Distributed Optimization and Statistics via Alternating Direction Method of Multipliers

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato

Stanford University

Stanford Statistics Seminar, September 2010

Arbitrary-scale distributed statistical estimation

- large-scale statistics, machine learning, and optimization problems
 - AI, internet applications, bioinformatics, signal processing, . . .
- datasets can be extremely large (10M, 100M, 1B+ training examples)
- distributed storage and processing of data
 - cloud computing, Hadoop/MapReduce, . . .
- this talk: a way to do this

Outline

- precursors
 - dual decomposition
 - method of multipliers
- alternating direction method of multipliers
- applications/examples
- conclusions/big picture

Dual problem

• convex equality constrained optimization problem

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & Ax = b \end{array}$

• Lagrangian:
$$L(x,y) = f(x) + y^T(Ax - b)$$

- dual function: $g(y) = \inf_x L(x, y)$
- dual problem: maximize g(y)
- recover $x^{\star} = \operatorname{argmin}_{x} L(x, y^{\star})$

Dual ascent

• gradient method for dual problem: $y^{k+1} = y^k + \alpha^k \nabla g(y^k)$

•
$$\nabla g(y^k) = A\tilde{x} - b$$
, where $\tilde{x} = \operatorname{argmin}_x L(x, y^k)$

• dual ascent method is

$$x^{k+1}$$
 := $\operatorname{argmin}_{x} L(x, y^{k})$ // x-minimization
 y^{k+1} := $y^{k} + \alpha^{k} (Ax^{k+1} - b)$ // dual update

• works, with lots of strong assumptions

Dual decomposition

• suppose *f* is separable:

$$f(x) = f_1(x_1) + \dots + f_N(x_N), \quad x = (x_1, \dots, x_N)$$

• then L is separable in x: $L(x,y) = L_1(x_1,y) + \cdots + L_N(x_N,y) - y^T b$,

$$L_i(x_i, y) = f_i(x_i) + y^T A_i x_i$$

• x-minimization in dual ascent splits into N separate minimizations

$$x_i^{k+1} := \operatorname*{argmin}_{x_i} L_i(x_i, y^k)$$

which can be carried out in parallel

Stanford Statistics Seminar, September 2010

Dual decomposition

• dual decomposition (Everett, Dantzig, Wolfe, Benders 1960–65)

$$x_{i}^{k+1} := \operatorname{argmin}_{x_{i}} L_{i}(x_{i}, y^{k}), \quad i = 1, \dots, N$$
$$y^{k+1} := y^{k} + \alpha^{k} (\sum_{i=1}^{N} A_{i} x_{i}^{k+1} - b)$$

• scatter
$$y^k$$
; update x_i in parallel; gather $A_i x_i^{k+1}$

- solve a large problem
 - by iteratively solving subproblems (in parallel)
 - dual variable update provides coordination
- works, with lots of assumptions; often slow

Method of multipliers

- a method to robustify dual ascent
- use augmented Lagrangian (Hestenes, Powell 1969), $\rho > 0$

$$L_{\rho}(x,y) = f(x) + y^{T}(Ax - b) + (\rho/2) ||Ax - b||_{2}^{2}$$

• method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

$$x^{k+1} := \underset{x}{\operatorname{argmin}} L_{\rho}(x, y^{k})$$
$$y^{k+1} := y^{k} + \rho(Ax^{k+1} - b)$$

(note specific dual update step length ρ)

Stanford Statistics Seminar, September 2010

Method of multipliers

- good news: converges under much more relaxed conditions $(f \text{ can be nondifferentiable, take on value }+\infty, \dots)$
- bad news: quadratic penalty destroys splitting of the x-update, so can't do decomposition

Alternating direction method of multipliers

- a method
 - with good robustness of method of multipliers
 - which can support decomposition
 - "robust dual decomposition" or "decomposable method of multipliers"
- proposed by Gabay, Mercier, Glowinski, Marrocco in 1976

Alternating direction method of multipliers

• ADMM problem form (with f, g convex)

 $\begin{array}{ll} \mbox{minimize} & f(x) + g(z) \\ \mbox{subject to} & Ax + Bz = c \end{array}$

