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Abstract

We show that the variance of the Monte Carlo estimator that is importance sam-
pled from an exponential family is a convex function of the natural parameter of the
distribution. With this insight, we propose an adaptive importance sampling algorithm
that simultaneously improves the choice of sampling distribution while accumulating
a Monte Carlo estimate. Exploiting convexity, we prove that the method’s unbiased
estimator has variance that is asymptotically optimal over the exponential family.

1 Introduction

Consider the problem of approximating the expected value (or integral)

I = Eφ(X) =

∫

φ(x)f(x) dx,

where X ∼ f is a random variable on Rk and φ : Rk → R.
The standard Monte Carlo method estimates I by taking independent identically dis-

tributed (IID) samples X1, X2, . . . , Xn ∼ f and using

ÎMC
n =

1

n

n
∑

i=1

φ(Xi).

This estimator is unbiased, i.e., EÎMC
n = I, and has variance

Var(ÎMC
n ) =

1

n
VarX∼f [φ(X)] =

1

n

(
∫

φ2(x)f(x) dx− I2
)

.

To reduce the variance of the estimator, the standard figure of merit, one can use impor-
tance sampling: choose a sampling (importance) distribution f̃ satisfying f̃(x) > 0 whenever
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φ(x)f(x) 6= 0, take IID samples X1, X2, . . . , Xn ∼ f̃ (as opposed to sampling from f , the
nominal distribution) and use

Î ISn =
1

n

n
∑

i=1

φ(Xi)
f(Xi)

f̃(Xi)
.

Again, the estimator is unbaised, i.e., EÎ ISn = I, and has variance

Var(Î ISn ) =
1

n
VarX∼f̃

[

φ(X)f(X)

f̃(X)

]

=
1

n

(
∫

φ2(x)f 2(x)

f̃(x)
dx− I2

)

.

When f̃ = f , importance sampling reduces to standard Monte Carlo. Choosing f̃ wisely
can reduce the variance, but this can be difficult in general. One approach is to use a priori
information on the integrand φ(x)f(x) to manually find an appropriate sampling distribution
f̃ , perhaps through several informal iterations [14,20,24,30,34,36,37]. Another approach is
to automate the process of finding the sampling distribution through adaptive importance
sampling.

In adaptive importance sampling, one adaptively improves the sampling distribution
while simultaneously accumulating the estimate for I. A particular form of importance
sampling generates a sequence of sampling distributions f̃1, f̃2, . . . and a series of samples
X1 ∼ f̃1, X2 ∼ f̃2, . . . and forms the estimate

ÎAIS
n =

1

n

n
∑

i=1

φ(Xi)
f(Xi)

f̃i(Xi)
.

At each iteration n, the sampling distribution f̃n, which is itself random, is adaptively
determined based on the past data, f̃n, . . . , f̃n−1 and X1, . . . , Xn−1. Again, Î

AIS
n is unbiased,

i.e., EÎAIS
n = I, and

Var(ÎAIS
n ) =

1

n2

n
∑

i=1

Ef̃i
VarXi∼f̃i

[

φ(Xi)f(Xi)

f̃i(Xi)

]

=
1

n2

n
∑

i=1

Ef̃i

(
∫

φ2(x)f 2(x)

f̃ 2(x)
dx− I2

)

,

where Ef̃i
denotes the expectation over the random sampling distribution f̃i. Again, when

f̃i = f̃ for all i, adaptive importance sampling reduces to standard (non-adaptive) importance
sampling. Now determining how to choose f̃n at each iteration fully specifies the method.

In this paper, we propose an instance of adaptive importance sampling, which we call
Convex Adaptive Monte Carlo (Convex AdaMC). First, we choose an exponential family
of distributions F as the set of candidate sampling distributions. Define T : Rk → Rp and
h : Rk → R+. Then our density function is

fθ(x) = exp
(

θTT (x)− A(θ)
)

h(x),

where A : Rp → R ∪ {∞}, defined as

A(θ) = log

∫

exp(θTT (x))h(x) dx,
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serves as a normalizing factor. (When A(θ) = ∞, we define fθ = 0 and remember that this
does not define a distribution.) Finally, let Θ ⊆ Rp be a convex set, and our exponential
family is F = {fθ | θ ∈ Θ}, where θ is called the natural parameter of F . Note that the
choice of T , h, and Θ fully specifies our family F .

