
SUPPLEMENTARY MATERIALS: ANDERSON ACCELERATED
DOUGLAS–RACHFORD SPLITTING∗

ANQI FU† , JUNZI ZHANG‡ , AND STEPHEN BOYD†

In this supplementary material, we provide the proofs for the theorems in the
main text.

SM1. Preliminaries. We begin with the following lemma, which establishes the
connection between residuals of the DRS fixed-point mapping and the primal/dual
residuals of the original problem (1.2).

Lemma SM1.1. Suppose that lim infj→∞ ‖vj − FDRS(vj)‖2 ≤ ε for some ε ≥ 0.
Then

(SM1.1) lim inf
j→∞

‖rjprim‖2 ≤ ‖A‖2ε, lim inf
j→∞

‖rjdual‖2 ≤
1

t
ε.

Proof. By expanding FDRS, and in particular line 6 of Algorithm 2.1, we see that

lim inf
j→∞

‖xj+1/2 − xj+1‖2 = lim inf
j→∞

‖vj − vj+1
DRS‖2 ≤ ε.

Since Axj+1 = b by the projection step in FDRS, we have

rjprim = Axj+1/2 − b = A(xj+1/2 − xj+1),

which implies that

lim inf
j→∞

‖rjprim‖2 ≤ ‖A‖2 lim inf
j→∞

‖xj+1/2 − xj+1‖2 ≤ ‖A‖2ε,

and hence lim infj→∞ ‖rjprim‖2 ≤ ‖A‖2ε.
On the other hand, the optimality conditions from lines 3 and 5 of Algorithm 2.1

give us
1

t
(xj+1/2 − vj) + gj = 0, xj+1 = vj+1/2 −AT λ̃j ,

for some gj ∈ ∂f(xj+1/2) and λ̃j = (AAT )†(Avj+1/2 − b). Thus,

gj =
1

t
(vj − xj+1/2)

=
1

t
(vj+1/2 − xj+1) +

1

t
(vj − vj+1/2) +

1

t
(xj+1 − xj+1/2)

=
1

t
AT λ̃j + 2

1

t
(vj − xj+1/2) +

1

t
(xj+1 − xj+1/2)

=
1

t
AT λ̃j + 2gj +

1

t
(xj+1 − xj+1/2),

(SM1.2)

where we have used line 4 of Algorithm 2.1 in the third equality. Rearranging terms
yields gj = AT (− 1

t λ̃
j) + 1

t (x
j+1/2 − xj+1).
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Finally, since we compute rjdual = gj +ATλj using λj ∈ argminλ ‖gj +ATλ‖2 (c.f.
residuals and dual variables in §2),

lim inf
j→∞

‖rjdual‖2 ≤ lim inf
j→∞

‖gj +AT λ̄j‖2 =
1

t
lim inf
j→∞

‖xj+1/2 − xj+1‖2 ≤
1

t
ε,

where λ̄j = 1
t λ̃
j . This completes our proof.

Remark SM1.2. When ε = 0, Lemma SM1.1 implies that

lim inf
j→∞

‖rjprim‖2 = lim inf
j→∞

‖rjdual‖2 = 0.

Furthermore, notice that we could have calculated rjdual using

λj = λ̄j =
1

t
(AAT )†(Avk+1/2 − b),

and the results would still hold.

SM2. Proof of Theorems 4.3 and 4.5. We now prove the convergence results
in the error-free setting. Define the infimal displacement vector of FDRS as δv? =
Π

range(I−FDRS)
(0). It follows directly that ‖δv?‖2 = infv∈Rn ‖v − FDRS(v)‖2. We

will later show that in A2DR, limk→∞ vk − vk+1 = δv?. In particular, Theorem 4.5
gives us δv = δv?.

We begin by showing that δv? = 0 if and only if problem (1.2) is solvable. To see
this, first notice that by [SM1, Corollary 6.5],

δv? = argminz∈Z ‖z‖2,

where

Z = dom f − dom g ∩ t(dom f∗ + dom g∗), g(x) = I{v :Av=b}(x).