- two sets of variables, with separable objective

• $L_{\rho}(x, z, y) = f(x) + g(z) + y^T (Ax + Bz - c) + (\rho/2) ||Ax + Bz - c||_2^2$ • ADMM:

$$\begin{aligned} x^{k+1} &:= \operatorname{argmin}_{x} L_{\rho}(x, z^{k}, y^{k}) & //x \text{-minimization} \\ z^{k+1} &:= \operatorname{argmin}_{z} L_{\rho}(x^{k+1}, z, y^{k}) & //z \text{-minimization} \\ y^{k+1} &:= y^{k} + \rho(Ax^{k+1} + Bz^{k+1} - c) & // \text{ dual update} \end{aligned}$$

Alternating direction method of multipliers

- if we minimized over x and z jointly, reduces to method of multipliers
- instead, we do one pass of a Gauss-Seidel method
- we get splitting since we minimize over x with z fixed, and vice versa

ADMM with scaled dual variables

• combine linear and quadratic terms in augmented Lagrangian

$$L_{\rho}(x, z, y) = f(x) + g(z) + y^{T}(Ax + Bz - c) + (\rho/2) ||Ax + Bz - c||_{2}^{2}$$

= $f(x) + g(z) + (\rho/2) ||Ax + Bz - c + u||_{2}^{2} + \text{const.}$

with $u^k = (1/\rho) y^k$

• ADMM (scaled dual form):

$$\begin{aligned} x^{k+1} &:= \arg\min_{x} \left(f(x) + (\rho/2) \|Ax + Bz^{k} - c + u^{k}\|_{2}^{2} \right) \\ z^{k+1} &:= \arg\min_{z} \left(g(z) + (\rho/2) \|Ax^{k+1} + Bz - c + u^{k}\|_{2}^{2} \right) \\ u^{k+1} &:= u^{k} + (Ax^{k+1} + Bz^{k+1} - c) \end{aligned}$$

Stanford Statistics Seminar, September 2010

Convergence

- assume (very little!)
 - f, g convex, closed, proper
 - L_0 has a saddle point
- then ADMM converges:
 - iterates approach feasibility: $Ax^k + Bz^k c \rightarrow 0$
 - objective approaches optimal value: $f(x^k) + g(z^k) \rightarrow p^\star$

Related algorithms

- operator splitting methods (Douglas, Peaceman, Rachford, Lions, Mercier, . . . 1950s, 1979)
- proximal point algorithm (*Rockafellar 1976*)
- Dykstra's alternating projections algorithm (1983)
- Spingarn's method of partial inverses (1985)
- Rockafellar-Wets progressive hedging (1991)
- proximal methods (Rockafellar, many others, 1976-present)
- Bregman iterative methods (2008–present)
- most of these are special cases of the proximal point algorithm

The prox operator

• consider x-update when A = I

$$x^{+} = \underset{x}{\operatorname{argmin}} \left(f(x) + (\rho/2) \|x - v\|_{2}^{2} \right) = \mathbf{prox}_{f,\rho}(v)$$

• some special cases:

$$f = \delta_C \text{ (indicator func. of set } C) \quad x^+ := \Pi_C(v) \text{ (projection onto } C)$$

$$f = \lambda \| \cdot \|_1 \text{ (} \ell_1 \text{ norm)} \qquad \qquad x_i^+ := S_{\lambda/\rho}(v_i) \text{ (soft thresholding)}$$

$$(S_a(v) = (v - a)_+ - (-v - a)_+)$$

• similar for z-update when B = I

Quadratic objective

•
$$f(x) = (1/2)x^T P x + q^T x + r$$

•
$$x^+ := (P + \rho A^T A)^{-1} (\rho A^T v - q)$$

use matrix inversion lemma when computationally advantageous

$$(P + \rho A^T A)^{-1} = P^{-1} - \rho P^{-1} A^T (I + \rho A P^{-1} A^T)^{-1} A P^{-1}$$

- (direct method) cache factorization of $P + \rho A^T A$ (or $I + \rho A P^{-1} A^T$)
- (iterative method) warm start, early stopping, reducing tolerances