Next, define V : Rp → R∪{∞} to be the per-sample variance of the importance sampled
estimator with sampling distribution fθ,

V (θ) = VarX∼fθ

[

φ(X)f(X)

fθ(X)

]

=

∫

φ2(x)f 2(x)

fθ(x)
dx− I2.

(So the importance sampled estimator using n IID samples from fθ has variance V (θ)/n.)
A natural approach is to solve

minimize V (θ)
subject to θ ∈ Θ,

(1)

where θ is the optimization variable, as this will give us the best sampling distribution among
F to importance sample from. We write V ⋆ to denote the optimal value, i.e., the optimal
per-sample variance over the family.

The first key insight of this paper is that V is a convex function, a consequence of F
being an exponential family. Roughly speaking, one can efficiently find a global minimum of
a convex functions through standard methods if one can compute the function value and its
gradient [22]. This fact, however, is not directly applicable to our setting as evaluating V (θ)
or ∇V (θ) for any given θ is in general as hard as evaluating I itself.

The second key insight is that we can minimize the convex function V through a stan-
dard algorithm of stochastic optimization, stochastic gradient descent, while simuiltaneously
accumulating an estimate for I. Because of convexity, we can prove theoretical guarantees.

InConvex AdaMC, we generate a sequence of sampling distribution parameters θ1, θ2, . . .
and a series of samples X1 ∼ fθ1 , X2 ∼ fθ2 , . . ., with which we form the estimate

ÎAMC
n =

1

n

n
∑

i=1

φ(Xi)
f(Xi)

fθi(Xi)
.

Again, ÎAMC
n is unbiased, i.e., EÎAMC

n = I. Furthermore, we show that

Var(ÎAMC
n ) =

1

n
V ⋆ +O

(

1

n3/2

)

=
1

n

(

V ⋆ +O
(

1

n1/2

))

. (2)

This shows that the per-sample variance of Convex AdaMC converges to the optimal
per sample variance over our family F ; i.e., our estimator Convex AdaMC asymptot-
ically performs as well as any (adaptive or non-adaptive) importance sampling estimator
using sampling distributions from F . In particular, Convex AdaMC does not suffer from
becoming trapped in (non-optimal) local minima, a problem other adaptive importance sam-
pling methods can have.
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2 Convexity of the variance

Let’s establish a few important properties of our variance function

V (θ) =

∫

φ2(x)f 2(x) exp(A(θ)− θTT (x))h(x) dx− I2.

When A(θ) = ∞, we define V (θ) = ∞. Not only is this definition natural but is also
convenient since V (θ) = ∞ now indicates that θ is invalid either because the variance is
infinite or because θ doesn’t define a sampling distribution.

Recall that a function V : Rp → R ∪ {∞} is convex if

V (ηθ1 + (1− η)θ2) ≤ ηV (θ1) + (1− η)V (θ2)

holds for any η ∈ [0, 1] and θ1, θ2 ∈ Θ. Convexity is important because it allows us to prove
a theoretical guarantee.

Theorem 1. The variance of the importance sampling estimator V (θ) is a convex function
of θ, the natural parameter of the exponential family.

Proof. We first show A(θ) is convex. By Hölder’s inequality, we have

exp(A(ηθ1 + (1− η)θ2)) =

∫

exp((ηθ1 + (1− η)θ2)
TT (x))h(x) dx

≤
(
∫

exp(θT1 T (x))h(x) dx

)η (∫

exp(θT2 T (x))h(x) dx

)1−η

,

and by taking the log on both sides we get

A(ηθ1 + (1− η)θ2) ≤ ηA(θ1) + (1− η)A(θ2).

Since exp(·) is an increasing convex function and A(θ) − θTT (x) is convex in θ, the
composition exp(A(θ)− θTT (x)) is convex in θ. Finally, V (θ) is convex as it is an integral of
the convex functions exp(A(θ)− θTT (x))h(x) over x; see [16, §B.2], [31, §5], or [5, §3.2].

We note in passing that log V (θ) is also a convex function of θ, which is a stronger
statement than convexity of V (θ). This fact, however, is not useful for us since we do not
have a simple way to obtain a stochastic gradient for log V (θ), whereas, as we will see later,
we do for V (θ).

