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Abstract

We introduce a convex optimization modeling framework

that transforms a convex optimization problem expressed in

a form natural and convenient for the user into an equiva-

lent cone program in a way that preserves fast linear trans-

forms in the original problem. By representing linear func-

tions in the transformation process not as matrices, but as

graphs that encode composition of abstract linear opera-

tors, we arrive at a matrix-free cone program, i.e., one

whose data matrix is represented by an abstract linear oper-

ator and its adjoint. This cone program can then be solved

by a matrix-free cone solver. By combining the matrix-free

modeling framework and cone solver, we obtain a general

method for efficiently solving convex optimization problems

involving fast linear transforms.

1. Introduction

Convex optimization modeling systems like YALMIP

[38], CVX [28], CVXPY [16], and Convex.jl [47] provide

an automated framework for converting a convex optimiza-

tion problem expressed in a natural human-readable form

into the standard form required by a generic solver, calling

the solver, and transforming the solution back to the human-

readable form. This allows users to form and solve con-

vex optimization problems quickly and efficiently. These

systems easily handle problems with a few thousand vari-

ables, as well as much larger problems (say, with hundreds

of thousands of variables) with enough sparsity structure,

which generic solvers can exploit.

The overhead of the problem transformation, and the ad-

ditional variables and constraints introduced in the trans-

formation process, result in longer solve times than can be

obtained with a custom algorithm tailored specifically for

the particular problem. Perhaps surprisingly, the additional

solve time (compared to a custom solver) for a modeling

system coupled to a generic solver is often not as much as

one might imagine, at least for modest sized problems. In

many cases the convenience of easily expressing the prob-

lem makes up for the increased solve time using a convex

optimization modeling system.

Many convex optimization problems in applications like

signal and image processing, or medical imaging, involve

hundreds of thousands or many millions of variables, and

so are well out of the range that current modeling systems

can handle. There are two reasons for this. First, the stan-

dard form problem that would be created is too large to store

on a single machine, and second, even if it could be stored,

standard interior-point solvers would be too slow to solve it.

Yet many of these problems are readily solved on a single

machine by custom solvers, which exploit fast linear trans-

forms in the problems. The key to these custom solvers is

to directly use the fast transforms, never forming the associ-

ated matrix. For this reason these algorithms are sometimes

referred to as matrix-free solvers.

The literature on matrix-free solvers in signal and im-

age processing is extensive; see, e.g., [3, 4, 10, 9, 25, 49].

There has been particular interest in matrix-free solvers for

LASSO and basis pursuit denoising problems [4, 11, 22,

18, 31, 48]. The most general matrix-free solvers target

semidefinite programs [32] or quadratic programs and re-

lated problems [43, 26]. The software closest to a convex

optimization modeling system for matrix-free problems is

TFOCS, which allows users to specify many types of con-

vex problems and solve them using a variety of matrix-free

first-order methods [5].

To better understand the advantages of matrix-free

solvers, consider the nonnegative deconvolution problem

minimize ‖c ∗ x− b‖2

subject to x ≥ 0,
(1)

where x ∈ Rn is the optimization variable, c ∈ Rn and

b ∈ R2n−1 are problem data, and ∗ denotes convolu-

tion. Note that the problem data has size O(n). There

are many custom matrix-free methods for efficiently solv-

ing this problem, with O(n) memory and a few hundred

iterations, each of which costs O(n log n) floating point op-

erations (flops). It is entirely practical to solve instances of

this problem of size n = 107 on a single computer [36].

Existing convex optimization modeling systems fall far

short of the efficiency of matrix-free solvers on problem (1).
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These modeling systems target a standard form in which

a problem’s linear structure is represented as a sparse ma-

trix. As a result, linear functions must be converted into

explicit matrix multiplication. In particular, the operation

of convolving by c will be represented as multiplication by

a (2n− 1)× n Toeplitz matrix C. A modeling system will

thus transform problem (1) into the problem

minimize ‖Cx− b‖2

subject to x ≥ 0,
(2)

as part of the conversion into standard form.

