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We present an optimization-based approach to radiation treatment planning over time. Our approach formu-

lates treatment planning as an optimal control problem with nonlinear patient health dynamics derived from

the standard linear-quadratic cell survival model. As the formulation is nonconvex, we propose a method for

obtaining an approximate solution by solving a sequence of convex optimization problems. This method is

fast, efficient, and robust to model error, adapting readily to changes in the patient’s health between treat-

ment sessions. Moreover, we show that it can be combined with the operator splitting method ADMM to

produce an algorithm that is highly scalable and can handle large clinical cases. We introduce an open-source

Python implementation of our algorithm, AdaRad, and demonstrate its performance on several examples.
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1. Introduction

In radiation therapy, beams of ionizing radiation are transmitted into a patient, damaging

both tumor cells and normal tissue. The goal of radiation treatment planning is to deliver

enough dose to the tumor so that diseased cells are killed, while avoiding excessive injury

to the normal tissue and organs-at-risk (OARs). This is achieved by optimizing the beam

intensity profile, or fluence map, subject to constraints on the dose to certain parts of

the patient’s anatomy. The fluence map optimization problem is well-studied (Romeijn
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et al. 2003, 2004, Aleman et al. 2010, Gao 2016), and technology like intensity-modulated

radiation therapy (IMRT) is now widespread in the clinic (Zelefsky et al. 2000, Wolden

et al. 2006, Gupta et al. 2012, Webb 2010).

Treatment in practice usually takes place over multiple sessions. A clinician will divide

up the total prescribed dose into smaller dose fractions, which are delivered over the course

of several weeks or months. This permits normal tissue time to recover and repair sublethal

cell damage, but also gives tumors an opportunity to proliferate, especially when the

treatment course is long. A study of 4338 prostate cancer patients showed that biochemical

failure increases by 6% for every 1 week increase in treatment time, with a dose equivalent

of proliferation of 0.24 Gy/day (Thames et al. 2010). Thus, an important question in

treatment planning is how to choose the sequence of deliverable doses such that they

account for the temporal effects on a patient’s health.

1.1. Related Work

Early clinical practitioners split the prescribed dose equally over a fixed number of sessions.

While convenient, this method does not account for errors or uncertainty in the treatment

process. For example, due to patient movement during radiation delivery, the expected dose

may differ from the actual dose to an anatomical structure. If the actual dose is observable,

a common way to compensate for this is to divide the residual dose (i.e., the difference

between the prescribed and cumulative actual dose) across the remaining sessions. This

then becomes the new per-session dose goal. de la Zerda et al. (2007) solve for the beam

intensities by minimizing the sum-of-squared difference between this goal dose and the

expected dose. They compare the results when errors are perfectly known, so the expected

dose is equal to the actual dose, with the results when errors are assumed to be zero. Ferris

and Voelker (2004) take a similar approach, except the errors are modeled explicitly as a

random shift in the surrounding voxels. Instead of the dose to each voxel, Sir et al. (2012)

work with the equivalent uniform dose (EUD), a value that captures the biological effect of

a dose distribution over a region. Their objective is to minimize the sum of the EUD over

all treatment criteria subject to bounds on the EUD of the tumor and normal tissues. To

solve this problem, they employ methods from approximate dynamic programming coupled

with a discrete probabilistic model of the dose error.

The papers we have discussed so far only focus on the dose to the patient. Kim et al.

(2009) introduce a Markov decision process model that includes both the dose (action) and
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the patient’s health state. Each choice of dose induces a transition to a particular health

state with some probability. Making this idea concrete, Mizuta et al. (2012) define the

health of a tumor (resp. OAR) to be the radiation (resp. damage) effect of the delivered

dose, as calculated from the linear-quadratic (LQ) model of cell survival (Fowler 1989).

They analyze a simple example with one tumor and one OAR and find that the optimal

fractionation scheme is either a single session delivery of the full dose or equal dose frac-

tions, depending on the relationship between the LQ parameters. Bortfeld et al. (2015)

extend this analysis to incorporate accelerated tumor repopulation and show that the dose

per session increases over the treatment course. Using simulated annealing, Yang and Xing

(2005) solve a similar treatment planning problem based on the LQR model, which cap-

tures all 4 Rs (repair of sublethal damage, repopulation, redistribution, and reoxygenation)

of cellular radiation response (Brenner et al. 1995).

These analyses provide insight into the tradeoffs between hypo- and hyper-fractionation

in a simple setting. However, most clinical cases are more complex, involving multiple

tumors, OARs, and nonlinear constraints. For instance, dose-volume (i.e., percentile) con-

straints are widely used to limit the radiation exposure of a percentage of an anatomical

structure, such as the spine. These constraints are nonconvex, but can be approximated

by a convex restriction (Halabi et al. 2006, Zarepisheh et al. 2013, Fu et al. 2019). In

Saberian et al. (2016), the authors consider a dynamic setting with multiple OARs and

dose-volume constraints. Starting from a given set of beam intensities, they solve for the

optimal number of sessions and OAR sparing factors. They also derive sufficient conditions

under which the optimal treatment consists of equal dose fractions. In a follow-up paper

(Saberian et al. 2017), the authors integrate the spatial and temporal aspects of the prob-

lem, treating both beam intensities and number of sessions as variables. Restricting their

attention to equal fractions, they propose a two-stage solution algorithm: in the first stage,

they solve for the optimal beams given each potential fixed number of sessions, and in the

second stage, they select the number of sessions based on the optimal objectives from the

first stage. They show that their method achieves better tumor ablation than conventional

IMRT or the spatiotemporally separated method.