As we will see soon, stochastic gradient descent hinges on evaluating the derivative of V
under the integral. The following lemma is a consequence of Theorem 2.7.1 of [18].

Lemma 1. V is differentiable and its gradient can be evaluated under the integral on
int {θ | V (θ) < ∞}, where int denotes the interior.

In particular, we have

∇V (θ) =

∫

∇θ
φ2(x)f 2(x)

fθ(x)
dx

=

∫

(∇A(θ)− T (x))
φ2(x)f 2(x)

f 2
θ (x)

fθ(x) dx

= EX∼fθ

[

(∇A(θ)− T (X))
φ2(X)f 2(X)

f 2
θ (X)

]

.
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So when we take a sample X ∼ fθ, the random vector

g = (∇A(θ)− T (X))
φ2(X)f 2(X)

f 2
θ (X)

satisfies Eg = ∇V (θ).

3 The method

Stochastic gradient descent is a standard method for solving

minimize V (θ)
subject to θ ∈ Θ,

using the algorithm
θn+1 = Π(θn − αngn),

where Π is (Euclidean) projection onto Θ, the step size αn > 0 is an appropriately chosen
sequence, and the stochastic gradient gn is a random variable satisfying

E [gn | θn] = ∇V (θn).

The intuition is that −gn, although noisy, generally points towards a descent direction of V
at θn, and therefore each step reduces the function value of V in expectation [17,27,29,35].

Our algorithm, which we call Convex AdaMC, is

Xn ∼ fθn

ÎAMC
n =

1

n

n
∑

i=1

φ(Xi)f(Xi)

fθi(Xi)

gn = (∇A(θn)− T (Xn))
φ2(Xn)f

2(Xn)

f 2
θn
(Xn)

θn+1 = Π

(

θn −
C√
n
gn

)

,

where C > 0 and θ1 ∈ Θ. As mentioned in the introduction, the estimator ÎAMC
n is unbiased

and has variance given by (2) under a technical condition to be presented in §4.
We can view Convex AdaMC as an adaptive importance sampling method where the

third and fourth line of the algorithm updates the sampling distribution. Alternatively, we
can view Convex AdaMC as stochastic gradient descent on the convex function V with
an additional step, the second line of the algorithm, that accumulates the estimate of I but
does not otherwise affect the iteration.

The computational cost of Convex AdaMC is cheap, of course, if all of its operations
are cheap. This is the case if φ and f are functions we can easily evaluate, if our family of
distributions, F , is one of the well-known exponential families, and if Θ is a set we can easily
project onto.
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4 Analysis

Before we present our convergence results, we discuss the choice of Θ. For any convex domain
Θ, our variance function V is convex and minimizing V (θ) over θ ∈ Θ is a mathematically
well-defined problem. However, for our method to be well-defined and for the proof of
convergence to work out, we need further restrictions on Θ.

Define

K(θ) = EX∼fθ

[

φ4(X)f 4(X)

f 4
θ (X)

]

=

∫

φ4(x)f 4(x)

f 3
θ (x)

dx.

We require that Θ is convex and compact and that Θ ⊆ int {θ | K(θ) < ∞}. In other words,
Θ must be a convex compact subset of the interior of the set of natural parameters for which
their importance sampled estimates have finite 4th moment. Since

{θ | K(θ) < ∞} ⊆ {θ | V (θ) < ∞} ⊆ {θ | A(θ) < ∞}

it follows that any θ ∈ Θ defines a sampling distribution fθ that produces an importance
sampled estimate of finite variance.

Theorem 2. Assume Θ ⊆ int {θ | K(θ) < ∞} is nonempty, convex, and compact. Define
D = maxθ1,θ2∈Θ ‖θ1 − θ2‖2 and

G2 = sup
θ∈Θ

EX∼fθ

∥

∥

∥

∥

(∇A(θ)− T (X))
φ2(X)f 2(X)

f 2
θ (X)

∥

∥

∥

∥

2

2

.

Then G < ∞, and ÎAMC
n , the unbiased estimator of Convex AdaMC, satisfies

1

n
V ∗ ≤ Var(ÎAMC

n ) ≤ 1

n
V ∗ +

(

D2

2C
+ CG2

)

1

n3/2
.