Since dom g = {x : Ax = b} and dom g∗ = range(AT ) = − range(AT ), the
problem is solvable if and only if

dist(dom f,dom g) = dist(dom f∗,−dom g∗) = 0,

which holds if and only if 0 ∈ dom f − dom g and 0 ∈ dom f∗ + dom g∗, i.e.,
δv? = 0.

Below we denote the initial iteration counts for accepting AA candidates as ki
(i.e., when Isafeguard is True or RAA ≥ R, and the check in Algorithm 3.1, line 14
passes), and the iteration counts for accepting DRS candidates as li. Notice that for
each iteration k, either k = ki +K for some i and 0 ≤ K ≤ R− 1, or k = li for some
i.

• Case (i) [Theorem 4.3, (4.2)]
First, suppose that problem (1.2) is solvable. Then, δv? = 0. By Lemma
SM1.1, to prove (4.2), it suffices to prove that lim infk→∞ ‖gk‖2 = 0. If the
set of ki is infinite, i.e., the AA candidate is adopted an infinite number of
times, then

0 ≤ lim inf
k→∞

‖gk‖2 ≤ lim inf
i→∞

‖gki‖2 ≤ D‖g0‖2 lim
i→∞

(i+ 1)−(1+ε) = 0.

Here we used the fact that nAA/R = i in iteration ki.
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On the other hand, if the set of ki is finite, Algorithm 3.1 reduces to the
vanilla DRS algorithm after a finite number of iterations. By [SM3, Theorem
2], this means that limk→∞ gk = limk→∞ vk − vk+1 = δv? = 0. Thus, we
always have lim infk→∞ ‖gk‖2 = 0, and this fact coupled with Lemma SM1.1
immediately gives us (4.2).
Notice that the case of finite ki’s cannot actually happen. Otherwise, since
limk→∞ ‖gk‖2 = 0 and nAA is upper bounded (because AA candidates are
rejected after some point), the check on line 14 of Algorithm 3.1 must pass
eventually. This means that an AA candidate is accepted one more time,
which is a contradiction. Hence it must be that AA candidates are adopted
an infinite number of times.

• Case (ii) [Theorem 4.3, iteration convergence]
Now suppose that FDRS has a fixed point. As GDRS is non-expansive, if the
AA candidate is adopted in iteration k,

‖gk+1‖2 = ‖GDRS(vk+1)‖2 ≤ ‖GDRS(vk+1)−GDRS(vk)‖2 + ‖GDRS(vk)‖2
≤ (‖Hk‖2 + 1)‖gk‖2 ≤ 2(1 + 1/η)‖gk‖2,

where we have used Lemma 4.2 to bound ‖Hk‖2. This immediately implies
that for any 0 ≤ K ≤ R− 1,

(SM2.1) ‖gki+K‖2 ≤ (2 + 2/η)K‖gki‖2 ≤ D‖g0‖2(2 + 2/η)K(i+ 1)−(1+ε),

and so we have limi→∞ ‖gki+K‖2 = 0.
In addition, since AA candidates are accepted in all iterations ki +K, again
by Lemma 4.2, we have that for any w ∈ Rn,

‖vki+K+1 − w‖2 ≤ ‖vki+K − w‖2 + (1 + 2/η)‖gki+K‖2

≤ · · · ≤ ‖vki − w‖2 + (1 + 2/η)

K∑
j=0

‖gki+j‖2

≤ ‖vki − w‖2 + (1 + 2/η)‖gki‖2
K∑
j=0

(2 + 2/η)j

≤ ‖vki − w‖2 + (1 + 2/η)CRD‖g0‖2(i+ 1)−(1+ε),

(SM2.2)

where CR =
∑R−1
j=0 (2 + 2/η)j is a constant.