Once the transformation from (1) to (2) has taken place,

there is no hope of solving the problem efficiently. The ex-

plicit matrix representation of C requires O(n2) memory.

A typical interior-point method for solving the transformed

problem will take a few tens of iterations, each requiring

O(n3) flops. For this reason existing convex optimization

modeling systems will struggle to solve instances of prob-

lem (1) with n = 104, and when they are able to solve

the problem, they will be dramatically slower than custom

matrix-free methods.

The key to matrix-free methods is to exploit fast algo-

rithms for evaluating a linear function and its adjoint. We

call an implementation of a linear function that allows us

to evaluate the function and its adjoint a forward-adjoint

oracle (FAO). In this paper we describe a new algorithm

for converting convex optimization problems into standard

form while preserving fast linear transforms. The algorithm

expresses the standard form’s linear structure as an abstract

linear operator (specifically, a graph of FAOs) rather than as

an explicit sparse matrix.

Our new algorithm yields a convex optimization model-

ing system that can take advantage of fast linear transforms,

and can be used to solve large problems such as those aris-

ing in image and signal processing and other areas, with

millions of variables. This allows users to rapidly proto-

type and implement new convex optimization based meth-

ods for large-scale problems. As with current modeling sys-

tems, the goal is not to attain (or beat) the performance of

a custom solver tuned for the specific problem; rather it is

to make the specification of the problem straightforward,

while increasing solve times only moderately.

Due to space limitations, we cannot give the full details

of our approach. A longer paper still in development con-

tains the details, as well as additional references and numer-

ical examples [15].

2. Forward-adjoint oracles

2.1. Definition

A general linear function f : Rn → Rm can be repre-

sented on a computer as a dense matrix A ∈ Rm×n using

O(mn) bytes. We can evaluate f(x) on an input x ∈ Rn in

O(mn) flops by computing the matrix-vector multiplication

Ax. We can likewise evaluate the adjoint f∗(y) = AT y on

an input y ∈ Rm in O(mn) flops by computing AT y.

Many linear functions arising in applications have struc-

ture that allows the function and its adjoint to be evaluated

in fewer than O(mn) flops or using fewer than O(mn)
bytes of data. The algorithms and data structures used to

evaluate such a function and its adjoint can differ wildly.

It is thus useful to abstract away the details and view lin-

ear functions as forward-adjoint oracles (FAOs), i.e., a tu-

ple Γ = (f,Φf ,Φf∗) where f is a linear function, Φf is

an algorithm for evaluating f , and Φf∗ is an algorithm for

evaluating f∗. For simplicity we assume that the algorithms

Φf and Φf∗ in an FAO read from an input array and write to

an output array (which can be the same as the input array).

We use n to denote the length of the input array and m to

denote the length of the output array.

While we focus on linear functions from Rn into Rm,

the same techniques can be used to handle linear functions

involving complex arguments or values, i.e., from Cn into

Cm, from Rn into Cm, or from Cn into Rm, using the stan-

dard embedding of complex n-vectors into real 2n-vectors.

This is useful for problems in which complex data arise nat-

urally (e.g., in signal processing and communications), and

also in some cases that involve only real data, where com-

plex intermediate results appear (typically via an FFT).

2.2. Examples

In this section we describe some useful FAOs. In many

of the examples the domain or range are naturally viewed

as matrices or Cartesian products rather than as vectors in

Rn and Rm. Matrices are treated as vectors by stacking the

columns into a single vector; Cartesian products are treated

as vectors by stacking the components. For the purpose of

determining the adjoint, we still regard these FAOs as func-

tions from Rn into Rm.

Multiplication by a sparse matrix. Multiplication by a

sparse matrix A ∈ Rm×n, i.e., a matrix with many zero en-

tries, is represented by the FAO Γ = (f,Φf ,Φf∗), where

f(x) = Ax. The adjoint f∗(u) = ATu is also multipli-

cation by a sparse matrix. The algorithms Φf and Φf∗ are

the standard algorithm for multiplying by a sparse matrix

in (for example) compressed sparse row format. Evaluat-

ing Φf and Φf∗ requires O(nnz(A)) flops and O(nnz(A))
bytes of data to store A and AT , where nnz is the number

of nonzero elements in a sparse matrix [14, Chap. 2].

