
Distributed Optimization and Statistics via

Alternating Direction Method of Multipliers

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato

Stanford University

Stanford Statistics Seminar, September 2010



Arbitrary-scale distributed statistical estimation

• large-scale statistics, machine learning, and optimization problems

– AI, internet applications, bioinformatics, signal processing, . . .

• datasets can be extremely large (10M, 100M, 1B+ training examples)

• distributed storage and processing of data

– cloud computing, Hadoop/MapReduce, . . .

• this talk: a way to do this
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Outline

• precursors

– dual decomposition
– method of multipliers

• alternating direction method of multipliers

• applications/examples

• conclusions/big picture
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Dual problem

• convex equality constrained optimization problem

minimize f(x)
subject to Ax = b

• Lagrangian: L(x, y) = f(x) + yT (Ax− b)

• dual function: g(y) = infxL(x, y)

• dual problem: maximize g(y)

• recover x⋆ = argminxL(x, y
⋆)
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Dual ascent

• gradient method for dual problem: yk+1 = yk + αk∇g(yk)

• ∇g(yk) = Ax̃− b, where x̃ = argminxL(x, y
k)

• dual ascent method is

xk+1 := argminxL(x, y
k) // x-minimization

yk+1 := yk + αk(Axk+1 − b) // dual update

• works, with lots of strong assumptions
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Dual decomposition

• suppose f is separable:

f(x) = f1(x1) + · · ·+ fN(xN), x = (x1, . . . , xN)

• then L is separable in x: L(x, y) = L1(x1, y) + · · ·+ LN(xN , y)− yT b,

Li(xi, y) = fi(xi) + yTAixi

• x-minimization in dual ascent splits into N separate minimizations

xk+1

i := argmin
xi

Li(xi, y
k)

which can be carried out in parallel
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Dual decomposition

• dual decomposition (Everett, Dantzig, Wolfe, Benders 1960–65)

xk+1

i := argminxi
Li(xi, y

k), i = 1, . . . , N

yk+1 := yk + αk(
∑N

i=1
Aix

k+1

i − b)

• scatter yk; update xi in parallel; gather Aix
k+1

i

• solve a large problem

– by iteratively solving subproblems (in parallel)
– dual variable update provides coordination

• works, with lots of assumptions; often slow
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Method of multipliers

• a method to robustify dual ascent

• use augmented Lagrangian (Hestenes, Powell 1969), ρ > 0

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)‖Ax− b‖22

• method of multipliers (Hestenes, Powell; analysis in Bertsekas 1982)

xk+1 := argmin
x

Lρ(x, y
k)

yk+1 := yk + ρ(Axk+1 − b)

(note specific dual update step length ρ)
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Method of multipliers

• good news: converges under much more relaxed conditions
(f can be nondifferentiable, take on value +∞, . . . )

• bad news: quadratic penalty destroys splitting of the x-update, so can’t
do decomposition
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Alternating direction method of multipliers

• a method

– with good robustness of method of multipliers
– which can support decomposition

“robust dual decomposition” or “decomposable method of multipliers”

• proposed by Gabay, Mercier, Glowinski, Marrocco in 1976
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Alternating direction method of multipliers

• ADMM problem form (with f , g convex)

minimize f(x) + g(z)
subject to Ax+Bz = c

– two sets of variables, with separable objective

• Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22

• ADMM:

xk+1 := argminxLρ(x, z
k, yk) // x-minimization

zk+1 := argminz Lρ(x
k+1, z, yk) // z-minimization

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c) // dual update
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Alternating direction method of multipliers

• if we minimized over x and z jointly, reduces to method of multipliers

• instead, we do one pass of a Gauss-Seidel method

• we get splitting since we minimize over x with z fixed, and vice versa
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ADMM with scaled dual variables

• combine linear and quadratic terms in augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖22

= f(x) + g(z) + (ρ/2)‖Ax+Bz − c+ u‖22 + const.

with uk = (1/ρ)yk

• ADMM (scaled dual form):

xk+1 := argmin
x

(

f(x) + (ρ/2)‖Ax+Bzk − c+ uk‖22
)

zk+1 := argmin
z

(

g(z) + (ρ/2)‖Axk+1 +Bz − c+ uk‖22
)

uk+1 := uk + (Axk+1 +Bzk+1 − c)
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Convergence

• assume (very little!)