Proof. We defer the proof of G < ∞ to the appendix.
Since the conditional dependency of our sequences θ1, θ2, . . . and X1, X2, . . . is

θ1 θ2 θ3 θ4

X1 X2 X3

· · ·

Xi is independent of the entire past conditioned on θi for all i. With this insight, we have

EÎAMC
n =

1

n

n
∑

i=1

E
φ(Xi)f(Xi)

fθi(Xi)
=

1

n

n
∑

i=1

E

[

E

[

φ(Xi)f(Xi)

fθi(Xi)
| θi
]]

=
1

n

n
∑

i=1

E [I] = I
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and

Var(ÎAMC
n ) = E(ÎAMC

n − I)2

=
1

n2

n
∑

i=1

E

(

φ(Xi)f(Xi)

fθi(Xi)
− I

)2

+
2

n2

∑

1≤i<j≤n

E

(

φ(Xi)f(Xi)

fθi(Xi)
− I

)(

φ(Xj)f(Xj)

fθj(Xj)
− I

)

=
1

n2

n
∑

i=1

E

[

E

[

(

φ(Xi)f(Xi)

fθi(Xi)
− I

)2

| θi
]]

+
2

n2

∑

1≤i<j≤n

E

[

E

[(

φ(Xi)f(Xi)

fθi(Xi)
− I

)(

φ(Xj)f(Xj)

fθj(Xj)
− I

)

| θj
]]

=
1

n2

n
∑

i=1

EV (θi).

Since V (θi) ≥ V ⋆ for any θi ∈ Θ, we conclude Var(ÎAMC
n ) ≥ V ⋆/n.

Now let’s prove the upper bound. Let θ⋆ be a minimizer of V over Θ (which exists since
V is continuous on the compact set Θ). Then we have

‖θi+1 − θ⋆‖22 = ‖Π(θi − C/
√
igi)− Π(θ⋆)‖22

≤ ‖θi − C/
√
igi − θ⋆‖22

= ‖θi − θ⋆‖22 +
C2

i
‖gi‖22 − 2

C√
i
gTi (θi − θ⋆),

where the first inequality follows from nonexpansivity of Π (i.e., ‖Π(u)−Π(v)‖2 ≤ ‖u− v‖2
for any u and v). We take expectation conditioned on θi on both sides to get

E
[

‖θi+1 − θ⋆‖22 | θi
]

≤ ‖θi − θ⋆‖22 +
C2

i
E
[

‖gi‖22 | θi
]

− 2
C√
i
∇V (θi)

T (θi − θ⋆)

≤ ‖θi − θ⋆‖22 +
C2

i
G2 − 2

C√
i
∇V (θi)

T (θi − θ⋆)

≤ ‖θi − θ⋆‖22 +
C2

i
G2

2 − 2
C√
i
(V (θi)− V (θ⋆)),

where the second inequality follows from the definition of G and the third inequality follows
from re-arranging the following consequence of V ’s convexity

V (θ⋆) ≥ V (θi) +∇V (θi)
T (θ⋆ − θi).

We take the full expectation on both sides and re-arrange to get

EV (θi)− V ⋆ ≤
√
i

2C
(E‖θi − θ⋆‖22 − E‖θi+1 − θ⋆‖22) +

C

2
√
i
G2.
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We take a summation to get an “almost telescoping” series:

2
n
∑

i=1

(EV (θi)− V ⋆) ≤ 1

C

n
∑

i=1

(
√
i−

√
i− 1)E‖θi − θ⋆‖22 + CG2

n
∑

i=1

1√
i

≤ D2

C

n
∑

i=1

(
√
i−

√
i− 1) + CG2

n
∑

i=1

1√
i

≤ D2

C

√
n+ 2CG2

√
n,

where the second inequality follows from the definition of D and the third inequality follows
from

n
∑

i=1

1√
i
≤
∫ n

0

1√
i
di.

Finally, we divide both sides by 2n2 to get

1

n2

n
∑

i=1

EV (θi) ≤
1

n
V ⋆ +

(

D2

2C
+ CG2

)

1

n3/2
.

Not surprisingly, we have a central limit theorem (CLT) for our estimator. The proof of
the following theorem is a straightforward application of a Martingale CLT, and is given in
the appendix.