Perhaps the paper most similar to ours is Kim et al. (2012). In it, the authors propose a

stochastic control formulation of the adaptive treatment planning problem with multiple

tumors and OARs. They estimate the radiation response of the tumors with a log-linear
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cell kill model and the response of the OARs with the standard LQ model. Their goal is to

minimize the expected number of tumor cells at the end of treatment subject to bounds on

the radiobiological impact on the OARs. Uncertainty arises in the cell model parameters,

which may fluctuate randomly between sessions, representing unpredictable changes in the

patient’s health status. The authors fix the number of sessions and focus on optimizing

with respect to the beam intensities. They show that their problem is convex, so can be

solved using a combination of standard stochastic control methods and off-the-shelf convex

solvers, and provide several examples demonstrating the effectiveness of their approach.

1.2. Contribution

In this paper, we integrate the stochastic control approach with a distributed optimization

algorithm to produce a method for efficient large-scale adaptive treatment planning. As

clinical cases are quite complex, with tens of thousands of beams and treatment that takes

place over months, such methods are necessary to construct plans in a timely fashion. (See

Jia et al. (2014) for a review of previous work on high-performance computing in radia-

tion therapy, particularly treatment optimization). We formulate the adaptive treatment

planning problem as a finite-horizon nonconvex optimal control problem. To solve it, we

introduce an operator splitting algorithm, which is based on solving a sequence of convex

approximations. Our algorithm is naturally parallelizable and can handle a large number

of beams, sessions, and anatomical targets or OARs. Moreover, it can be combined with

model predictive control to produce treatment plans that are robust to errors and uncer-

tainty about the patient’s health status. We illustrate our algorithm’s performance on a

synthetic case, as well as a large prostate cancer case, and provide an implementation in

the Python package AdaRad: https://github.com/anqif/adarad.

2. Problem Formulation

In radiation treatment, beams of ionizing radiation are delivered to a patient from an

external source. The goal is to damage or kill diseased tissue, while minimizing harm to

surrounding healthy organs. A course of treatment is generally divided into T sessions. At

the start of session t, the clinician chooses the intensity levels of the n beams, denoted

by bt ∈Rn
+. Typically, T ≈ 20 and n is on the order of 103 to 104. We are interested in

determining the best sequence of beam intensities b = (b1, . . . , bT ), otherwise known as a

treatment plan, subject to upper bounds Bt ∈ R̄
n
+ on bt for t= 1, . . . , T .
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2.1. Anatomy and Doses

The beams irradiate an area containing K anatomical structures, labeled i ∈ {1, . . . ,K},

where usually K < 10. A subset T ⊂ {1, . . . ,K} are targets/tumors and the rest are OARs.

The dose delivered to each structure is linear in the beam intensities. We write the dose

vector dt = Atbt with At ∈RK×n
+ a known matrix that characterizes the physical effects

and define d= (d1, . . . , dT ). Notice that since bt and At are nonnegative, dt ≥ 0.

In every session, we impose a penalty on dt via a dose penalty function φt : RK →

R∪{∞}. A common choice is

φt(dt) = θTt dt + ξTt d
2
t ,

where θt ∈RK and ξt ∈RK
+ are constants. Here d2t denotes the elementwise square of the

dose vector. The total dose penalty over all sessions is

φ(d) =
T∑
t=1

φt(dt).

Additionally, we enforce upper bound constraints dt ≤Dt, where Dt ∈ R̄
K
+ is the maximum

dose in session t.

2.2. Health Dynamics

To assess treatment progress, we examine the health status of each anatomical structure

and encode these statuses in a vector ht ∈RK . For now, the details of this encoding do

not matter. Typically, hti represents an estimate of the total surviving cells in structure i.

Hence if i ∈ T , a smaller hti is desirable (since the tumor is shrinking), while if i /∈ T , a

larger hti is desirable.

From an initial h0, the health status evolves in response to the radiation dose and

various other biophysical factors that depend on the patient’s anatomy, generating a health

trajectory h= (h1, . . . , hT ). Here we represent its dynamics as

ht = ft(ht−1, dt), t= 1, . . . , T, (1)

where ft : RK ×RK →RK is a known mapping function. In this paper, we focus on the

linear-quadratic (LQ) model in which

fti(ht−1, dt) = h(t−1)i−αtidti−βtid2ti + γti, i= 1, . . . ,K, t= 1, . . . , T (2)
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with constants αt ∈RK , βt ∈RK
+ , and γt ∈RK . This model is commonly used to approxi-

mate cellular response to radiation (Fowler 1989, Thames and Hendry 1987, Brenner 2008).

Specifically, in the LQ + time framework (Travis and Tucker 1987), hti is the log of the

fraction of surviving cells in structure i after a dose dti, while αti/βti and γti are constants

related to the structure’s survival curve and repair/repopulation rate, respectively. Notice

that equation (2) implies that the health status of each structure evolves independently of

the others.

2.3. Health Penalty and Constraints

In order to control the patient’s health, we introduce a health penalty function ψt : RK→

R∪{∞} that imposes a penalty on ht. Moreover, we assume that

ψt(ht) =ψt(ht1, . . . , htK) is monotonically

increasing in hti i∈ T

decreasing in hti i /∈ T
(3)

for t= 1, . . . , T . This means that for a target, the health penalty increases as the health

status increases, while for an organ-at-risk, the health penalty decreases as the health status

increases. The assumption is reasonable if, for instance, ht is a measure of cell survival in

session t, so a lower (higher) status is desirable for a target (organ-at-risk). An example of

a penalty function that satisfies (3) is

ψt(ht) =wT (ht−hgoalt )+ +wT (ht−hgoalt )−,

where hgoalt ∈RK is the desired health status and w ∈RK
+ and w̄ ∈RK

+ are parameters with

wi = 0 for i∈ T and wi = 0 for i /∈ T . Here (x)+ = max(x,0) applied elementwise to x. The

total health penalty is

ψ(h) =
T∑
t=1

ψt(ht).