Lasso

• lasso problem:

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||x||_1$$

• ADMM form:

minimize
$$(1/2) ||Ax - b||_2^2 + \lambda ||z||_1$$

subject to $x - z = 0$

• ADMM:

$$\begin{aligned} x^{k+1} &:= (A^T A + \rho I)^{-1} (A^T b + \rho z^k - y^k) \\ z^{k+1} &:= S_{\lambda/\rho} (x^{k+1} + y^k/\rho) \\ y^{k+1} &:= y^k + \rho (x^{k+1} - z^{k+1}) \end{aligned}$$

Stanford Statistics Seminar, September 2010

Lasso example

• example with dense $A \in \mathbb{R}^{1500 \times 5000}$ (1500 measurements; 5000 regressors)

• computation times

factorization (same as ridge regression)	1.3s
subsequent ADMM iterations	0.03s
lasso solve (about 50 ADMM iterations)	2.9s
full regularization path (30 λ 's)	4.4s

• not bad for a *very short* script

Sparse inverse covariance selection

• S: empirical covariance of samples from $\mathcal{N}(0, \Sigma)$, with Σ^{-1} sparse (*i.e.*, Gaussian Markov random field)

• estimate Σ^{-1} via ℓ_1 regularized maximum likelihood

minimize $\operatorname{Tr}(SX) - \log \det X + \lambda \|X\|_1$

• methods: COVSEL (Banerjee et al 2008), graphical lasso (FHT 2008)

Sparse inverse covariance selection via ADMM

• ADMM form:

minimize
$$\operatorname{Tr}(SX) - \log \det X + \lambda \|Z\|_1$$

subject to $X - Z = 0$

• ADMM:

$$X^{k+1} := \underset{X}{\operatorname{argmin}} \left(\operatorname{Tr}(SX) - \log \det X + (\rho/2) \| X - Z^k + U^k \|_F^2 \right)$$
$$Z^{k+1} := S_{\lambda/\rho} (X^{k+1} + U^k)$$
$$U^{k+1} := U^k + (X^{k+1} - Z^{k+1})$$

Stanford Statistics Seminar, September 2010

Analytical solution for X-update

- compute eigendecomposition $\rho(Z^k-U^k)-S=Q\Lambda Q^T$
- form diagonal matrix \tilde{X} with

$$\tilde{X}_{ii} = \frac{\lambda_i + \sqrt{\lambda_i^2 + 4\rho}}{2\rho}$$

• let
$$X^{k+1} := Q \tilde{X} Q^T$$

- cost of X-update is an eigendecomposition
- (but, probably faster to update X using a smooth solver)

Sparse inverse covariance selection example

- Σ^{-1} is 1000×1000 with 10^4 nonzeros
 - graphical lasso (Fortran): 20 seconds 3 minutes
 - ADMM (Matlab): 3 10 minutes
 - (depends on choice of λ)
- very rough experiment, but with no special tuning, ADMM is in ballpark of recent specialized methods
- (for comparison, COVSEL takes 25+ min when Σ^{-1} is a 400×400 tridiagonal matrix)

Consensus optimization

• want to solve problem with N objective terms

minimize $\sum_{i=1}^{N} f_i(x)$

- e.g., f_i is the loss function for *i*th block of training data

• ADMM form:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $x_i - z = 0$

- x_i are local variables
- z is the global variable
- $x_i z = 0$ are *consistency* or *consensus* constraints
- can add regularization using a g(z) term

Consensus optimization via ADMM

•
$$L_{\rho}(x, z, y) = \sum_{i=1}^{N} \left(f_i(x_i) + y_i^T(x_i - z) + (\rho/2) \|x_i - z\|_2^2 \right)$$

• ADMM:

$$\begin{aligned} x_i^{k+1} &:= \arg \min_{x_i} \left(f_i(x_i) + y_i^{kT}(x_i - z^k) + (\rho/2) \|x_i - z^k\|_2^2 \right) \\ z^{k+1} &:= \frac{1}{N} \sum_{i=1}^N \left(x_i^{k+1} + (1/\rho) y_i^k \right) \\ y_i^{k+1} &:= y_i^k + \rho(x_i^{k+1} - z^{k+1}) \end{aligned}$$