Multiplication by a low-rank matrix. Multiplication by

a matrix A ∈ Rm×n with rank k, where k ≪ m and

k ≪ n, is represented by the FAO Γ = (f,Φf ,Φf∗),
where f(x) = Ax. The matrix A can be factored as
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A = BC, where B ∈ Rm×k and C ∈ Rk×n. The ad-

joint f∗(u) = CTBTu is also multiplication by a rank k
matrix. The algorithm Φf evaluates f(x) by first evaluat-

ing z = Cx and then evaluating f(x) = Bz. Similarly,

Φf∗ multiplies by BT and then CT . The algorithms Φf

and Φf∗ require O(k(m+ n)) flops and use O(k(m+ n))
bytes of data to store B and C and their transposes. Multi-

plication by a low-rank matrix occurs in many applications,

and it is often possible to approximate multiplication by a

full rank matrix with multiplication by a low-rank one, us-

ing the singular value decomposition or methods such as

sketching [34].

Discrete Fourier transform. The discrete Fourier trans-

form (DFT) is represented by the FAO Γ = (f,Φf ,Φf∗),
where f : R2p → R2p is given by

f(x)k = 1√
p

∑p
j=1 ℜ

(

ω
(j−1)(k−1)
p

)

xj

−ℑ
(

ω
(j−1)(k−1)
p

)

xj+p

f(x)k+p = 1√
p

∑p
j=1 ℑ

(

ω
(j−1)(k−1)
p

)

xj

+ℜ
(

ω
(j−1)(k−1)
p

)

xj+p

(3)

for k = 1, . . . , p. Here ωp = e−2πi/p. The adjoint f∗ is the

inverse DFT. The algorithm Φf is the fast Fourier transform

(FFT), while Φf∗ is the inverse FFT. The algorithms can be

evaluated in O((m+n) log(m+n)) flops, using only O(1)
bytes of data to store the dimensions of f ’s input and output

[13, 37]. Here m = n = 2p.

The 2-D DFT has the same computational complexity.

In its FAO representation Γ = (f,Φf ,Φf∗), the algorithms

Φf and Φf∗ also require O((m+n) log(m+n)) flops, using

only O(1) bytes of data to store the dimensions of f ’s input

and output [35, 37].

Convolution. Convolution with a kernel c ∈ Rp is de-

fined as f : Rn → Rm, where

f(x)k =
∑

i+j=k+1

cixj , k = 1, . . . ,m. (4)

Different variants of convolution restrict the indices i, j to

different ranges, or interpret vector elements outside their

natural ranges as zero or using periodic (circular) indexing.

Standard (column) convolution takes m = n + p − 1,

and defines ci and xj in (4) as zero when the index is ou-

side its range. In this case the associated matrix Col(c) ∈
Rn+p−1×n is Toeplitz, with each column a shifted version

of c:

Col(c) =























c1

c2
. . .

...
. . . c1

cp c2
. . .

...

cp























.

Another standard form, row convolution, restricts the in-

dices in (4) to the range k = p, . . . , n. For simplicity

we assume that n ≥ p. In this case the associated matrix

Row(c) ∈ Rn−p+1×n is Toeplitz, with each row a shifted

version of c, in reverse order:

Row(c) =







cp cp−1 . . . c1
. . .

. . .
. . .

cp cp−1 . . . c1






.