In addition, we enforce bounds Ht ∈ R̄
K

on the health status such that hti ≤Hti for i∈ T

and hti ≥Hti for i /∈ T .
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2.4. Optimal Control Problem

Given an initial health status h0, we wish to select a treatment plan that minimizes the

total penalty across all sessions. Thus, our problem is

minimize
∑T

t=1 φt(dt) +
∑T

t=1ψt(ht)

subject to ht = ft(ht−1, dt), t= 1, . . . , T,

hti ≤Hti, i∈ T , hti ≥Hti, i /∈ T , t= 1, . . . , T,

dt =Atbt, 0≤ dt ≤Dt, 0≤ bt ≤Bt, t= 1, . . . , T

(4)

with variables (b1, . . . , bT ), (d1, . . . , dT ), and (h1, . . . , hT ). This is a discrete-time optimal

control problem. If φt and ψt are convex and ft is affine, e.g., ft is given by (2) with

quadratic dose effect βt = 0, it is also convex and can be solved directly using standard

convex solvers.

3. Lossless Relaxation

For the remainder of this paper, we restrict our attention to a convex objective function

and linear-quadratic health dynamics (2). In this case, condition (3) allows us to relax the

health dynamics constraint so problem (4) can be written equivalently as

minimize
∑T

t=1 φt(dt) +
∑T

t=1ψt(ht)

subject to hti ≥ fti(ht−1, dt), i∈ T , t= 1, . . . , T,

hti ≤ fti(ht−1, dt), i /∈ T , t= 1, . . . , T,

hti ≤Hti, i∈ T , hti ≥Hti, i /∈ T , t= 1, . . . , T,

dt =Atbt, 0≤ dt ≤Dt, 0≤ bt ≤Bt, t= 1, . . . , T.

(5)

The equality constraint ht = ft(ht−1, dt) has been replaced with two inequality constraints:

a lower bound for targets and an upper bound for OARs. Notice that the first inequality

is the only nonconvex constraint in (5). Our relaxed problem has the same solution set as

(4) because these two inequalities are tight at the optimum.

Proposition 1. Let (b?, d?, h?) be a solution to problem (5). If conditions (2) and (3)

hold,

h?t = ft(h
?
t−1, d

?
t ), t= 1, . . . , T.
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Proof. Suppose there exist some t ∈ {1, . . . , T} and i ∈ T such that h?ti > fti(h
?
t−1, d

?
t ).

Then, we can choose an ε > 0 such that h?ti > h?ti − ε > fti(h
?
t−1, d

?
t ). Since fsi(hs−1, ds) is

nondecreasing in h(s−1)i for all s∈ {1, . . . , T}, the point (b?, d?, ĥ) with

ĥsj =

h
?
sj − ε s= t, j = i

h?sj otherwise

is feasible for problem (5) because

ĥti > fti(h
?
t−1, d

?
t )≥ fti(ĥt−1, d?t ), h?(t+1)i ≥ f(t+1)i(h

?
t , d

?
t )≥ f(t+1)i(ĥt, d

?
t ),

and ĥti < h?ti ≤ Hti. Moreover, by condition (3), ψt(ĥt) < ψt(h
?
t ) so (b?, d?, ĥ) achieves a

lower objective value than (b?, d?, h?), contradicting our original assumption. An analogous

argument holds for t∈ {1, . . . , T} and i /∈ T such that h?ti < fti(h
?
t−1, d

?
t ) with ĥti = h?ti + ε.

4. Sequential Convex Optimization
4.1. Algorithm Description

Problem (5) is in general nonconvex because the target’s health dynamics constraint

hti ≥ fti(ht−1, dt), i∈ T , t= 1, . . . , T (6)

is nonconvex when any βt 6= 0. However, we can derive an estimate of its optimum by

solving a sequence of convex approximations. Each approximation is formed by linearizing

the health dynamics function (2) around a fixed dose point and replacing the right-hand

side of (6) with this linearization minus a slack variable. The slack allows for a degree of

error in the approximation and is penalized in the objective.

More precisely, let dst ∈RK for t= 1, . . . , T . Define the linearized dynamics function

f̂ti(ht−1, dt;d
s
t) = h(t−1)i−αtidti−βtidsti(2dti− dsti) + γti, i= 1, . . . ,K. (7)

This function is an upper bound on the LQ function (2) because βt ≥ 0. We replace the

nonconvex constraint (6) in problem (5) with the affine constraint

hti = f̂ti(ht−1, dt;d
s
t)− δti, i∈ T , t= 1, . . . , T, (8)
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where δt ∈RK
+ is a slack variable. (The inequality can been tightened into an equality due

to Proposition 1). Convex approximation s is then

minimize
∑T

t=1 φt(dt) +
∑T

t=1ψt(ht) +λ
∑T

t=1 1T δt

subject to hti = f̂ti(ht−1, dt;d
s
t)− δti, i∈ T , δt ≥ 0 t= 1, . . . , T,

hti ≤ fti(ht−1, dt), i /∈ T , t= 1, . . . , T,

hti ≤Hti, i∈ T , hti ≥Hti, i /∈ T , t= 1, . . . , T,

dt =Atbt, 0≤ dt ≤Dt, 0≤ bt ≤Bt, t= 1, . . . , T

(9)

with variables (b1, . . . , bT ), (d1, . . . , dT ), (h1, . . . , hT ), and (δ1, . . . , δT ) and slack penalty

parameter λ> 0. This problem is convex and can be solved using standard convex solvers.

