Distributed Optimization and Statistics via Alternating Direction Method of Multipliers

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato

Stanford University

Arbitrary-scale distributed statistical estimation

- large-scale statistics, machine learning, and optimization problems
- AI, internet applications, bioinformatics, signal processing, . . .
- datasets can be extremely large (10M, 100M, 1B+ training examples)
- distributed storage and processing of data
- cloud computing, Hadoop/MapReduce, . . .
- this talk: a way to do this

Outline

- precursors
- dual decomposition
- method of multipliers
- alternating direction method of multipliers
- applications/examples
- conclusions/big picture

Dual problem

- convex equality constrained optimization problem

```
minimize }\quadf(x
subject to }Ax=
```

- Lagrangian: $L(x, y)=f(x)+y^{T}(A x-b)$
- dual function: $g(y)=\inf _{x} L(x, y)$
- dual problem: maximize $g(y)$
- recover $x^{\star}=\operatorname{argmin}_{x} L\left(x, y^{\star}\right)$

Dual ascent

- gradient method for dual problem: $y^{k+1}=y^{k}+\alpha^{k} \nabla g\left(y^{k}\right)$
- $\nabla g\left(y^{k}\right)=A \tilde{x}-b$, where $\tilde{x}=\operatorname{argmin}_{x} L\left(x, y^{k}\right)$
- dual ascent method is

$$
\begin{aligned}
& x^{k+1} \quad:=\operatorname{argmin}_{x} L\left(x, y^{k}\right) \quad / / x \text {-minimization } \\
& y^{k+1}:=y^{k}+\alpha^{k}\left(A x^{k+1}-b\right) \quad / / d u a l \text { update }
\end{aligned}
$$

- works, with lots of strong assumptions

Dual decomposition

- suppose f is separable:

$$
f(x)=f_{1}\left(x_{1}\right)+\cdots+f_{N}\left(x_{N}\right), \quad x=\left(x_{1}, \ldots, x_{N}\right)
$$

- then L is separable in $x: L(x, y)=L_{1}\left(x_{1}, y\right)+\cdots+L_{N}\left(x_{N}, y\right)-y^{T} b$,

$$
L_{i}\left(x_{i}, y\right)=f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}
$$

- x-minimization in dual ascent splits into N separate minimizations

$$
x_{i}^{k+1}:=\underset{x_{i}}{\operatorname{argmin}} L_{i}\left(x_{i}, y^{k}\right)
$$

which can be carried out in parallel

Dual decomposition

- dual decomposition (Everett, Dantzig, Wolfe, Benders 1960-65)

$$
\begin{aligned}
x_{i}^{k+1} & :=\operatorname{argmin}_{x_{i}} L_{i}\left(x_{i}, y^{k}\right), \quad i=1, \ldots, N \\
y^{k+1} & :=y^{k}+\alpha^{k}\left(\sum_{i=1}^{N} A_{i} x_{i}^{k+1}-b\right)
\end{aligned}
$$

- scatter y^{k}; update x_{i} in parallel; gather $A_{i} x_{i}^{k+1}$
- solve a large problem
- by iteratively solving subproblems (in parallel)
- dual variable update provides coordination
- works, with lots of assumptions; often slow

Method of multipliers

- a method to robustify dual ascent
- use augmented Lagrangian (Hestenes, Powell 1969), $\rho>0$

$$
L_{\rho}(x, y)=f(x)+y^{T}(A x-b)+(\rho / 2)\|A x-b\|_{2}^{2}
$$

- method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

$$
\begin{aligned}
x^{k+1} & :=\underset{x}{\operatorname{argmin}} L_{\rho}\left(x, y^{k}\right) \\
y^{k+1} & :=y^{k}+\rho\left(A x^{k+1}-b\right)
\end{aligned}
$$

(note specific dual update step length ρ)

Method of multipliers

- good news: converges under much more relaxed conditions (f can be nondifferentiable, take on value $+\infty, \ldots$)
- bad news: quadratic penalty destroys splitting of the x-update, so can't do decomposition

Alternating direction method of multipliers

- a method
- with good robustness of method of multipliers
- which can support decomposition
"robust dual decomposition" or "decomposable method of multipliers"
- proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

Alternating direction method of multipliers

- ADMM problem form (with f, g convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+g(z) \\
\text { subject to } & A x+B z=c
\end{array}
$$