The matrices Col(c) and Row(c) are related by the equal-

ities
Col(c)T = Row(rev(c))
Row(c)T = Col(rev(c)),

(5)

where rev(c)k = cp−k+1 reverses the order of the entries

of c.
Column convolution with c ∈ Rp is represented by the

FAO Γ = (f,Φf ,Φf∗), where f : Rn → Rn+p−1 is given

by f(x) = Col(c)x. The adjoint f∗ is row convolution

with rev(c), i.e., f∗(u) = Row(rev(c))u. The algorithms

Φf and Φf∗ use the DFT to transform convolution into ele-

mentwise multiplication and require O((m+n) log(m+n))
flops [37]. Here m = n+ p− 1. If the kernel is small (i.e.,

p≪ n), Φf and Φf∗ instead evaluate (4) directly in O(np)
flops. In either case, the algorithms Φf and Φf∗ use O(p)
bytes of data to store c and rev(c).

The 2-D analogue of column convolution has the same

computational complexity as the 1-D case. The adjoint of

2-D column convolution is a 2-D analogue of row convolu-

tion. 2-D column convolution with a kernel C ∈ Rp×q has

an FAO representation Γ = (f,Φf ,Φf∗) where the algo-

rithms Φf and Φf∗ require

O(min{(m+ n) log(m+ n), pqn}),

flops and use O(pq) bytes of data to store C [37, Chap. 4].

Often the kernel is parameterized (e.g., a Gaussian kernel),

in which case more compact representations of C are pos-

sible [20, Chap. 7].

Fast transforms. There are many other linear functions

for which the function and its adjoint can be computed

efficiently. These typically have m = n, and are called

transforms. Examples include the discrete wavelet, Hartley,
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Haar, and Walsh-Hadamard transforms, which can be eval-

uated in O(n) or O(n log n) flops (and the same for their

adjoints). Due to space limitations we omit the details here.

Matrix product. Multiplication on the left by a matrix

A ∈ Rs×p and on the right by a matrix B ∈ Rq×t is

represented by the FAO Γ = (f,Φf ,Φf∗), where f :
Rp×q → Rs×t is given by f(X) = AXB. The adjoint

f∗(U) = ATUBT is also a matrix product. The linear

functions f and f∗ can be represented as matrix multiplica-

tion (with vector input and output) using Kronecker prod-

ucts.

There are two ways to implement Φf efficiently, corre-

sponding to different orders of operations in multiplying out

AXB. In one method we multiply by A first and B second,

for a total of O(s(pq + qt)) flops (assuming that A and B
are dense). In the other method we multiply by B first and

A second, for a total of O(p(qt + st)) flops. The former

method is more efficient if

1

t
+

1

p
<

1

s
+

1

q
.

Similarly, there are two ways to implement Φf∗ , one requir-

ing O(s(pq+qt)) flops and the other requiring O(p(qt+st))
flops. The algorithms Φf and Φf∗ use O(sp + qt) bytes

of data to store A and B and their transposes. When

p = q = s = t, the flop count for Φf and Φf∗ simpli-

fies to O
(

(m+ n)1.5
)

flops. Here m = n = pq. (When

the matrices A or B are sparse, evaluating f(X) and f∗(U)
can be done even more efficiently.)

Sum and copy. The function sum : Rm × · · · ×
Rm → Rm with k inputs is represented by the FAO Γ =
(f,Φf ,Φf∗), where f(x1, . . . , xk) = x1 + · · · + xk. The

adjoint f∗ is the function copy : Rm → Rm × · · · × Rm,

which outputs k copies of its input. The algorithms Φf and

Φf∗ require O(m + n) flops to sum and copy their input,

respectively, using only O(1) bytes of data to store the di-

mensions of f ’s input and output. Here n = km.

2.3. Compositions

In this section we consider compositions of FAOs. In fact

we have already discussed several linear functions that are

naturally and efficiently represented as compositions, such

as multiplication by a low-rank matrix and matrix prod-

uct. Here though we present a data structure and algorithm

for efficiently evaluating any composition and its adjoint,

which gives us an FAO representing the composition.

A composition of FAOs can be represented using a di-

rected acyclic graph (DAG) with exactly one node with no

incoming edges (the start node) and exactly one node with

no outgoing edges (the end node). We call such a represen-

tation an FAO DAG.

copy

A B

sum

Figure 1: The FAO DAG for f(x) = Ax+Bx.