Given a solution to (9), we set the next linearization point ds+1 = (ds+1
1 , . . . , ds+1

T ) equal to

the optimal dose.

Algorithm 1. (Sequential Convex Optimization)

input: initial point d0, parameter λ> 0.

for s= 0,1, . . . do

1. Linearize. For t= 1, . . . , T , form the linearization (7) around dst .

2. Solve. Set ds+1 equal to an optimal dose of problem (9).

until stopping criterion (10) is satisfied.

Algorithm 1 is a special case of the convex-concave procedure (CCP) (Yuille and Ran-

garajan 2003, Lipp and Boyd 2016, Shen et al. 2016), which is itself a form of majorization-

minimization (Hunter and Lange 2004, Sun et al. 2017). CCP is a heuristic for finding a

local optimum of a nonconvex optimization problem. It is guaranteed to converge; indeed,

when certain differentiability conditions are met, it converges to a stationary point (Sripe-

rumbudur and Lanckriet 2009). As a descent algorithm, CCP is usually terminated when

the change in the objective falls below some user-specified threshold ε > 0, i.e.,

psopt− ps+1
opt < ε, (10)

where psopt is the optimal objective of problem (9). In our simple experiments, we have

found that an initial linearization point of d0 = 0 and threshold of ε= 10−3 produce good

results.
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Figure 1 Example 4.2: Anatomical Structures

Note. Red is the target (i = 1), while green (i = 2), blue (i = 3), and orange (i = 4) are specific OARs. White denotes

the non-target body voxels (i = 5).

4.2. Illustrative Example

4.2.1. Problem Instance. We consider an example with n= 1000 beams divided into

50 bundles of 20 parallel beams each, positioned evenly around a half-circle. There are

K = 5 structures, a single target T = {1} and four OARs (including generic body voxels)

depicted in Figure 1. Treatment takes place over T = 20 sessions, so the basic problem has

nT + 2KT = 20200 variables.

The patient’s initial health status is h0 = (1,0,0,0,0). His status evolves according to

equation (2) with

αt = (0.01,0.50,0.25,0.15,0.005),

βt = (0.001,0.05,0.025,0.015,0.0005),

γt = (0.05,0,0,0,0)

over all sessions t= 1, . . . , T .

We set the health penalty function to

ψt(ht) = (ht1)+ +

5∑
i=2

(hti)−, t= 1, . . . , T.

This function penalizes positive statuses of the target and negative statuses of the OARs.

Moreover, we constrain the target’s health status to be ht1 ≤ 2.0 for t = 1, . . . ,15 and
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ht1 ≤ 0.05 for the remaining sessions, and we enforce a bound on the other structures’

health statuses of (ht2, ht3, ht4, ht5)≥ (−1.0,−2.0,−2.0,−3.0). Thus,

Ht =

(2.0,−1.0,−2.0,−2.0,−3.0) t= 1, . . . ,15

(0.05,−1.0,−2.0,−2.0,−3.0) t= 16, . . . , T.

For the dose penalty function, we choose

φt(dt) =
4∑
i=1

d2ti + 0.25d2t5, t= 1, . . . , T.

In addition, we restrict the dose and beam intensity to be no more than Dt = 20 and

Bt = 1.0, respectively, over all sessions t.

4.2.2. Computational Details. We implemented Algorithm 1 in Python using CVXPY

(Diamond and Boyd 2016) and solved problem (9) with MOSEK (Andersen and Andersen

2000). From an initial d0 = 0 and λ = 104, the algorithm converged in 11 iterations to a

threshold of ε= 10−3. Total runtime was approximately 17 seconds on a 64-bit Ubuntu OS

desktop with 8 4-core Intel i7-4790k / 4.00 GHz CPUs and 16 GB of RAM.

4.2.3. Results and Analysis. The optimal treatment plan is depicted in Figure 2.

Beams are densely clustered diagonal from the vertical, striking the target while largely

sparing the OARs. As the sessions continue, the number of beams slowly increases, dam-

aging some of the less sensitive organs (i = 3 and 4). Then at t = 16, when the target’s

health bound becomes more stringent, the beam density drops precipitously so that only

a narrow bundle remains focused on the target, keeping its health status at the desired

level.

Figures 3 and 4 show the radiation dose and health status resulting from this plan,

respectively. The latter was computed by plugging the optimal dose into equation (2).

Total dose to the target (i= 1) and body voxels (i= 5) far exceed the dose to any other

structures. By the end of treatment, the target’s health status has fallen to a steady 0.05,

while the health statuses of the OARs remain within their respective lower limits.

5. Model Predictive Control
5.1. Algorithm Description

So far, we have assumed that at the time of planning, ft perfectly captures the health

dynamics from t = 1, . . . , T . This is rarely true in practice. A patient’s anatomy changes
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Figure 2 Example 4.2: Optimal Beam Intensities

Figure 3 Example 4.2: Optimal Radiation Dose vs. Session

Note. The dashed blue lines indicate the lower and upper dose bounds.

unpredictably between sessions, affecting the dispersion of radiation beams and the course

of their health status. We can incorporate these changes into problem (4) using model

predictive control (MPC).

MPC is a powerful technique for automatic control of complex, nonlinear, stochastic

systems. It performs extremely well even when the dynamics are approximated by a simple
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Figure 4 Example 4.2: Optimal Health Status vs. Session

Note. Comparison of health status without treatment (orange) and with treatment under the optimal plan (blue).