– f , g convex, closed, proper
– L0 has a saddle point

• then ADMM converges:

– iterates approach feasibility: Axk +Bzk − c → 0
– objective approaches optimal value: f(xk) + g(zk) → p⋆

Stanford Statistics Seminar, September 2010 13



Related algorithms

• operator splitting methods
(Douglas, Peaceman, Rachford, Lions, Mercier, . . . 1950s, 1979)

• proximal point algorithm (Rockafellar 1976)

• Dykstra’s alternating projections algorithm (1983)

• Spingarn’s method of partial inverses (1985)

• Rockafellar-Wets progressive hedging (1991)

• proximal methods (Rockafellar, many others, 1976–present)

• Bregman iterative methods (2008–present)

• most of these are special cases of the proximal point algorithm
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The prox operator

• consider x-update when A = I

x+ = argmin
x

(

f(x) + (ρ/2)‖x− v‖22
)

= proxf,ρ(v)

• some special cases:

f = δC (indicator func. of set C) x+ := ΠC(v) (projection onto C)

f = λ‖ · ‖1 (ℓ1 norm) x+

i := Sλ/ρ(vi) (soft thresholding)

(Sa(v) = (v − a)+ − (−v − a)+)

• similar for z-update when B = I
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Quadratic objective

• f(x) = (1/2)xTPx+ qTx+ r

• x+ := (P + ρATA)−1(ρATv − q)

• use matrix inversion lemma when computationally advantageous

(P + ρATA)−1 = P−1 − ρP−1AT (I + ρAP−1AT )−1AP−1

• (direct method) cache factorization of P + ρATA (or I + ρAP−1AT )

• (iterative method) warm start, early stopping, reducing tolerances
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Lasso

• lasso problem:

minimize (1/2)‖Ax− b‖22 + λ‖x‖1

• ADMM form:

minimize (1/2)‖Ax− b‖22 + λ‖z‖1
subject to x− z = 0

• ADMM:

xk+1 := (ATA+ ρI)−1(AT b+ ρzk − yk)

zk+1 := Sλ/ρ(x
k+1 + yk/ρ)

yk+1 := yk + ρ(xk+1 − zk+1)
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Lasso example

• example with dense A ∈ R1500×5000

(1500 measurements; 5000 regressors)

• computation times

factorization (same as ridge regression) 1.3s

subsequent ADMM iterations 0.03s

lasso solve (about 50 ADMM iterations) 2.9s

full regularization path (30 λ’s) 4.4s

• not bad for a very short script
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Sparse inverse covariance selection

• S: empirical covariance of samples from N (0,Σ), with Σ−1 sparse
(i.e., Gaussian Markov random field)

• estimate Σ−1 via ℓ1 regularized maximum likelihood

minimize Tr(SX)− log detX + λ‖X‖1

• methods: COVSEL (Banerjee et al 2008), graphical lasso (FHT 2008)
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Sparse inverse covariance selection via ADMM

• ADMM form:

minimize Tr(SX)− log detX + λ‖Z‖1
subject to X − Z = 0

• ADMM:

Xk+1 := argmin
X

(

Tr(SX)− log detX + (ρ/2)‖X − Zk + Uk‖2F
)

Zk+1 := Sλ/ρ(X
k+1 + Uk)

Uk+1 := Uk + (Xk+1 − Zk+1)
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Analytical solution for X-update

• compute eigendecomposition ρ(Zk − Uk)− S = QΛQT

• form diagonal matrix X̃ with

X̃ii =
λi +

√

λ2
i + 4ρ

2ρ

• let Xk+1 := QX̃QT

• cost of X-update is an eigendecomposition

• (but, probably faster to update X using a smooth solver)
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Sparse inverse covariance selection example

• Σ−1 is 1000× 1000 with 104 nonzeros

– graphical lasso (Fortran): 20 seconds – 3 minutes
– ADMM (Matlab): 3 – 10 minutes
– (depends on choice of λ)

• very rough experiment, but with no special tuning, ADMM is in ballpark
of recent specialized methods

• (for comparison, COVSEL takes 25+ min when Σ−1 is a 400× 400
tridiagonal matrix)
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Consensus optimization