Each node in the FAO DAG stores the following at-

tributes:

• An FAO Γ = (f,Φf ,Φf∗). Concretely, f is a sym-

bol identifying the function, and Φf and Φf∗ are exe-

cutable code.

• The data needed to evaluate Φf and Φf∗ .

• An input array.

• An output array.

• A list Ein of incoming edges.

• A list Eout of outgoing edges.

The input and output arrays can be the same when the FAO

algorithms operate in-place, i.e., write the output to the ar-

ray storing the input. The total bytes needed to store an FAO

DAG is dominated by the sum of the bytes of data on each

node. When the same FAO occurs more than once in the

FAO DAG, we can reduce the total bytes of data needed by

sharing data across duplicate nodes.

As an example, figure 1 shows the FAO DAG for the

composition f(x) = Ax+Bx, where A ∈ Rm×n and B ∈
Rm×n are dense matrices. The copy node duplicates the

input x ∈ Rn into the multi-argument output (x, x) ∈ Rn×
Rn. The A and B nodes multiply by A and B, respectively.

The sum node sums two vectors together. The copy node

is the start node, and the sum node is the end node. The

FAO DAG requires O(mn) bytes to store, since the A and

B nodes store the matrices A and B and their tranposes.

Forward evaluation. To evaluate the composition

f(x) = Ax + Bx using the FAO DAG in figure 1, we first

evaluate the start node on the input x ∈ Rn, which copies

x and sends it out on both outgoing edges. We evaluate the

A and B nodes (serially or in parallel) on their incoming

argument, and send the results (Ax and Bx) to the end

node. Finally, we evaluate the end node on its incoming

arguments to obtain the result Ax+Bx.

The general procedure for evaluating an FAO DAG is

given in algorithm 1. The algorithm evaluates the nodes in

a topological order. The total flop count is the sum of the

flops from evaluating the algorithm Φf on each node. If we
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allocate all scratch space needed by the FAO algorithms in

advance, then no memory is allocated during the algorithm.

Algorithm 1 Evaluate an FAO DAG.

Input: G = (V,E) is an FAO DAG representing a function

f . V is a list of nodes. E is a list of edges. I is a list of

inputs to f . O is a list of outputs from f . Each element

of I and O is represented as an array.

Copy the elements of I onto the start node’s input array.

Create an empty queue Q for nodes that are ready to eval-

uate.

Create an empty set S for nodes that have been evaluated.

Add G’s start node to Q.

while Q is not empty do

u← pop the front node of Q.

Evaluate u’s algorithm Φf on u’s input array,

writing the result to u’s output array.

Add u to S.

for each edge e = (u, v) in u’s Eout do

i← the index of e in u’s Eout.

j ← the index of e in v’s Ein.

Copy the segment of u’s output array holding

output i onto the segment of v’s input array

holding input j.

if for all edges (p, v) in v’s Ein, p is in S then

Add v to the end of Q.

Copy the output array of G’s end node onto the elements

of O.

Postcondition: O contains the outputs of f applied to in-

puts I .

Adjoint evaluation. Given an FAO DAG G represent-

ing a function f , we can easily generate an FAO DAG

G∗ representing the adjoint f∗. We modify each node in

G, replacing the node’s FAO (f,Φf ,Φf∗) with the FAO

(f∗,Φf∗ ,Φf ) and swapping Ein and Eout. We also reverse

the orientation of each edge in G. We can apply algorithm

1 to the resulting graph G∗ to evaluate f∗. Figure 2 shows

the FAO DAG in figure 1 transformed into an FAO DAG for

the adjoint.

Parallelism. Algorithm 1 can be easily parallelized, since

the nodes in the ready queue Q can be evaluated in any or-

der. A simple parallel implementation could use a thread

pool with t threads to evaluate up to t nodes in the ready

queue at a time. The extent to which parallelism speeds

up evaluation of the composition graph depends on how

many parallel paths there are in the graph, i.e., paths with no

shared nodes. The evaluation of individual nodes can also

sum

AT BT

copy

Figure 2: The FAO DAG for the adjoint f∗(u) = ATu+BTu.

be parallelized by replacing a node’s algorithm Φf with a

parallel variant. For example, the standard algorithms for

dense and sparse matrix multiplication can be trivially par-

allelized.