- two sets of variables, with separable objective
- $L_{\rho}(x, z, y)=f(x)+g(z)+y^{T}(A x+B z-c)+(\rho / 2)\|A x+B z-c\|_{2}^{2}$
- ADMM:

$$
\begin{array}{rlrl}
x^{k+1} & :=\operatorname{argmin}_{x} L_{\rho}\left(x, z^{k}, y^{k}\right) & & / / x \text {-minimization } \\
z^{k+1} & :=\operatorname{argmin}_{z} L_{\rho}\left(x^{k+1}, z, y^{k}\right) & & / / z \text {-minimization } \\
y^{k+1} & :=y^{k}+\rho\left(A x^{k+1}+B z^{k+1}-c\right) & / / \text { dual update }
\end{array}
$$

Alternating direction method of multipliers

- if we minimized over x and z jointly, reduces to method of multipliers
- instead, we do one pass of a Gauss-Seidel method
- we get splitting since we minimize over x with z fixed, and vice versa

ADMM with scaled dual variables

- combine linear and quadratic terms in augmented Lagrangian

$$
\begin{aligned}
L_{\rho}(x, z, y) & =f(x)+g(z)+y^{T}(A x+B z-c)+(\rho / 2)\|A x+B z-c\|_{2}^{2} \\
& =f(x)+g(z)+(\rho / 2)\|A x+B z-c+u\|_{2}^{2}+\text { const. }
\end{aligned}
$$

with $u^{k}=(1 / \rho) y^{k}$

- ADMM (scaled dual form):

$$
\begin{aligned}
x^{k+1} & :=\underset{x}{\operatorname{argmin}}\left(f(x)+(\rho / 2)\left\|A x+B z^{k}-c+u^{k}\right\|_{2}^{2}\right) \\
z^{k+1} & :=\underset{z}{\operatorname{argmin}}\left(g(z)+(\rho / 2)\left\|A x^{k+1}+B z-c+u^{k}\right\|_{2}^{2}\right) \\
u^{k+1} & :=u^{k}+\left(A x^{k+1}+B z^{k+1}-c\right)
\end{aligned}
$$

Convergence

- assume (very little!)
- f, g convex, closed, proper
- L_{0} has a saddle point
- then ADMM converges:
- iterates approach feasibility: $A x^{k}+B z^{k}-c \rightarrow 0$
- objective approaches optimal value: $f\left(x^{k}\right)+g\left(z^{k}\right) \rightarrow p^{\star}$

Related algorithms

- operator splitting methods
(Douglas, Peaceman, Rachford, Lions, Mercier, . . 1950s, 1979)
- proximal point algorithm (Rockafellar 1976)
- Dykstra's alternating projections algorithm (1983)
- Spingarn's method of partial inverses (1985)
- Rockafellar-Wets progressive hedging (1991)
- proximal methods (Rockafellar, many others, 1976-present)
- Bregman iterative methods (2008-present)
- most of these are special cases of the proximal point algorithm

The prox operator

- consider x-update when $A=I$

$$
x^{+}=\underset{x}{\operatorname{argmin}}\left(f(x)+(\rho / 2)\|x-v\|_{2}^{2}\right)=\operatorname{prox}_{f, \rho}(v)
$$

- some special cases:

$$
\begin{array}{ll}
\left.f=\delta_{C} \text { (indicator func. of set } C\right) & x^{+}:=\Pi_{C}(v) \text { (projection onto } C \text {) } \\
f=\lambda\|\cdot\|_{1}\left(\ell_{1}\right. \text { norm) } & x_{i}^{+}:=S_{\lambda / \rho}\left(v_{i}\right) \text { (soft thresholding) } \\
\left(S_{a}(v)=(v-a)_{+}-(-v-a)_{+}\right) &
\end{array}
$$

- similar for z-update when $B=I$

Quadratic objective

- $f(x)=(1 / 2) x^{T} P x+q^{T} x+r$
- $x^{+}:=\left(P+\rho A^{T} A\right)^{-1}\left(\rho A^{T} v-q\right)$
- use matrix inversion lemma when computationally advantageous

$$
\left(P+\rho A^{T} A\right)^{-1}=P^{-1}-\rho P^{-1} A^{T}\left(I+\rho A P^{-1} A^{T}\right)^{-1} A P^{-1}
$$

- (direct method) cache factorization of $P+\rho A^{T} A$ (or $I+\rho A P^{-1} A^{T}$)
- (iterative method) warm start, early stopping, reducing tolerances

Lasso

- lasso problem:

$$
\operatorname{minimize} \quad(1 / 2)\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
$$

- ADMM form:

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2)\|A x-b\|_{2}^{2}+\lambda\|z\|_{1} \\
\text { subject to } & x-z=0
\end{array}
$$