• with regularization, averaging in z update is followed by $\mathbf{prox}_{g,\rho}$

Consensus optimization via ADMM

• using $\sum_{i=1}^{N} y_i^k = 0$, algorithm simplifies to

$$x_{i}^{k+1} := \underset{x_{i}}{\operatorname{argmin}} \left(f_{i}(x_{i}) + y_{i}^{kT}(x_{i} - \overline{x}^{k}) + (\rho/2) \|x_{i} - \overline{x}^{k}\|_{2}^{2} \right)$$
$$y_{i}^{k+1} := y_{i}^{k} + \rho(x_{i}^{k+1} - \overline{x}^{k+1})$$

where $\overline{x}^k = (1/N) \sum_{i=1}^N x_i^k$

- in each iteration
 - gather x_i^k and average to get \overline{x}^k
 - scatter the average \overline{x}^k to processors
 - update y_i^k locally (in each processor, in parallel)
 - update x_i locally

Statistical interpretation

- f_i is negative log-likelihood for parameter x given *i*th data block
- x_i^{k+1} is MAP estimate under prior $\mathcal{N}(\overline{x}^k + (1/\rho)y_i^k, \rho I)$
- prior mean is previous iteration's consensus shifted by 'price' of processor i disagreeing with previous consensus
- processors only need to support a Gaussian MAP method
 - type or number of data in each block not relevant
 - consensus protocol yields global maximum-likelihood estimate

Consensus classification

- data (examples) (a_i, b_i) , i = 1, ..., N, $a_i \in \mathbf{R}^n$, $b_i \in \{-1, +1\}$
- linear classifier $sign(a^Tw + v)$, with weight w, offset v
- margin for *i*th example is $b_i(a_i^Tw + v)$; want margin to be positive
- loss for *i*th example is $l(b_i(a_i^Tw + v))$
 - *l* is loss function (hinge, logistic, probit, exponential, . . .)
- choose w, v to minimize $\frac{1}{N} \sum_{i=1}^{N} l(b_i(a_i^T w + v)) + r(w)$
 - r(w) is regularization term (ℓ_2 , ℓ_1 , . . .)
- split data and use ADMM consensus to solve

Consensus SVM example

- hinge loss $l(u) = (1 u)_+$ with ℓ_2 regularization
- baby problem with n = 2, N = 400 to illustrate
- examples split into 20 groups, in worst possible way: each group contains only positive or negative examples

Iteration 1

Iteration 5

Iteration 40

ℓ_1 regularized logistic regression example

- logistic loss, $l(u) = \log (1 + e^{-u})$, with ℓ_1 regularization
- $n = 10^4$, $N = 10^6$, sparse with ≈ 10 nonzero regressors in each example
- split data into 100 blocks with $N = 10^4$ examples each
- x_i updates involve ℓ_2 regularized logistic loss, done with stock L-BFGS, default parameters
- time for all x_i updates is maximum over x_i update times

Distributed logistic regression example

Big picture/conclusions

- *scaling*: scale algorithms to datasets of arbitrary size
- *cloud computing*: run algorithms in the cloud
 - each node handles a modest convex problem
 - decentralized data storage
- *coordination*: ADMM is meta-algorithm that coordinates existing solvers to solve problems of arbitrary size
 - (c.f. designing specialized large-scale algorithms for specific problems)
- updates can be done using analytical solution, Newton's method, CG, L-BFGS, first-order method, custom method
- rough draft at Boyd website

What we don't know

- we don't have definitive answers on how to choose ρ , or scale equality constraints
- don't yet have MapReduce or cloud implementation
- we don't know if/how Nesterov style accelerations can be applied

Answers

- yes, Trevor, this works with fat data matrices
- yes, Jonathan, you can split by features rather than examples (but it's more complicated; see the paper)
- yes, Emmanuel, the worst case complexity of ADMM is bad $(O(1/\epsilon^2))$