• want to solve problem with N objective terms

minimize
∑N

i=1
fi(x)

– e.g., fi is the loss function for ith block of training data

• ADMM form:
minimize

∑N
i=1

fi(xi)
subject to xi − z = 0

– xi are local variables
– z is the global variable
– xi − z = 0 are consistency or consensus constraints
– can add regularization using a g(z) term
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Consensus optimization via ADMM

• Lρ(x, z, y) =
∑N

i=1

(

fi(xi) + yTi (xi − z) + (ρ/2)‖xi − z‖22
)

• ADMM:

xk+1

i := argmin
xi

(

fi(xi) + ykTi (xi − zk) + (ρ/2)‖xi − zk‖22
)

zk+1 :=
1

N

N
∑

i=1

(

xk+1

i + (1/ρ)yki
)

yk+1

i := yki + ρ(xk+1

i − zk+1)

• with regularization, averaging in z update is followed by proxg,ρ
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Consensus optimization via ADMM

• using
∑N

i=1
yki = 0, algorithm simplifies to

xk+1

i := argmin
xi

(

fi(xi) + ykTi (xi − xk) + (ρ/2)‖xi − xk‖22
)

yk+1

i := yki + ρ(xk+1

i − xk+1)

where xk = (1/N)
∑N

i=1
xk
i

• in each iteration

– gather xk
i and average to get xk

– scatter the average xk to processors
– update yki locally (in each processor, in parallel)
– update xi locally
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Statistical interpretation

• fi is negative log-likelihood for parameter x given ith data block

• xk+1

i is MAP estimate under prior N (xk + (1/ρ)yki , ρI)

• prior mean is previous iteration’s consensus shifted by ‘price’ of
processor i disagreeing with previous consensus

• processors only need to support a Gaussian MAP method

– type or number of data in each block not relevant
– consensus protocol yields global maximum-likelihood estimate
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Consensus classification

• data (examples) (ai, bi), i = 1, . . . , N , ai ∈ Rn, bi ∈ {−1,+1}

• linear classifier sign(aTw + v), with weight w, offset v

• margin for ith example is bi(a
T
i w + v); want margin to be positive

• loss for ith example is l(bi(a
T
i w + v))

– l is loss function (hinge, logistic, probit, exponential, . . . )

• choose w, v to minimize 1

N

∑N
i=1

l(bi(a
T
i w + v)) + r(w)

– r(w) is regularization term (ℓ2, ℓ1, . . . )

• split data and use ADMM consensus to solve
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Consensus SVM example

• hinge loss l(u) = (1− u)+ with ℓ2 regularization

• baby problem with n = 2, N = 400 to illustrate

• examples split into 20 groups, in worst possible way:
each group contains only positive or negative examples
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Iteration 1
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Iteration 5
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Iteration 40
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ℓ1 regularized logistic regression example

• logistic loss, l(u) = log (1 + e−u), with ℓ1 regularization

• n = 104, N = 106, sparse with ≈ 10 nonzero regressors in each example

• split data into 100 blocks with N = 104 examples each

• xi updates involve ℓ2 regularized logistic loss, done with stock L-BFGS,
default parameters

• time for all xi updates is maximum over xi update times
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Distributed logistic regression example
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Big picture/conclusions

• scaling : scale algorithms to datasets of arbitrary size

• cloud computing : run algorithms in the cloud

– each node handles a modest convex problem
– decentralized data storage

• coordination: ADMM is meta-algorithm that coordinates existing
solvers to solve problems of arbitrary size

(c.f. designing specialized large-scale algorithms for specific problems)

• updates can be done using analytical solution, Newton’s method, CG,
L-BFGS, first-order method, custom method

• rough draft at Boyd website
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What we don’t know

• we don’t have definitive answers on how to choose ρ, or scale equality
constraints

• don’t yet have MapReduce or cloud implementation

• we don’t know if/how Nesterov style accelerations can be applied
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Answers

• yes, Trevor, this works with fat data matrices

• yes, Jonathan, you can split by features rather than examples
(but it’s more complicated; see the paper)

• yes, Emmanuel, the worst case complexity of ADMM is bad (O(1/ǫ2))
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