- ADMM:

$$
\begin{aligned}
x^{k+1} & :=\left(A^{T} A+\rho I\right)^{-1}\left(A^{T} b+\rho z^{k}-y^{k}\right) \\
z^{k+1} & :=S_{\lambda / \rho}\left(x^{k+1}+y^{k} / \rho\right) \\
y^{k+1} & :=y^{k}+\rho\left(x^{k+1}-z^{k+1}\right)
\end{aligned}
$$

Lasso example

- example with dense $A \in \mathbf{R}^{1500 \times 5000}$ (1500 measurements; 5000 regressors)
- computation times

$$
\begin{array}{ll}
\text { factorization (same as ridge regression) } & 1.3 \mathrm{~s} \\
\text { subsequent ADMM iterations } & 0.03 \mathrm{~s} \\
\text { lasso solve (about } 50 \mathrm{ADMM} \text { iterations) } & 2.9 \mathrm{~s} \\
\text { full regularization path }(30 \lambda \text { 's) } & 4.4 \mathrm{~s}
\end{array}
$$

- not bad for a very short script

Sparse inverse covariance selection

- S : empirical covariance of samples from $\mathcal{N}(0, \Sigma)$, with Σ^{-1} sparse (i.e., Gaussian Markov random field)
- estimate Σ^{-1} via ℓ_{1} regularized maximum likelihood

$$
\text { minimize } \operatorname{Tr}(S X)-\log \operatorname{det} X+\lambda\|X\|_{1}
$$

- methods: COVSEL (Banerjee et al 2008), graphical lasso (FHT 2008)

Sparse inverse covariance selection via ADMM

- ADMM form:

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{Tr}(S X)-\log \operatorname{det} X+\lambda\|Z\|_{1} \\
\text { subject to } & X-Z=0
\end{array}
$$

- ADMM:

$$
\begin{aligned}
X^{k+1} & :=\underset{X}{\operatorname{argmin}}\left(\operatorname{Tr}(S X)-\log \operatorname{det} X+(\rho / 2)\left\|X-Z^{k}+U^{k}\right\|_{F}^{2}\right) \\
Z^{k+1} & :=S_{\lambda / \rho}\left(X^{k+1}+U^{k}\right) \\
U^{k+1} & :=U^{k}+\left(X^{k+1}-Z^{k+1}\right)
\end{aligned}
$$

Analytical solution for X-update

- compute eigendecomposition $\rho\left(Z^{k}-U^{k}\right)-S=Q \Lambda Q^{T}$
- form diagonal matrix \tilde{X} with

$$
\tilde{X}_{i i}=\frac{\lambda_{i}+\sqrt{\lambda_{i}^{2}+4 \rho}}{2 \rho}
$$

- let $X^{k+1}:=Q \tilde{X} Q^{T}$
- cost of X-update is an eigendecomposition
- (but, probably faster to update X using a smooth solver)

Sparse inverse covariance selection example

- Σ^{-1} is 1000×1000 with 10^{4} nonzeros
- graphical lasso (Fortran): 20 seconds - 3 minutes
- ADMM (Matlab): 3-10 minutes
- (depends on choice of λ)
- very rough experiment, but with no special tuning, ADMM is in ballpark of recent specialized methods
- (for comparison, COVSEL takes $25+\min$ when Σ^{-1} is a 400×400 tridiagonal matrix)

Consensus optimization

- want to solve problem with N objective terms

$$
\operatorname{minimize} \quad \sum_{i=1}^{N} f_{i}(x)
$$

- e.g., f_{i} is the loss function for i th block of training data
- ADMM form:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{N} f_{i}\left(x_{i}\right) \\
\text { subject to } & x_{i}-z=0
\end{array}
$$

- x_{i} are local variables
$-z$ is the global variable
$-x_{i}-z=0$ are consistency or consensus constraints
- can add regularization using a $g(z)$ term

Consensus optimization via ADMM

- $L_{\rho}(x, z, y)=\sum_{i=1}^{N}\left(f_{i}\left(x_{i}\right)+y_{i}^{T}\left(x_{i}-z\right)+(\rho / 2)\left\|x_{i}-z\right\|_{2}^{2}\right)$
- ADMM:

$$
\begin{aligned}
x_{i}^{k+1} & :=\underset{x_{i}}{\operatorname{argmin}}\left(f_{i}\left(x_{i}\right)+y_{i}^{k T}\left(x_{i}-z^{k}\right)+(\rho / 2)\left\|x_{i}-z^{k}\right\|_{2}^{2}\right) \\
z^{k+1} & :=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}^{k+1}+(1 / \rho) y_{i}^{k}\right) \\
y_{i}^{k+1} & :=y_{i}^{k}+\rho\left(x_{i}^{k+1}-z^{k+1}\right)
\end{aligned}
$$