3. Cone programs and solvers

3.1. Cone programs

A cone program is a convex optimization problem of the

form
minimize cTx
subject to Ax+ b ∈ K,

(6)

where x ∈ Rn is the optimization variable, K is a convex

cone, and A ∈ Rm×n, c ∈ Rn, and b ∈ Rm are problem

data. Cone programs are a broad class that include linear

programs, second-order cone programs, and semidefinite

programs as special cases [40, 8]. We call the cone pro-

gram matrix-free if A is represented implicitly as an FAO,

rather than explicitly as a dense or sparse matrix.

The convex cone K is typically a Cartesian product of

simple convex cones from the following list:

• Zero cone: K0 = {0}.

• Free cone: Kfree = R.

• Nonnegative cone: K+ = {x ∈ R | x ≥ 0}.

• Second-order cone:

Ksoc = {(x, t) ∈ Rn+1 | x ∈ Rn, t ∈ R, ‖x‖2 ≤ t}.

• Positive semidefinite cone:

Kpsd = {X | X ∈ Sn, zTXz ≥ 0 for all z ∈ Rn}.

• Exponential cone:

Kexp = {(x, y, z) ∈ R3 | y > 0, yex/y ≤ z}

∪{(x, 0, z) ∈ R3 | x ≤ 0, z ≥ 0}.

• Power cone:

Ka
pwr = {(x, y, z) ∈ R3 | xay(1−a) ≥ |z|, x, y ≥ 0},

where a ∈ [0, 1].
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These cones are useful in expressing common problems (via

canonicalization), and can be handled by various solvers (as

discussed below).

Cone programs that include only cones from certain sub-

sets of the list above have special names. For example, if

the only cones are zero, free, and nonnegative cones, the

cone program is a linear program; if in addition it includes

the second-order cone, it is called a second-order cone pro-

gram. A well studied special case is so-called symmetric

cone programs, which include the zero, free, nonnegative,

second-order, and positive semidefinite cones. Semidefi-

nite programs, where the cone constraint consists of a single

positive semidefinite cone, are another common case.

3.2. Cone solvers

Many methods have been developed to solve cone pro-

grams, the most widely used being interior-point methods.

Interior-point. A large number of interior-point cone

solvers have been implemented. Most support symmet-

ric cone programs. For example, SDPT3 [46] and Se-

DuMi [44] are open-source solvers implemented in MAT-

LAB; CVXOPT [2] is an open-source solver implemented

in Python; MOSEK [39] is a commercial solver with in-

terfaces to many languages. ECOS is an open-source cone

solver written in library-free C that supports second-order

cone programs [17]; Akle extended ECOS to support the

exponential cone [1]. DSDP5 [6] and SDPA [23] are open-

source solvers for semidefinite programs implemented in C

and C++, respectively.

First-order. First-order methods are an alternative to

interior-point methods that scale more easily to large cone

programs, at the cost of lower accuracy. PDOS [12] is

a first-order cone solver based on the alternating direc-

tion method of multipliers (ADMM) [7]. PDOS supports

second-order cone programs. POGS [21] is an ADMM

based solver that runs on a GPU, with a version that is sim-

ilar to PDOS and targets second-order cone programs. SCS

is another ADMM-based cone solver, which supports sym-

metric cone programs as well as the exponential and power

cones [41]. Many other first-order algorithms can be ap-

plied to cone programs (e.g., [33, 9, 42]), but none have

been implemented as a robust, general purpose cone solver.

Matrix-free. Matrix-free cone solvers are an area of ac-

tive research, and a small number have been developed.

PENNON is a matrix-free semidefinite program (SDP)

solver [32]. PENNON solves a series of unconstrained op-

timization problems using Newton’s method. The Newton

step is computed using a preconditioned conjugate gradient

method, rather than by factoring the Hessian directly [30].