Theorem 3. Under the assumptions of Theorem 2, we have

√
n(ÎAMC

n − I)
D→ N (0, V ⋆).

Convex AdaMC has parameters C and θ1 that must be chosen, but Theorem 2 or its
proof does not give us insight on how to make this choice. Of course, the choice C = D/

√
2G

optimizes the bound of Theorem 2, but this is not very meaningful: The quantity G, in
general, is unknown a priori, and the term (D2/2C + CG2)/n3/2 is merely a bound that
we suspect is not representative of the actual performance. In practice, one should vary C
through several informal iterations to find what works well.

Likewise, the stated bound of Theorem 2 independent of θ1, and the proof does not seem
to reveal any significant dependence on θ1. However, intuition and empirical experiments
suggest that a θ1 with a small value of V (θ1) performs well.

Rather, the theoretical significance of Theorem 2 and 3 is that the leading order term
of Var(ÎAMC

n ) is V ⋆/n, the optimum among the family F , and that the following term is of
order O(1/n3/2). In particular, this implies that Convex AdaMC cannot be trapped at a
(non-optimal) local minimum.
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5 Examples

Volume of a polytope. Consider the problem of computing the area of the quadrilateral
Q with corners at (0.05, 0.9), (0.8, 0.9), (1, 0.7), and (0.15, 0.7). The answer is 0.16, which of
course can be found with simple geometry.

First note that

I =

∫ 1

0

∫ 1

0

1Q dxdy,

where 1Q is the indicator function that is 1 within the quadrilateral and 0 otherwise. Now
let’s see how to compute I with Convex AdaMC.

First, we choose bivariate Gaussians, which have the densities

f(x;µ,Σ) =
1

2π|Σ|1/2 exp
(

−1

2
(x− µ)TΣ−1(x− µ)

)

,

as our candidate sampling distributions. To form these into an exponential family, we per-
form a change of variables. Loosely speaking, we say our natural parameter θ has two
components: m = Σ−1µ ∈ R2 and S = Σ−1 ∈ S2 where S2 denotes the set of 2 × 2
symmetric matrices. Now our densities are

fm,S(x) =
1

2π
exp

(

mTx− 1

2
Tr(SxxT )

)

exp

(

−1

2

(

mTS−1m− log |S|
)

)

.

(Note that Tr(SxxT ) is linear in S as it is the inner product between S and xxT , interpreted
as vectors of R4.) We choose our compact natural parameter set Θ to be

Θ = [0, 25]2 ×
{

S ∈ S2 | I � S � 50I
}

.

In other words, we restrict m1 and m2 to be within [0, 25] and the eigenvalues of Θ to both
be within [1, 50]. With this choice, the updates of Convex AdaMC are

mn+1 = Π[0,25]2

(

mn −
C1Q(Xn)

f 2
m,S(Xn)

√
n

(

S−1
n mn −Xn

)

)

,

Sn+1 = Π{S∈S2|I�S�50I}

(

Sn −
C1Q(Xn)

2f 2
m,S(Xn)

√
n

(

XnX
T
n − S−1

n mnm
T
nS

−1
n − S−1

n

)

)

.

Figure 1 shows the improvement of the sampling distributions for a particular run of
this problem. Figure 1a gives the initial sampling distribution. Since the first sample to
ever hit Q happens at iteration 33, the sampling distribution is identical for the first 32
iterations. As the algorithm progresses, we see that the density function of the Gaussian
sampling distribution gradually matches the shape IQ.

Option pricing. Consider the pricing of an arithmetic Asian call option on an underlying
asset under standard Black-Scholes assumptions [14]. We write S0 for the initial price of the
underlying asset, r and σ for the interest rate and volatility of the Black-Scholes model, and
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(a) Iterations 1 through 32
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(b) Iteration 104
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(c) Iteration 106
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(d) Iteration 108

Figure 1: Sampling distributions at different iterations. The red quadrilateral represents Q
and the three ellipses denote the 68%, 95%, and 99.7% confidence ellipsoids.