Now let v? be a fixed point of FDRS. Since FDRS is 1/2-averaged, by inequality
(5) in [SM4],

(SM2.3) ‖vli+1 − v?‖22 ≤ ‖vli − v?‖22 − ‖gli‖22 ≤ ‖vli − v?‖22

for any i ≥ 0. Hence for any k ≥ 0,

‖vk − v?‖2 ≤ ‖v0 − v?‖2 + (1 + 2/η)CRD‖g0‖2
∑∞

i=0
(i+ 1)−(1+ε) = E <∞,

implying that ‖vk − v?‖2 is bounded.
As a result, by squaring both sides of (SM2.2) and combining with (SM2.3),
we get that

∞∑
i=0

‖gli‖22 ≤ ‖v0 − v?‖22 + const,
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where

const =
(
(1 + 2/η)CRD‖g0‖2

)2 ∞∑
i=0

(i+ 1)−(2+2ε)

+ (2 + 4/η)CRDE‖g0‖2
∞∑
i=0

(i+ 1)−(1+ε) <∞.

Thus, limi→∞ ‖gli‖2 = 0. Together with the fact that limi→∞ ‖gki+K‖2 = 0
for 0 ≤ K ≤ R − 1, we immediately obtain limk→∞ ‖gk‖2 = 0, and an
application of Lemma SM1.1 yields (4.2).
Notice that in our derivation, we implicitly assumed both index sets are infi-
nite. The set of ki is always infinite by the same logic as in case (i). Moreover,
if the set of li is finite, the arguments above involving li can be ignored, as
eventually k = ki +K for all i above some threshold.
It still remains to be shown that vk converges to a fixed-point of FDRS. To do
this, we first show that ‖vk − v?‖2 is quasi-Fejérian. Squaring both sides of
the first inequality in (SM2.2) and combining it with (SM2.1) and (SM2.3),
we get that for any k ≥ 0,

(SM2.4) ‖vk+1 − v?‖22 ≤ ‖vk − v?‖22 + εk,

where εli = 0 and

εki+K =2DE‖g0‖2(1 + 2/η)(2 + 2/η)K(i+ 1)−(1+ε)

+
(
D‖g0‖2(1 + 2/η)

)2
(2 + 2/η)2K(i+ 1)−(2+2ε)

for 0 ≤ K ≤ R − 1. Hence εk ≥ 0 and
∑∞
k=0 ε

k < ∞. In other words,
‖vk − v?‖2 is quasi-Fejérian.
Since limk→∞ ‖gk‖2 = 0 and inequality (SM2.4) holds, we can invoke [SM2,
Theorem 3.8] to conclude that limk→∞ ‖vk − v?‖2 exists and vk converges
to some fixed-point of FDRS (not necessarily v?). The convergence of xk+1/2

to a solution of (1.2) follows directly from the continuity of the proximal
operators.

• Case (iii) [Theorem 4.5]
Now suppose that problem (1.2) is pathological, then δv? 6= 0. Since

‖δv?‖2 = inf
v∈Rn

‖v − FDRS(v)‖2,

the safeguard will always be invoked for sufficiently large iteration k because
‖gk‖2 ≥ ‖δv?‖2 > 0. Hence the algorithm reduces to vanilla DRS in the end.
We can thus prove the result in case (iii) by appealing to previous work on
vanilla DRS [SM3, SM1, SM5].
Recall that limk→∞ vk − vk+1 = δv? 6= 0 [SM3, Theorem 2]. First, we will
show that problem (1.2) is dual strongly infeasible if and only if

lim
k→∞

Axk+1/2 = b.

If the problem is dual strongly infeasible, then by [SM5, Lemma 1], it is
primal feasible and has an improving direction d = − 1

t δv
? [SM5, Corollary
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3]. Along this direction, both f and g = I{x :Ax=b} remain feasible, and in
particular, Aδv? = 0. Hence

lim
k→∞

Axk+1/2 −Axk+1 = lim
k→∞

A(vk − vk+1) = Aδv? = 0,

which implies that limk→∞Axk+1/2 = b since Axk+1 = b for all k ≥ 0.
Conversely, if limk→∞Axk+1/2 = b, then dist(dom f,dom g) = 0 because
xk+1/2 ∈ dom f . This implies problem (1.2) is not primal strongly infeasi-
ble, so it must be dual strongly infeasible since we assumed the problem is
pathological.
Hence if limk→∞Axk+1/2 = b, problem (1.2) is dual strongly infeasible, and
by [SM5, Lemma 1 and Corollary 3], it is unbounded and

δv? = tΠdom f∗+dom g∗(0),

which implies that

‖δv?‖2 = tdist(dom f∗, range(AT )).