The dashed blue lines indicate the lower/upper health status bounds.

model, since the system’s state is updated regularly and new information is incorporated

into the solution. This is particularly fitting for radiation treatment planning.

As is customary in MPC, we first convert the state variable constraints in the original

problem into soft constraints, i.e., we remove the inequality constraints on h in (4) and

add a penalty for violating them to the objective. Let cτ : RK →R be the corresponding

health violation penalty function, defined as

cτ (hτ ) =
∑
i∈T

(hτi−Hτi)+ +
∑
i/∈T

(Hτi−hτi)+, τ = 1, . . . , T.

This penalty function allows us to accommodate new and unexpected changes in the

patient’s health, such as the metastasis of a tumor that renders it impossible to control

without exceeding the health damage limit of an OAR.

We are now ready to describe MPC for our model. At the beginning of each session t,

we observe At, ft, and the patient’s true health status, ht−1, then form the problem

minimize
∑T

τ=t φτ (dτ ) +
∑T

τ=tψτ (hτ ) + η
∑T

τ=t cτ (hτ )

subject to hτ = ft(hτ−1, dτ ), τ = t, . . . , T,

dτ =Atbτ , 0≤ dτ ≤Dτ , 0≤ bτ ≤Bτ , τ = t, . . . , T

(11)
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with variables (bt, . . . , bT ), (dt, . . . , dT ), and (ht, . . . , hT ) and violation penalty parameter

η > 0. Since cτ is convex, problem (11) is convex and can be solved using a slight variation

on Algorithm 1. Let b̄= (b̄t, . . . , b̄T ) be the optimal treatment plan. We carry out only the

first treatment, b̄t, and update our observations At+1, ft+1, and ht based on the patient’s

response. This process repeats until all T sessions have been completed.

5.2. Illustrative Example

5.2.1. Problem Instance. We return to the setting of Example 4.2, except now, the

health dynamics are modeled with some error. Specifically, let ht−1 be the patient’s health

status at the beginning of session t and dt the dose delivered during session t. Our model

predicts the status will become ĥt = ft(ht−1, dt). In fact, at the beginning of the next session,

we observe the true health status to be

(ht)i =

max(ĥt +ωt,0)i i∈ T

min(ĥt +ωt,0)i i /∈ T
,

where ωt ∈RK is drawn from N(µ,σ2I). This random process continues for t= 1, . . . , T .

For this example, we choose µ= 0 and σ= 0.1. The rest of the functions and parameter

values are identical to 4.2. In particular, we still employ the LQ model (2) with constant

αt, βt, and γt even though the health status is now stochastic. We plan the treatment using

MPC with η = 104 and compare the results to those generated by the naive approach,

which simply solves problem (4) once prior to session 1.

5.2.2. Computational Details. We solved problem (11) using Algorithm 1 with λ =

104 and ε = 10−3. For the initial dose in session 1, we chose d0 = 0. In each subsequent

session t, we set d0 to be the (truncated) optimal dose point from the previous session,

(d?t , . . . , d
?
T ). With these parameters, the algorithm took an average of 7 iterations per

session to achieve convergence; most runs completed in only 3–4 iterations. The total

runtime was 116 seconds.

5.2.3. Results and Analysis. Figure 5 depicts the treatment plan output by MPC.

Most beams are aimed slightly diagonal from the vertical, similar to the naive plan (Figure

2) up to session 14. Then, the bundles of beams start to grow sparser and fan out, hitting

more areas of the OARs. This sparse irradiation pattern continues until the final session,
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Figure 5 Example 5.2: Optimal Beam Intensities from MPC

when there is a brief spike in intensity to bring the target’s health status into the desired

range.

In Figure 6, we plot the dose trajectories of the MPC plan (green) and the naive plan

(blue). The MPC curves are more jagged with a large spike at the end of treatment.

However, in each structure, the area under the MPC and naive dose curves remains on

par. Thus, we conclude that the MPC plan delivers about the same amount of radiation

as the naive plan, only spread across a wider range of beam angles/intensities so as to

compensate for uncertainty in the health dynamics model.

This strategy results in better patient health as shown in Figure 7. The MPC plan

reduces the target’s health status to 0.05, while maintaining the health status of the OARs

at a high level. Indeed, the health of these organs under the MPC plan exceeds their health

under the naive plan by a significant margin in all but structure 4, where the two are

relatively equal up until the last session.

6. Operator Splitting

MPC enables us to robustly handle uncertainty over time. However, another challenge in

radiation treatment planning is the sheer size of problems, which makes them computa-

tionally difficult to solve in practice. A typical case with K = 15 and n = 104 requires

approximately 105 floating-point operations for the beam-to-dose calculation alone. Over

a month of sessions, that comes out to 4.5 million operations on a single machine.



Fu, Xing, and Boyd: Operator Splitting for Adaptive Radiation Therapy
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Figure 6 Example 5.2: Optimal Radiation Dose vs. Session

Note. Comparison of dose from MPC (green) and the naive planning approach (blue). The dashed blue lines indicate

the lower and upper dose bounds.

Figure 7 Example 5.2: Optimal Health Status vs. Session

Note. Comparison of health status without treatment (orange) and with treatment using MPC (green) and the naive

planning approach (blue). The dashed blue lines indicate the lower/upper health status bounds. The MPC plan’s

health trajectories all remain within the desired bounds, despite the error in the health dynamics model.

