subtract a fee for transaction costs, proportional to the
absolute value of the amount of each asset bought or sold, so the
total cash taken out of the portfolio (i.e., the income) at time is

where is the proportional transaction fee rate. We
will measure the utility of this income with a utility function

, which is increasing and concave; the total utility is

which is a concave function of (using one of the composition
rules in convex analysis; see [23, §3.2.4]).

Now we can formulate our problem as

(28)

Here is a parameter that controls how far from the target
portfolio we allow our portfolio to drift. This problem is a stan-
dard convex stochastic control problem, so we can determine the
optimal affine causal feedback control law using the methods
described above.

We can find the optimal affine controller for (28) using sev-
eral methods. If has a discrete distribution (i.e., we model
the returns as taking one of values, with some given prob-
abilities) then we can solve it using standard convex optimiza-
tion techniques. In most cases, however, , and therefore also

, will have a continuous distribution. Because of the
norm appearing in the objective function, it is very unlikely
that the objective can be expressed analytically; thus, it will
have to be approximated by, say, sampling from the distribution,
or any other stochastic optimization method. The constraints,
however, can be expressed exactly using second-order cone (or
convex quadratic) constraints, since is a convex
quadratic function of and .

If we are given the covariance of , and if we replace
the expectation in the objective of (28) by the empirical mean
over sample trajectories , , the problem is

(29)

where and are the th state and control input trajecto-
ries, corresponding to the th sample , is a
matrix whose th block is the identity and

Here is the covariance matrix of and is given by

A. Example

Consider a particular problem instance with four assets,
, and . We choose the target

portfolio to be and let .
We model the returns to be IID, with lognor-

mally distributed with mean and covariance

(See Section A for details on the method used to generate and
.)
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TABLE II
MEAN UTILITIES FOUND BY SIMULATION

We choose the utility function to be the negative quadratic
downside risk

where . Here is the desired portfolio
return, which we take to be .

We compare our approach to a greedy nonlinear controller

The greedy controller assumes that the returns will equal their
means, and re-balances to the target portfolio in each time pe-
riod. Note that under this scheme the budget conservation con-
straint is met.

We generate sample trajectories for and solve
the sampled problem (29) to obtain the affine controller parame-
ters. We then test the resulting affine controller on 5000 sample
trajectories of , using the exact nonlinear dynamics (25), as
well as the approximate linearized dynamics (26) and (27). We
also test the greedy controller on the sample return trajectories.

The results are shown in Table II. There is virtually no dif-
ference between the results in the case of the affine controller
used with approximate or exact dynamics, confirming that our
linearization approximation is good. We can see that the affine
controller substantially outperforms the greedy controller.

VIII. AFFINE RECOURSE MODEL PREDICTIVE CONTROL

In this section we describe an approximate solution for the
stochastic control problem (6), that combines the affine control
laws described above with the basic idea behind model predic-
tive control.

A. Certainty-Equivalent MPC

The most common form of MPC is certainty-equivalent
MPC (CE-MPC). In CE-MPC, the control at time is
found as follows. First, we form estimates of the current and
future process noises, (which are not yet
known), given the state information available at time , i.e.,

. (From these we can find .)
One natural choice (but not the only one) is the conditional
mean, i.e., . We will denote these
estimates as , for .

We now form and solve the (deterministic) convex optimiza-
tion problem

(30)

where we describe the dynamics constraint shortly, and we
must carefully interpret the symbols and . The components

are the actual, measured current and past states;
are to be interpreted as variables in the opti-

TABLE III
SIMULATION RESULTS FOR SUPPLY CHAIN EXAMPLE

mization problem. Likewise, are interpreted
as the actual previous choices of the input;
are interpreted as variables. Finally, we describe the dynamics
constraints, which are

for . Once we solve this problem, we take
as our input. This whole process (re-estimating the current

and future disturbances, forming and solving a new optimization
problem) is repeated at time .

CE-MPC involves two gross approximations, one of which
makes the problem easier, and one harder. CE-MPC completely
ignores all recourse in the future, since it replaces the future
disturbances with deterministic estimates. In fact, we will have
recourse, since we will obtain future states, and can act accord-
ingly. On the other hand, we also ignore all statistical variation
in the future, which Jensen’s inequality tells us will increase the
expected value of the objective (i.e., when conditional means
are used for the estimates). Despite these gross approximations,
CE-MPC works surprisingly well in many applications.

B. Affine Recourse MPC

In this section, we explain how the synthesis of affine con-
trollers, as described above, can be combined with MPC. We
refer to this method as affine-recourse MPC (AR-MPC). The
same idea has already been proposed by van Hessen and Bosgra
[68]–[71] who consider only second moment constraints (by ap-
proximation, in some cases), and so end up with second-order
cone programs to solve. The idea was also used by Goulart et
al. [41]–[43] in the context of robust MPC.