T for the maturity time. Under the Black-Scholes model, the price of the asset at time jT/k
is

Sj(X) = S0 exp

[

(r − 1

2
σ2)j

T

n
+ σ

√

T

n

j
∑

i=1

Xj

]

for t = 1, . . . , k, where X ∈ Rk is random with independent standard normal entries
X1, . . . , Xk. (Here we will use superscripts to denote entries of a vector.) The discounted
payoff of the option with strike K is given by

φ(X) = exp−rT max

{

1

k

k
∑

i=1

Sj(X)−K, 0

}

,
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and we wish to compute Eφ(X).
To use Convex AdaMC, we choose the exponential family

fθ(x) =
1

(2π)k/2
e−‖x−θ‖2

2 = exp

(

θTx− 1

2
‖θ‖22

)

exp

(

−1

2
‖x‖22

)

/(2π)k/2,

where θ ∈ Rk and Θ ∈ [−0.5, 0.5]k. In other words, X ∼ fθ contains independent standard
normals with mean shifted by θ. So we have

φ(X)
f(X)

fθ(X)
= φ(X) exp

(

1

2
‖θ‖22 −XT θ

)

and
∇A(θ) = θ T (X) = X.

We run Convex AdaMC with the parameters S0 = K = 50, r = 0.05, σ = 0.3, T = 1.0,
k = 64, C = 0.01, and θ1 = 0 for 107 iterations. Figure 2 shows the shifting at the end of
the algorithm and the asset price estimate is 4.02.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Entries of θ

Figure 2: Importance sampling parameter θ for the Asian option pricing problem after 107

iterations.

6 Remarks, extensions, and variations

An iteration of Convex AdaMC is simultaneously an iteration of a convex optimization
problem and an iteration of importance sampling. Because of this fact, each iteration of the
method is computationally efficient, and we can prove convergence of the variance (and of
course the estimator) as a function of the iteration count.

Some previous work on adaptive importance sampling have used stochastic gradient de-
scent or similar stochastic approximation algorithms without a setup to make the variance
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convex [1–3,13]. While these methods are applicable to a more general class of candiate sam-
pling distributions, they have little theoretical guarantees on the variances of the estimators;
This is not surprising as in general with nonconvex optimization problems, it is difficult to
prove anything beyond mere convergence to a stationary point, such as a rate of convergence
or convergence to the global optimum.

Other previous work on adaptive importance sampling solves an optimization subprob-
lem to update the sampling parameter each time, either with an off-the-shelf deterministic
optimization algorithm or, especially in the case of the cross-entropy method, by focusing
on special cases with analytic solutions [6–12, 15, 19, 23, 26, 32, 33]. While some these meth-
ods do exploit convexity to establish that the subproblems can be solved efficiently, these
subproblems and the storage requirement to represent these subproblems grow in size with
the number of iterations. One could loosely argue that the inefficiency is a consequence of
separating the optimization and the importance sampling.

We point out two straightforward generalizations that we omitted for the sake of simplic-
ity. One is that when the nominal and importance distributions have densities with respect
to any general measure, not the Lebesgue measure as assumed in our exposition, the same
results apply.

Another is to adaptively minimize the Rényi generalized divergence with parameter α ≥ 1
of the sampling distribution to the “optimal” sampling distribution |φ(x)|f(x) [21,28]. What
we did, minimizing the variance of the estimator, is the special with α = 2. When α = 1,
the Rényi generalized divergence becomes the cross entropy and we get a method similar to
the cross-entropy method [8, 33]. (The Rényi generalized divergence is convex for α ≥ 1.)

There are other not-so-straightforward generalizations worth pursuing. One is to try
other stochastic optimization methods. In this paper, we used the most common and simplest
stochastic optimization method, stochastic gradient descent with step size C/

√
n. However,

there are many other methods to solve a given stochastic optimization problem, and these
other methods could perform better under certain assumptions.

Another would be a different weighting scheme. In Convex AdaMC, we add a sequence
of unbiased estimators with varying variance, which, loosely speaking, is decreasing in ex-
pectation. If we knew these variances in advance, then we can easily compute the optimal
weighting, which is not a uniform weighting. Although we don’t know the variances in ad-
vance, it would be interesting to know if there is a better weighting or to characterize the
optimality of the uniform weighting in the spirit of Theorem 4 of [25].

Finally, it would be most interesting to understand Convex AdaMC’s theoretical and
empirical performance when used in conjunction with other variance reduction techniques
such as control variates or mixture importance sampling.
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7 Appendix

The following lemma, like Lemma 1 follows from Theorem 2.7.1 of [18].