In this section, we propose a fast, efficient method for solving the radiation treatment

planning problem using operator splitting. Our method is distributed and scales readily
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with the number of beams as well as the length of treatment. It can be applied both to

the original problem (4) and the soft constrained MPC variant (11). Below, we describe

the mathematical details for the former; the latter is a straightforward extension.

6.1. Consensus Form

We first rewrite problem (4) in an equivalent consensus form:

minimize
∑T

t=1 φt(dt) +
∑T

t=1ψt(ht)

subject to ht = ft(ht−1, d̃t), 0≤ d̃t ≤Dt, t= 1, . . . , T,

hti ≤Hti, i∈ T , hti ≥Hti, i /∈ T , t= 1, . . . , T,

dt =Atbt, 0≤ dt ≤Dt, 0≤ bt ≤Bt, t= 1, . . . , T,

dt = d̃t, t= 1, . . . , T

(12)

with additional variable d̃= (d̃1, . . . , d̃T ). This splits the problem into two parts, one that

encapsulates the radiation physics and the other that contains the health dynamics. The

parts share no variables. They are only linked by the consensus constraint, dt = d̃t, which

requires their doses be equal.

6.2. ADMM

We solve problem (12) using an iterative algorithm called the alternating direction method

of multipliers (ADMM) (Boyd et al. 2010). In ADMM, the beams and health statuses are

optimized separately, taking into account the difference between their resulting dose values.

This difference is associated with a dual variable u = (u1, . . . , uT ), where each ut ∈ RK ,

which is updated every iteration in order to promote consensus.

Algorithm 2. (Alternating Direction Method of Multipliers)

input: initial point (d̃0, u0), parameter ρ> 0.

for k= 0,1, . . . do

1. Calculate beams. For t= 1, . . . , T , set the value of (bk+1
t , dk+1

t ) to a

solution of the problem

minimize φt(dt) + ρ
2
‖dt− d̃kt −ukt ‖22

subject to dt =Atbt, 0≤ dt ≤Dt, 0≤ bt ≤Bt.

2. Calculate health trajectory. Set the value of (hk+1, d̃k+1) to a solution

of the problem
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minimize
∑T

t=1ψt(ht) + ρ
2
‖d̃− dk+1 +uk‖22

subject to ht = ft(ht−1, d̃t), 0≤ d̃t ≤Dt, t= 1, . . . , T,

hti ≤Hti, i∈ T , hti ≥Hti, i /∈ T , t= 1, . . . , T.

3. Update dual variables. uk+1 := uk + d̃k+1− dk+1.

until stopping criterion (17) is satisfied.

Here 1/ρ > 0 may be interpreted as the step size. Notice that the first step of Algorithm

2 can be parallelized across sessions. We impose the dose bound constraint on both the

beam and health subproblems because it produces faster convergence in practice.

6.2.1. Initialization. For complex problems, the initial dose point d̃0 can have a sig-

nificant impact on the performance of Algorithm 2. Below, we describe one heuristic that

produces a good starting point by solving a series of simple optimization problems. We

begin by solving the static treatment planning problem

minimize φ1(d1) +ψ1(h1) +µ1T ζ

subject to h1 = f1(h0, d1), ζ ≥ 0,

h1i ≤HT i, i∈ T , h1i ≥HT i− ζi, i /∈ T ,

d1 =A1b1, 0≤ d1 ≤
∑T

t=1Dt, 0≤ b1 ≤
∑T

t=1Bt

(13)

with respect to b1 ∈ Rn, d1 ∈ RK , h1 ∈ RK , and ζ ∈ RK , where µ > 0 is a slack penalty

parameter. A reasonable choice for µ = 1
K−|T | , assuming there is at least one non-target

structure. Problem (13) is convex and can be easily handled on a single machine (e.g., via

interior-point methods) for up to 105 beams. Denote the optimal beam intensities by bstat.

Next, we consider the dynamic treatment planning problem in which the beams for each

session are restricted to be a scalar multiple of bstat,

minimize
∑T

t=1 φt(dt) +
∑T

t=1ψt(ht) +µ
∑T

t=1 1T ζt

subject to ht = ft(ht−1, dt), ζt ≥ 0, t= 1, . . . , T,

hti ≤Hti, i∈ T , hti ≥Hti− ζti, i /∈ T , t= 1, . . . , T,

dt = νtAtb
stat, 0≤ dt ≤Dt, νt ≥ 0, t= 1, . . . , T

(14)

with variables (ν1, . . . , νT ), (d1, . . . , dT ), (h1, . . . , hT ), and (ζ1, . . . , ζT ), where each νt ∈R and

ζt ∈RK . This problem can be solved using a slight variation on Algorithm 4.1. (For the

initial CCP point, we may use the optimal time-invariant νt = ν when βt = 0; finding
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this value entails solving a small convex problem). Since there are only O(TK) variables,

convergence is generally quick, taking less than 5 iterations in our experiments. We use

the resulting doses as our initial dose point for ADMM, i.e., d̃0t = ν?tAtb
stat for t= 1, . . . , T .

Besides providing a good starting point, this initialization heuristic also gives us a way

to quickly tune problem parameters. If the health trajectory from d̃0 is poor, it is much

faster to modify weights and re-solve problems (13) and (14) than it is to re-run the full

ADMM algorithm.

6.2.2. Stopping Criterion. If problem (12) is convex, then under mild conditions,

ADMM converges to a solution assuming one exists. Moreover, the primal and dual resid-

uals

rkprim = dk− d̃k (15)

rkdual = ρ(d̃k− d̃k−1) (16)

also converge to zero. Thus, a reasonable stopping criterion is

‖rkprim‖2 ≤ εprim and ‖rkdual‖2 ≤ εdual, (17)

where εprim > 0 and εdual > 0 are tolerances for primal and dual feasibility, respectively.