Many other matrix-free algorithms for solving SDPs have

been proposed; see, e.g., [24, 45, 50].

Several matrix-free solvers have been developed for

quadratic programs (QPs), which are a superset of lin-

ear programs and a subset of second-order cone programs.

Gondzio developed a matrix-free interior-point method for

QPs that solves linear systems using a preconditioned

conjugate gradient method [26]. PDCO is a matrix-free

interior-point solver that can solve QPs [43], using LSMR

to solve linear systems [19].

4. Matrix-free canonicalization

4.1. Canonicalization

Canonicalization is an algorithm that takes as input a

data structure representing a general convex optimization

problem and outputs a data structure representing an equiv-

alent cone program. By solving the cone program, we

recover the solution to the original optimization problem.

This approach is used by convex optimization modeling

systems such as YALMIP [38], CVX [28], CVXPY [16],

and Convex.jl [47]. Current methods of canonicalization

convert fast linear transforms in the original problem into

multiplication by a dense or sparse matrix, which makes the

final cone program far more costly to solve than the original

problem.

The canonicalization algorithm can be modified, how-

ever, so that fast linear transforms are preserved. The key is

to represent all linear functions arising during the canonical-

ization process as FAO DAGs instead of as sparse matrices.

The FAO DAG representation of the final cone program can

be used by a matrix-free cone solver to solve the cone pro-

gram. The modified canonicalization algorithm never forms

explicit matrix representations of linear functions. Hence

we call the algorithm matrix-free canonicalization.

4.2. Informal overview

In this section we give an informal overview of the

matrix-free canonicalization algorithm. A longer paper still

in development contains the full details [15].

We are given an optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p

hi(x) + di = 0, i = 1, . . . , q,
(7)

where x ∈ Rn is the optimization variable, f0 : Rn →
R, . . . , fp : Rn → R are convex functions, h1 : Rn →
Rm1 , . . . , hq : Rn → Rmq are linear functions, and d1 ∈
Rm1 , . . . , dq ∈ Rmq are vector constants. Our goal is to

convert the problem into an equivalent matrix-free cone pro-

gram, so that we can solve it using a matrix-free cone solver.

We assume that the problem satisfies a set of require-

ments known as disciplined convex programming [27, 29].
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The requirements ensure that each of the f0, . . . , fp can be

represented as partial minimization over a cone program.

Let each function fi have the cone program representation

fi(x) = minimize g
(i)
0 (x, t(i)) + e

(i)
0

subject to g
(i)
j (x, t(i)) + e

(i)
j ∈ K

(i)
j ,

(8)

where the minimization is over the variable t(i) ∈ Rs(i) , the

constraints are indexed over j = 1, . . . , r(i), g
(i)
0 , . . . , g

(i)

r(i)

are linear functions, e
(i)
0 , . . . , e

(i)

r(i)
are vector constants, and

K
(i)
1 , . . . ,K

(i)

r(i)
are convex cones. For simplicity we assume

here that all cone elements are real vectors.

We rewrite problem (7) as the equivalent cone program

minimize g
(0)
0 (x, t(0)) + e

(0)
0

subject to −g
(i)
0 (x, t(i))− e

(i)
0 ∈ K+

g
(i)
j (x, t(i)) + e

(i)
j ∈ K

(i)
j

hi(x) + di ∈ K
mi

0 ,

(9)

where constraints indexed by i and j are over the obvious

ranges. We convert problem (9) into the standard form for a

matrix-free cone program given in (6) by representing g
(0)
0

as the inner product with a vector c ∈ Rn+s(0) , concate-

nating the di and e
(i)
j vectors into a single vector b, and

representing the matrix A implicitly as the linear function

that stacks the outputs of all the hi and g
(i)
j (excluding the

objective g
(0)
0 ) into a single vector.

5. Numerical results

5.1. Implementation

We have implemented the matrix-free canonicalization

algorithm as an extension of CVXPY [16], available at

https://github.com/SteveDiamond/cvxpy.