Lemma 2. A, V , and K are infinitely differentiable and all derivatives can be evaluated
under their integrals on the interiors of their respective domains.

We are now ready to prove the part of the proof of Theorem 2 we omitted.

Proof of G < ∞ in Theorem 2. For any i ∈ {1, 2, . . . , p},

∂

∂θi
K(θ) = 3

∫
(

∂

∂θi
A(θ)− Ti(x)

)

φ4(x)f 4(x)

f 3
θ (x)

dx = 3K(θ)
∂

∂θi
A(θ)−3

∫

Ti(x)
φ4(x)f 4(x)

f 3
θ (x)

dx

exists and is and continuous on int {θ | K(θ) < ∞} by Lemma 2. As we already know the
first term is continuous by Lemma 2, this tells us the second term is continuous.

Repeating this, we have

∂2

∂θ2i
K(θ) =

∫

(

3
∂2

∂θ2i
A(θ) + 9

(

∂

∂θi
A(θ)

)2

− 18Ti(x)
∂

∂θi
A(θ) + 9T 2

i (x)

)

φ4(x)f 4(x)

f 3
θ (x)

dx.

We know the first 3 terms are continuous from what we just proved and Lemma 2. So we
conclude that

∫

T 2
i (x)

φ4(x)f 4(x)

f 3
θ (x)

dx

is a continuous function of θ on int {θ | K(θ) < ∞}.
Finally, we conclude that

EX∼fθ

∥

∥

∥

∥

(∇A(θ)− T (X))
φ2(X)f 2(X)

f 2
θ (X)

∥

∥

∥

∥

2

2

= ‖∇A(θ)‖22K(θ)− 2∇A(θ)T
∫

T (X)
φ4(X)f 4(X)

f 3
θ (X)

dx+

∫

‖T (X)‖22
φ4(X)f 4(X)

f 3
θ (X)

dx

is a continuous function on the compact set Θ and therefore the supremum, G2, is finite.

Finally, we prove the CLT.

Proof of Theorem 3. First define

Yni =

{

1√
n

(

φ(Xi)f(Xi)
fθi (Xi)

− I
)

for i ≤ n

0 otherwise

and

Jnm =
m
∑

i=1

Yni.

Also define the σ-algebras

Gm = σ(θ1, θ2, . . . , θm+1, X1, X2, . . . , Xm)

13



for all m. Then for any given n, the process Jn1, Jn2, . . . is a martingale with respect to
G1,G2, . . . and to we have to prove

Jnn =
n
∑

i=1

Yni =
∞
∑

i=1

Yni
D→ N (0, V ⋆).

Define

σ2
ni = E

[

Y 2
ni | Gi−1

]

=

{

1
n
V (θi) for i ≤ n

0 otherwise.

Then a form of the Martingale CLT, c.f., Theorem 35.12 of [4], states that if

n
∑

i=1

σ2
ni

P→ V ⋆

and
n
∑

i=1

EY 2
niI{|Yni|≥ε} → 0

for each ε > 0, then Jnn
D→ N (0, V ⋆).

Since
n
∑

i=1

σ2
ni =

1

n

n
∑

i=1

V (θi),

and since, by Theorem 2, we have

1

n

n
∑

i=1

(EV (θi)− V ⋆) = E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

V (θi)− V ⋆

∣

∣

∣

∣

∣

= O(1/
√
n) → 0,

i.e.,
∑n

i=1 σ
2
ni converges to V ⋆ in L1, we have

n
∑

i=1

σ2
ni

P→ V ∗.

Finally, since Θ ⊆ {θ | K(θ) < ∞} is a compact set and K(θ) is a continuous function
by Lemma 2, we have

B = sup
θ∈Θ

K(θ) < ∞

and we conclude

n
∑

i=1

EY 2
niI{|Yni|≥ε} =

1

n

n
∑

i=1

E
φ2(Xi)f

2(Xi)

f 2
θi
(Xi)

I{
φ2(Xi)f2(Xi)/f2

θi
(Xi)≥nε2

}

≤ 1

n2ε2

n
∑

i=1

E
φ4(Xi)f

4(Xi)

f 4
θi
(Xi)

≤ B

nε2
→ 0.

Since this proves the conditions we need, applying the martingale CLT completes the proof.
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