Typically, these tolerances are chosen with respect to absolute and relative cutoffs εabs > 0

and εrel > 0 using the relation

εprim = εabs
√
TK + εrel max(‖dk‖2,‖d̃k‖2)

εdual = εabs
√
TK + εrel‖uk‖2.

A common choice for εrel = 10−3, while the choice for εabs depends on the scale of the

treatment planning problem (Boyd et al. 2010, Section 3.3.1).

6.2.3. Convergence and Choice of ρ. When the problem is convex, i.e., the health

dynamics function is affine, Algorithm 2 converges to a solution for any ρ > 0, although

the value of ρ may have an impact on the practical convergence rate. When the problem

is nonconvex, ADMM is a heuristic and the final beam/dose plan can depend directly on

ρ (Boyd et al. 2010, Section 9). The question of how to choose ρ is still unsettled; see

Ghadimi et al. (2015), Xu et al. (2017b,a) for further discussion on the topic. We have

found that for data on the order of one, values of ρ between 10−2 and 102 work reasonably

well.
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Table 1 Prostate IMRT: LQ Model Parameters

i Structure αti βti γti

1 Prostate 0.15 0.05

{
0 t≤ 28

0.0173 t > 28

2 Urethra 1 0.2 0
3 Bladder 1 0.2 0
4 Rectum 1 0.2 0
5 L. Femoral Head 1 0.25 0
6 R. Femoral Head 1 0.25 0
7 Body 1 0.3333 0

6.3. Clinical Example

6.3.1. Problem Instance. We test our method on a fluence map optimization of a

prostate cancer IMRT case with n = 34848 beams and K = 7 structures consisting of a

single PTV (i= 1), five OARs, and generic body voxels (i= 7). Treatment is carried out

over T = 45 sessions, so the planning problem has about 1.6 million variables. The matrix

At remains constant over time and maps the beam intensities to the average dose per

structure, i.e., (dt)i is the total dose to structure i divided by the number of voxels in i.

Each beam’s intensity cannot exceed Bt = 0.025.

The LQ model parameters, initial health status, and dose and health status bounds can

be found in Tables 1 and 2; these have been adapted from prior clinical datasets (Kehwar

2005, Gao et al. 2010, Marks et al. 2010, van Leeuwen et al. 2018). We choose the health

and dose penalty functions to be

ψt(ht) = (ht1)+ +
1

6

7∑
i=2

(hti)−, φt(dt) =
6∑
i=1

d2ti + 0.25d2t7, t= 1, . . . , T.

These penalties place greater importance on reducing the health status of the PTV com-

pared to sparing the OARs or generic body tissue.

6.3.2. Computational Details. The computational setup is the same as in Example

4.2. To solve the ADMM subproblems, we used MOSEK and ran CCP (λ= 104) on the

health trajectory subproblem. With ρ= 80, ADMM converged in 82 iterations to cutoffs

of εabs = 10−2 and εrel = 10−3. The normed residuals, ‖rkprim‖2 and ‖rkdual‖2, are shown in

Figure 8. Total runtime was about 43 minutes, with the bulk of that time spent on the

main ADMM loop (initialization took only 32 seconds). By contrast, a straightforward

application of Algorithm 1 to this problem required over an hour.
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Table 2 Prostate IMRT: Health and Dose Parameters

i Structure h0i Hti Dti

1 Prostate 5.8579


5.8579 t≤ 14

4.4716 15≤ t≤ 31

0 t > 31

10

2 Urethra 0 -4.8 10
3 Bladder 0 -4.8 10
4 Rectum 0 -4.8 10
5 L. Femoral Head 0 -3.0 10
6 R. Femoral Head 0 -3.0 10
7 Body 0 -6.0 10

6.3.3. Results and Analysis. Figure 9 depicts the dose trajectories resulting from the

initial plan (green) and the final plan output by ADMM (blue). The initial plan is essen-

tially a piecewise equal-dose fractionation scheme, reflected by the flat plateaus in the

corresponding dose trajectories. This already gives us a good approximation of the final

plan: both plans maintain a relatively high dose to the PTV of about 0.9 Gy until session

31, then drop off sharply to the same constant doses thereafter. However, during the high

dose phase, the final plan gradually increases the dosage over time to all structures except

the bladder (i = 3). By adapting dynamically to changes in the patient’s anatomy, it is

able to deliver more dose per session and thus achieve better tumor control, while still

respecting the limits on the OARs’ health statuses.

Indeed, we see in Figure 10 that the final plan exactly attains the desired PTV health

status of zero for t > 31. It must sacrifice some OARs to do this, reducing the health

statuses of the urethra, rectum, and right femoral head (i = 2,4, and 6) to their lower

bounds, but never violates those bounds. In fact, by shifting radiation to other structures,

the final plan actually improves the health of the bladder over that from the initial plan,

which results in a h3(t) far below the limit of −4.8 for t≥ 35. Overall, it is clear that the

combination of a solid initialization heuristic and ADMM produces a treatment plan that

satisfies or even exceeds all of our clinical goals.

7. Implementation

We provide an implementation of our adaptive radiation treatment planning method in

AdaRad, an open-source Python software package based on CVXPY (Diamond and Boyd

2016). Our implementation is fully distributed, leveraging Python’s built-in multiprocess-

ing library to execute solves in parallel. Users can quickly import patient data, define
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Figure 8 Example 6.3: `2-norms of the Primal and Dual Residual for ADMM

clinical goals, construct treatment plans, and visualize the results. They can also rapidly

modify and re-plan a case, allowing for comparisons between different prescriptions and

treatment lengths. Moreover, since AdaRad is a Python library, it can be easily integrated

with other libraries (e.g., for image processing) used in radiation therapy.