In AR-MPC, our plan includes the idea of recourse in the
future, but limits this recourse to be affine. The control at
time is found as follows. First, we compute the conditional
distribution of given the state information
available at time , i.e., . (This is the same as the
distribution of given .)

We assume that the input at times is affine in the
current and future states, i.e.

(31)

for , , and where and
.

We now form the (stochastic) optimization problem

(32)

where the expectation is taken over the conditional distribu-
tion of given , and
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we must carefully interpret the symbols and . The compo-
nents are the actual, measured current and past
states; are interpreted as the actual previous
choices of the input. The components and

are related by (31) and the optimization vari-
ables are and . We solve (32) using the method
presented in Section V and take

This whole process (re-estimating the conditional distribution
of current and future disturbances, forming and solving a new
stochastic optimization problem) is repeated at time .

C. Example

We compare the performances of the optimal affine con-
troller, CE-MPC and AR-MPC on the supply chain numerical
example used in Section VI-A.

The conditional distribution of given
is also lognormal, i.e.

(33)

for . Here

where and are, respectively, the mean
and covariance of , and

are, respectively, the mean and covariance of
, and is the covariance

of and .
We test these 3 three methods on 2000 sample paths from

the distribution of . The optimal affine controller is obtained
by solving (23), using 500 other sample paths generated from
the distribution of . For each test sample path, we compute
the CE-MPC control at each step by replacing future demand
with the conditional mean, solving a deterministic optimization
problem (30) and using only the first step of the resulting control
plan as control. In the AR-MPC case, for each test sample path
and at each time step , we generate 500 samples of demand vec-
tors from the conditional distribution (33) and solve the short-
ened-horizon stochastic problem (32) and apply the first step in
the resulting affine control.

The results are shown in Table III. The optimal affine,
CE-MPC, and AR-MPC have comparable performances with
a very slight edge of MPC methods over the optimal affine
controller; AR-MPC has a slight but not statistically significant
edge over CE-MPC. (We remind the reader that the online
computation required for the CE-MPC and AR-MPC cases is
far higher than for the affine controller, in which the optimiza-
tion is carried out once, offline.) Note that the prescient control
law achieves a mean cost of 166.5 with a standard deviation
of 54.7. Since the mean cost of the prescient control law is a
lower bound on the globally optimal cost, this means that the
performance of AR-MPC, CE-MPC, and of the optimal affine
controller are all close to optimal.

Fig. 2. Histograms of the total cost incurred using (a) the optimal affine con-
troller, (b) CE-MPC, (c) AR-MPC, and (d) the prescient controller.

Fig. 2 shows the histograms of the total costs achieved by
the optimal controller, CE-MPC, AR-MPC, and the prescient
controller.

IX. CONCLUSION

We have described a method for effectively computing
the globally optimal affine controller for a discrete-time
time-varying linear dynamical system operating over a fi-
nite horizon, with convex cost function, in a stochastic or
worst-case setting. We do this by reducing the problem to a
finite-dimensional convex stochastic optimization problem (for
the stochastic control problem), or a robust convex optimiza-
tion problem (in the worst-case setting). While both of these
problems can be challenging to solve exactly, there are simple
and effective methods, for example based on sampling, that
can be used to find good nearly optimal solutions. We have
demonstrated our method on three rather different applications,
in two cases comparing our method to some other obvious
methods.

While the performance achieved by the affine controllers in
the given examples (and many others) is very good, we mention
again that we are not endorsing affine controllers, or suggesting
that they be used instead of other methods, such as CE-MPC.
We are merely observing that affine controllers can be effec-
tively computed, and that they appear to give very good control
performance. In addition, we make no claim about how subop-
timal affine controllers are, or can be. Indeed, this is a very in-
teresting, and we think generally open, research question.

APPENDIX
ASSET RETURN MODEL

We model the returns such that
where are IID with normal distribution i.e.,

. Here is applied entrywise, , and
.

We consider the case where is described by a single-factor
model, i.e., , for . Here ’s
are the factor loadings, is the (market) factor, and ’s rep-
resent the residual risks. We take and ’s to be independent
Gaussian zero-mean random variables, with respective standard
deviations and . We can think of as the market-related
standard deviation and as the firm-specific standard devia-
tion. Under this model, the covariance matrix of is
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where . The mean returns of the assets are

where is the risk-free return and is the reward-to-risk ratio.
The mean and covariance of are

where indicates the Hadamard product and is applied
entrywise.

In Section VII-A, we take the market standard deviation to
be , are chosen uniformly on [0.3, 1] for

, and are chosen uniformly on [0, 20%] for
. We take , , and the first asset to

be risk-free (i.e., , ). The four assets have risk
(standard deviation) ranging from 0 (for the risk-free asset) to
15.93%, and mean returns ranging from 0 (the risk-free return)
to 8.37%. We reorder the assets by increasing risk (and return).
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