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Motivation

e Original Problem

e Perturbed Problem

(A+ AA)x ~ (b+ Ab)

e Roughly speaking, want:

1. Desensitize solution = to perturbations
7.e., don't want wild variations in x with small

[AAAD]

2. Guarantee performance in face of uncertainty in
data 7.e., don't want wild variations in error with

small [AAAD]

e Apps: static control, signal processing, system ID



Other Research

e Total Least Squares
‘80: Golub & Van Loan, ...

e Robust Least Squares (Minimax lo-Norm)
'97 El-Ghaoui & Lebret
'97 Sayed, Golub, Chandrasekaran, Nascimento

e Our Contribution
Generalize minimax formulation to /1 and [, norms
Introduce and solve stochastic case



Norms of Vectors and Matrices

e Vectors z € R"
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e Matrices A € R™*"
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Why All These Formulations?

e From control theory, know choice of norm (l1, Hy, Hy)
and formulation (stochastic vs deterministic) has big
influence on design - same for R".

e 1;: good when data contains large outliers since it does
not put relatively more weight on large errors

e l5: “Default norm” in most engineering applications

e 1.: allows us to handle case of truly independent
perturbations esp. in structured case

e Stochastic: useful when have statistics of perturbations



Solving Az ~ b

Least Squares Approximation:

1. define least squares error function
A
ex(z) = ||Ax — bl

2. solve: min €(x)
T

Robust Linear Approximation:

1. define robustified error function based on
information about perturbations [AA Ab]

EIrOb(ZC)

2. solve: min €yop()
T

For Robust Approx approach to be useful, need:
® &,,(7) must be efficiently computable

e min &,,,(z) must be efficiently computable
X



Minimax Approach

o If [AA Ab] are known to lie in some compact set 2, can

1. define
A
= A+ AA)x — Ab
eqp(T) [Aﬂﬁigw +AA)xr — (b+ Ab)||,
2. solve

min max (A +AA)x — (b+ Ab)]|,

o For fixed [AA Ab], |[(A+ AA)x — (b+ Ab)||, is

convex in .
e Hence gq, is convex function of x.

e But that doesn’'t mean it's easy to compute!



Unstructured vs Structured Uncertainty Models

o If very little known about [AA Ab|, can use model
U={AAAb] | [[[AAAD]l, < p}
and

u = A+ AA)x — A
cwlr) = max [(A+ Ad) — (b+ b,

o If there's structure e.g. A is sparse or Toeplitz, can
reduce conservatism by using

L
S={[AAANY | AA=D" A4,
1=1

L
Ab = "b;é;,
1=1

161, < p }

which gives




Stochastic Formulation

e If know statistics of [AA Ab|, can

1. define stochastic error function

A 2
cul@) 2 B [(A+AA — (b+Ab);

2. solve

. B 2
min [AEAb] |(A+ AA)x — (b+ Ab)||;3

e For structured perturbations, if know statistics of 0, can
1. define structured stochastic error function
L L
A
e(@) S B (Ag+ > Asdi)e — (bo+ > bi i)
1=1 1=1
2. solve

L L
: . . JR— - - 2
min B [|(Ao+ ) Aidi)e — (bo+ ) bidi)]3

e Both g, and €, are convex in x (positively weighted
integrals of convex functions).



Computing ¢,

e Recall that

= A+ AA)xr — (b+ Ab
cwlr) = max [(A+ A — (b+ b,

e To evaluate g, for fixed x, must solve maximization
problem in [AA Ab.

e triangle inequality + norm defs — upper bound
for any [|[[AA Ab]||, < p:

I(A+AA)z = (b+ Ab)|, < [[Az = bl|, + pll(z, =1)[l,

max A+ AA)x — (b+ Ab)||, < || Az = b||, + p||(z, —1
A I Jo — (b+Ab)l, < | 1+ pll(z, =),

e Using properties of norm, exhibit worst case
perturbation [AA Abl,. which achieves equality

—> upper bound is maximum
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Result: Unstructured Minimax

Theorem:
For p=1,2, 00 we have

eupl) = || Az — b[, + pll(z, =1)][,
and robust approx problem becomes

miny || Az —bll, + pl| (=, =1l -

Remarks
1. For p =1, 00, can solve as Linear Program
2. For p = 2 can solve a second order cone Program

3. Tradeoff accuracy (||Az — b||,) vs large solutions
(Il (z, =1)ll5)

4. |Least squares problem — Convex optimization
problem of same size.
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Computing Structured Error

e Recall that

L L
eqp() = max [|(Ag+ > Az — (bo+ Y bid;)
1=1 1=1

jély<o p
L
= max Ajx — b;)0; + (Agxr — b
idll<o ;( it (Aot —bo) i

e Define
F(z)=[(A1x —0by)...(Arx — bp)], g(x) = —(Agx — by)
then

Esp(T) = hax | £ — gl

e S0 to compute €5, must solve convex maximization
problem

e p = 2 use S-procedure
p = 1, 00 use fact that max cvx fn over compact set
attained at extreme point (ofcourse don’t search all

vertices!).
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Result: Structured Minimax

Synopsis

e For p = 1,2, 00, problems can be solved efficiently using
convex optimization as Linear and Semidefinite
programs

e The optimization problems are a factor of L larger (L is
number of structured perturbations)

e Unlike unstructured case, solutions don't look alike.
Because use different techniques to solve the
maximization problems
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Stochastic Case

Theorem:(Unstructured)
Let R = E[AAAD]'[AAAD]. Then

(@) = Az — b3 + (2, ~1)T Rz, ~1)
and the robust approximation problem is solved by

min{||[Az — b3 + (z, ~1)" R (z, 1)}

Theorem:(Structured)
Let R; = E[6 7], A;,b; be “reshuffled” versions of

~ ~A\T o~
Ay, by, and S = (Zle[Ai b¢]> Rs (zf:j[Aj bj]). Then
eus(x) = |[Agx — bo|3 + (z, —1)T'S (z, —1)
and the robust approximation problem is solved by

min{|[ Aoz — boll3 + (2, =1)"S (2, ~1)}

e Proofs: direct computation, assume zero mean
e Note tradeoff again

e Both problems are pure quadratics - can be solved as
augmented weighted least squares problems
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Conclusion

e Uncertainty in data can be incorporated explicitly into
algorithms for linear approximation

e Approximation problems become convex optimization
problems which can be solved efficiently

e Rich variety of formulations: minimax, stochastic,
different norms...

e Can exploit structure to reduce conservatism

e Stochastic and unstructured minimax yield problems of
approx same size as original

e Structured minimax yield problems a factor of L larger
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