The code below imports some patient data and a prescription, solves for the optimal

treatment plan, and plots the resulting dose and health trajectories.

import adarad, numpy

from adarad import Case, CasePlotter

# Construct the clinical case.

> case = Case()

> case.import_file("/examples/patient_01-case.yaml")

> case.physics.dose_matrix = numpy.load("/examples/patient_01-dmat.npy")

# Solve using ADMM algorithm.

> status, result = case.plan(slack_weight = 50, max_iter = 100,
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Figure 9 Example 6.3: Optimal Radiation Dose vs. Session

Note. Comparison of dose from initial plan (green) output by the heuristic described in Section 6.2.1 and final plan

(blue) output by ADMM.

solver = ECOS, use_admm = True)

> print("Solve status: {}".format(status))

> print("Solve time: {}".format(result.solver_stats.solve_time))

> print("Iterations: {}".format(result.solver_stats.num_iters))

# Plot the dose and health trajectories.

> caseviz = CasePlotter(case)

> caseviz.plot_treatment(result, stepsize = 10)

> caseviz.plot_health(result, stepsize = 10)

In this example, the dose matrix At is the same for all t and stored in a single *.npy

file. AdaRad also supports other sparse data representations, such as scipy.csc matrix.
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Figure 10 Example 6.3: Optimal Health Status vs. Session

Note. Comparison of health status without treatment (orange) and with treatment using the initial dose plan (green)

and final plan (blue) output by ADMM.

To specify a time-varying dose matrix, the user would input a list of matrices in order

[A1, . . . ,AT ].

We start by constructing a Case, which contains Anatomy, Physics, and Prescription

objects. The Anatomy and Physics must be defined prior to planning, either by manually

specifying them in the code or importing a case description. A description is a YAML file

that contains at minimum the keys treatment length and structures, where the latter

is a list of anatomical structures i= 1, . . . ,K, each of which has a name, is target boolean

indicator, and alpha, beta, and gamma values corresponding to the LQ model parameters.

The initial health status and health and dose bounds may also be specified.

Once the Case is defined, we can solve for the optimal treatment plan. The plan function

implements Algorithms 1 and 2 (the latter with use admm = True). It takes as optional

input d init: the initial dose point, use slack: a boolean indicating whether to include
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slack variable δ, slack weight: the slack penalty parameter λ, max iter: the maximum

number of iterations, and solver: the convex solver to use for the beam and health sub-

problems. In the above example, we call the solver ECOS (Domahidi et al. 2013), one of

several free, open-source solvers packaged with CVXPY. If MOSEK is installed, we can

call it as well by passing solver = MOSEK into the planning function.

After the algorithm finishes, plan saves the results in case.current plan and returns

the final solve status along with a RunRecord object that carries solver performance data,

such as the total runtime, and the optimal variable values. To visualize the resulting plan,

we instantiate a CasePlotter object and call plot treatment and plot health on the

RunRecord to display the dose and health trajectories, respectively. We can also extract the

optimal beams, doses, and health statuses with, e.g., result.beams for further processing.

If we wish to explore alternate plans, we can easily modify the dose and health sta-

tus constraints of any structure and re-plan the case. Re-planning is generally fast, since

AdaRad uses the previously stored solution as a warm start point. In a typical workflow,

we may import a prescription formed from general clinical guidelines, then repeatedly

adjust the dose/health status bounds until we obtain a treatment plan with our desired

properties. The case.current plan will be updated with the new optimal values after

each run. To keep a history of plans for comparison, we can save our results in the Case by

calling save plan before re-optimizing. The code below provides an example of changing

the upper dose bound on the PTV to Dti = 10 Gy for all sessions and plotting the dose

and health trajectories under this new constraint alongside the trajectories of the original

plan.

# Save previous treatment plan.

> case.save_plan("Original Plan")

# Constraint allows maximum of 10 Gy per session on the PTV.

> case.prescription["PTV"].dose_upper = 10

# Re-plan the case with new dose constraint.

> status2, result2 = case.plan(slack_weight = 50, max_iter = 100,

solver = ECOS, use_admm = True)

> print("Solve status: {}".format(status2))
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# Compare original and new treatment plans.

> caseviz.plot_treatment(result2, stepsize = 10, label = "New Plan",

plot_saved = True)

> caseviz.plot_health(result2, stepsize = 10, label = "New Plan",

plot_saved = True)

For more details on AdaRad’s functions as well as additional examples, see the documen-

tation at https://github.com/anqif/adarad.

8. Conclusion

To achieve the best outcomes, radiation therapy must adapt to new information about

the patient’s health and anatomy during treatment. We have described one method for

adaptive radiation treatment planning using an operator splitting algorithm. Our method

is highly scalable, parallelizable, and can efficiently handle a large number of beams and

sessions. Moreover, it is robust to errors in the patient’s health response model, as well

as other sources of uncertainty in the clinic. We demonstrated its effectiveness on a large

prostate cancer case and showed that the resulting plan improves markedly on a standard

equal-dose fractionation scheme.

Future work will focus on expanding our health response model to include sublethal dam-

age repair, redistribution, and reoxygenation effects. We will also incorporate dose-volume

constraints into the optimal control problem. Finally, to increase our algorithm’s speed,

we intend to release an implementation that takes advantage of the parallel processing

capabilities of the GPU.
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