- with regularization, averaging in z update is followed by $\operatorname{prox}_{g, \rho}$

Consensus optimization via ADMM

- using $\sum_{i=1}^{N} y_{i}^{k}=0$, algorithm simplifies to

$$
\begin{aligned}
x_{i}^{k+1} & :=\underset{x_{i}}{\operatorname{argmin}}\left(f_{i}\left(x_{i}\right)+y_{i}^{k T}\left(x_{i}-\bar{x}^{k}\right)+(\rho / 2)\left\|x_{i}-\bar{x}^{k}\right\|_{2}^{2}\right) \\
y_{i}^{k+1} & :=y_{i}^{k}+\rho\left(x_{i}^{k+1}-\bar{x}^{k+1}\right)
\end{aligned}
$$

where $\bar{x}^{k}=(1 / N) \sum_{i=1}^{N} x_{i}^{k}$

- in each iteration
- gather x_{i}^{k} and average to get \bar{x}^{k}
- scatter the average \bar{x}^{k} to processors
- update y_{i}^{k} locally (in each processor, in parallel)
- update x_{i} locally

Statistical interpretation

- f_{i} is negative log-likelihood for parameter x given i th data block
- x_{i}^{k+1} is MAP estimate under prior $\mathcal{N}\left(\bar{x}^{k}+(1 / \rho) y_{i}^{k}, \rho I\right)$
- prior mean is previous iteration's consensus shifted by 'price' of processor i disagreeing with previous consensus
- processors only need to support a Gaussian MAP method
- type or number of data in each block not relevant
- consensus protocol yields global maximum-likelihood estimate

Consensus classification

- data (examples) $\left(a_{i}, b_{i}\right), i=1, \ldots, N, a_{i} \in \mathbf{R}^{n}, b_{i} \in\{-1,+1\}$
- linear classifier $\operatorname{sign}\left(a^{T} w+v\right)$, with weight w, offset v
- margin for i th example is $b_{i}\left(a_{i}^{T} w+v\right)$; want margin to be positive
- loss for i th example is $l\left(b_{i}\left(a_{i}^{T} w+v\right)\right)$
- l is loss function (hinge, logistic, probit, exponential, . . .)
- choose w, v to minimize $\frac{1}{N} \sum_{i=1}^{N} l\left(b_{i}\left(a_{i}^{T} w+v\right)\right)+r(w)$
$-r(w)$ is regularization term $\left(\ell_{2}, \ell_{1}, \ldots\right)$
- split data and use ADMM consensus to solve

Consensus SVM example

- hinge loss $l(u)=(1-u)_{+}$with ℓ_{2} regularization
- baby problem with $n=2, N=400$ to illustrate
- examples split into 20 groups, in worst possible way: each group contains only positive or negative examples

Iteration 1

Iteration 5

Iteration 40

ℓ_{1} regularized logistic regression example

- logistic loss, $l(u)=\log \left(1+e^{-u}\right)$, with ℓ_{1} regularization
- $n=10^{4}, N=10^{6}$, sparse with ≈ 10 nonzero regressors in each example
- split data into 100 blocks with $N=10^{4}$ examples each
- x_{i} updates involve ℓ_{2} regularized logistic loss, done with stock L-BFGS, default parameters
- time for all x_{i} updates is maximum over x_{i} update times

Distributed logistic regression example

Big picture/conclusions

- scaling: scale algorithms to datasets of arbitrary size
- cloud computing: run algorithms in the cloud
- each node handles a modest convex problem
- decentralized data storage
- coordination: ADMM is meta-algorithm that coordinates existing solvers to solve problems of arbitrary size
(c.f. designing specialized large-scale algorithms for specific problems)
- updates can be done using analytical solution, Newton's method, CG, L-BFGS, first-order method, custom method
- rough draft at Boyd website

What we don't know

- we don't have definitive answers on how to choose ρ, or scale equality constraints
- don't yet have MapReduce or cloud implementation
- we don't know if/how Nesterov style accelerations can be applied

Answers

- yes, Trevor, this works with fat data matrices
- yes, Jonathan, you can split by features rather than examples (but it's more complicated; see the paper)
- yes, Emmanuel, the worst case complexity of ADMM is bad $\left(O\left(1 / \epsilon^{2}\right)\right)$