To solve the resulting matrix-free cone programs, we imple-

mented modified versions of SCS [41] and POGS [21] that

are truly matrix-free, available at

https://github.com/SteveDiamond/scs,

https://github.com/SteveDiamond/pogs.

(The details of these modification will be described in future

work.) Our implementations are still preliminary and can

be improved in many ways. We also emphasize that the

canonicalization is independent of the particular matrix-free

cone solver used.

5.2. Nonnegative deconvolution

We applied our matrix-free convex optimization mod-

eling system to the nonnegative deconvolution problem

(1). We compare the performance with that of the current

Figure 3: Results for a problem instance with n = 1000.

CVXPY modeling system, which represents the matrix A in

a cone program as a sparse matrix and uses standard cone

solvers.

The Python code below constructs and solves problem

(1). The constants c and b and problem size n are defined

elsewhere. The code is only a few lines, and it could be

easily modified to add regularization on x or apply a differ-

ent cost function to c ∗ x − b. The modeling system would

automatically adapt to solve the modified problem.

# Construct the optimization problem.

x = Variable(n)

cost = sum_squares(conv(c, x) - b)

prob = Problem(Minimize(cost),

[x >= 0])

# Solve using matrix-free SCS.

prob.solve(solver=MAT_FREE_SCS)

Problem instances. We used the following procedure to

generate interesting (nontrivial) instances of problem (1).

For all instances the vector c ∈ Rn was a Gaussian ker-

nel with standard deviation n/10. All entries of c less than

10−6 were set to 10−6, so that no entries were too close to

zero. The vector b ∈ R2n−1 was generated by picking a

solution x̃ with 5 entries randomly chosen to be nonzero.

The values of the nonzero entries were chosen uniformly at

random from the interval [0, n/10]. We set b = c ∗ x̃ + v,

where the entries of the noise vector v ∈ R2n−1 were drawn

from a normal distribution with mean zero and variance

‖c ∗ x̃‖2/(400(2n − 1)). Our choice of v yielded a signal-

to-noise ratio near 20.

While not relevant to solving the optimization problem,

the solution of the nonnegative deconvolution problem of-

ten, but not always, (approximately) recovers the original
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Figure 4: Solve time in seconds T versus variable size n.

vector x̃. Figure 3 shows the solution recovered by ECOS

[17] for a problem instance with n = 1000. The ECOS

solution x⋆ had a cluster of 3-5 adjacent nonzero entries

around each spike in x̃. The sum of the entries was close to

the value of the spike. The recovered x in figure 3 shows

only the largest entry in each cluster, with value set to the

sum of the cluster’s entries.

Results. Figure 4 compares the performance on problem

(1) of the interior-point solver ECOS [17] and matrix-free

versions of SCS and POGS as the size n of the optimiza-

tion variable increases. We limited the solvers to 104 sec-

onds. ECOS and matrix-free SCS were run serially on a

Intel Xeon processor, while matrix-free POGS was run on a

Titan X GPU.

For each variable size n we generated ten different prob-

lem instances and recorded the average solve time for each

solver. ECOS and matrix-free SCS were run with an abso-

lute and relative tolerance of 10−3 for the duality gap, ℓ2
norm of the primal residual, and ℓ2 norm of the dual resid-

ual. Matrix-free POGS was run with an absolute tolerance

of 10−4 and a relative tolerance of 10−3.

The slopes of the lines show how the solvers scale. The

least-squares linear fit for the ECOS solve times has slope

3.1, which indicates that the solve time scales like n3, as ex-

pected. The least-squares linear fit for the matrix-free SCS

solve times has slope 1.3, which indicates that the solve

time scales like the expected n log n. The least-squares lin-

ear fit for the matrix-free POGS solve times in the range

n ∈ [105, 107] has slope 1.1, which indicates that the solve

time scales like the expected n log n. For n < 105, the GPU

overhead (launching kernels, etc.) dominates, and the solve

time is nearly constant.
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