Otherwise, the problem is not dual strongly infeasible and thus must be primal
strongly infeasible by our assumption of pathology, so from [SM1, Corollary
6.5],

‖δv‖2 ≥ dist(dom f, {x : Ax = b}).
When the dual problem is feasible, δv? = Πdom f−dom g(0) [SM5, Corollary
5], which implies that

‖δv?‖2 = dist(dom f, {x : Ax = b}).

SM3. Proof of Theorem 4.4. The proof resembles that of Theorem 4.3 (with
identical notation), so here we mainly highlight the differences caused by the computa-
tional errors ηk1 , η

k
2 . We begin by bounding the difference between the error-corrupted

fixed-point mapping, denoted by F̂DRS, and the error-free mapping FDRS. Starting
from any vk ∈ Rn, we have by definition

‖v̂k+1/2 − vk+1/2‖2 = 2‖x̂k+1/2 − xk+1/2‖2 = 2‖ηk1‖2,

‖x̂k+1 − xk+1‖2 ≤ ‖v̂k+1/2 − vk+1/2‖2 + ‖ηk2‖2 = 2‖ηk1‖2 + ‖ηk2‖2,
where the inequality comes from the non-expansiveness of Π. Let ĜDRS(v) = v −
F̂DRS(v). Since ‖ηk1‖2 ≤ ε′ and ‖ηk2‖2 ≤ ε′,

‖gk −GDRS(vk)‖2 = ‖ĜDRS(vk)−GDRS(vk)‖2
= ‖F̂DRS(vk)− FDRS(vk)‖2
≤ ‖x̂k+1 − xk+1‖2 + ‖x̂k+1/2 − xk+1/2‖2
≤ 3‖ηk1‖2 + ‖ηk2‖2 ≤ 4ε′.

Thus, by Lemma SM1.1, it suffices to prove that lim infk→∞ ‖GDRS(vk)‖2 ≤ 4ε′ +
4
√
Lε′.
On the one hand, if the set of ki (AA candidates) is infinite,

lim inf
k→∞

‖GDRS(vk)‖2 ≤ lim inf
i→∞

‖GDRS(vki)‖2 ≤ lim inf
i→∞

‖gki‖2 + 4ε′

≤ D‖g0‖2 lim
i→∞

(i+ 1)−(1+ε) + 4ε′ = 4ε′.
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Otherwise, the set of ki is finite, and the algorithm reduces to vanilla DRS after a
finite number of iterations. Without loss of generality, suppose we start running the
error-corrupted vanilla DRS algorithm from the first iteration.

Let v? be a fixed-point of FDRS. By inequality (5) in [SM4],

‖vk+1 − v?‖22 ≤
(
‖F̂DRS(vk)− FDRS(vk)‖2 + ‖FDRS(vk)− v?‖2

)2
≤ 16(ε′)2 + 8ε′‖vk − v?‖2 + ‖FDRS(vk)− v?‖22
≤ 16(ε′)2 + 16Lε′ + ‖vk − v?‖22 − ‖GDRS(vk)‖22

(SM3.1)

for all k ≥ 0, where in the second step, we use the fact that ‖F̂DRS(vk)−FDRS(vk)‖2 ≤
4ε′ and FDRS is non-expansive, and in the third step, we employ ‖vk‖2 ≤ L and
‖v?‖2 ≤ L along with the triangle inequality. Rearranging terms and telescoping the
inequalities,

1

K

K−1∑
k=0

‖GDRS(vk)‖22 ≤
1

K
‖v0 − v?‖22 + 16(ε′)2 + 16Lε′,

which immediately implies that

lim inf
k→∞

‖GDRS(vk)‖2 ≤
√

16(ε′)2 + 16Lε′ ≤ 4ε′ + 4
√
Lε′.

Together with Lemma SM1.1, this completes the proof.
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