Robust Solutions to l_1 , l_2 , and l_{∞} Uncertain Linear Approximation Problems using Convex Optimization

Haitham Hindi Stephen Boyd Information Systems Lab, Stanford University

June 22, 1998

Contents

• Introduction & Motivation

• Different Formulations

• Solution using Convex Optimization

Motivation

Original Problem

$$Ax \approx b$$

Perturbed Problem

$$(A + \Delta A)x \approx (b + \Delta b)$$

- Roughly speaking, want:
 - 1. **Desensitize** solution x to perturbations i.e., don't want wild variations in x with small $[\Delta A \Delta b]$
 - 2. **Guarantee performance** in face of uncertainty in data i.e., don't want wild variations in error with small $[\Delta A \Delta b]$
- Apps: static control, signal processing, system ID

Other Research

Total Least Squares

'80: Golub & Van Loan, ...

• **Robust Least Squares** (Minimax l_2 -Norm)

'97 El-Ghaoui & Lebret

'97 Sayed, Golub, Chandrasekaran, Nascimento

• Our Contribution

Generalize minimax formulation to l_1 and l_∞ norms Introduce and solve stochastic case

Norms of Vectors and Matrices

• Vectors $x \in \mathbf{R}^n$

$$||x||_1 \stackrel{\Delta}{=} \sum_{i=1}^n |x_i|$$

$$||x||_2 \stackrel{\Delta}{=} \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

$$||x||_{\infty} \stackrel{\Delta}{=} \max_{i=1,\dots,n} |x_i|$$

• Matrices $A \in \mathbf{R}^{m \times n}$

$$\begin{split} \|A\|_1 &\stackrel{\Delta}{=} \max_{j=1,\ldots,n} \sum_{i=1}^m |a_{ij}| &= \text{max-col-sum} \\ \|A\|_2 &\stackrel{\Delta}{=} \sigma_{\max}(A) &= \text{max sing. value} \\ \|A\|_\infty &\stackrel{\Delta}{=} \max_{i=1,\ldots,m} \sum_{j=1}^n |a_{ij}| &= \text{max-row-sum} \end{split}$$

Why All These Formulations?

• From control theory, know choice of norm (l_1, H_2, H_∞) and formulation (stochastic vs deterministic) has big influence on design - same for \mathbf{R}^n .

• l_1 : good when data contains large **outliers** since it does not put relatively more weight on large errors

ullet 12: "Default norm" in most engineering applications

ullet \mathbf{l}_{∞} : allows us to handle case of **truly independent** perturbations esp. in **structured** case

• Stochastic: useful when have statistics of perturbations

Solving $Ax \approx b$

Least Squares Approximation:

1. define least squares error function

$$\boldsymbol{\varepsilon}_{\mathrm{ls}}(x) \stackrel{\Delta}{=} \|A x - b\|_2$$

2. solve: $\min_{x} \boldsymbol{\varepsilon}_{ls}(x)$

Robust Linear Approximation:

1. define **robustified error** function based on information about perturbations $[\Delta A \ \Delta b]$

$$\boldsymbol{\varepsilon}_{\mathrm{rob}}(x)$$

2. solve: $\min_{x} \boldsymbol{\varepsilon}_{\text{rob}}(x)$

For Robust Approx approach to be useful, need:

- ullet $oldsymbol{arepsilon}_{
 m rob}(x)$ must be **efficiently computable**
- ullet $\min_{x} \ oldsymbol{arepsilon}_{\mathrm{rob}}(x)$ must be **efficiently computable**

Minimax Approach

- If $[\Delta A \Delta b]$ are known to lie in some **compact set** Ω , can
 - 1. define

$$\boldsymbol{\varepsilon}_{\Omega p}(x) \stackrel{\Delta}{=} \max_{[\Delta A \ \Delta b] \in \Omega} \|(A + \Delta A)x - (b + \Delta b)\|_{p}$$

2. solve

$$\min_{x} \max_{[\Delta A \ \Delta b] \in \Omega} \|(A + \Delta A)x - (b + \Delta b)\|_{p}$$

- For fixed $[\Delta A \ \Delta b]$, $\|(A + \Delta A)x (b + \Delta b)\|_p$ is convex in x.
- Hence $\varepsilon_{\Omega p}$ is **convex** function of x.
- But that doesn't mean it's easy to compute!

Unstructured vs Structured Uncertainty Models

ullet If very little known about $[\Delta A \, \Delta b]$, can use model

$$\mathcal{U} = \{ [\Delta A \Delta b] \mid ||[\Delta A \Delta b]||_p \le \rho \}$$

and

$$\boldsymbol{\varepsilon}_{up}(x) = \max_{\|[\Delta A \ \Delta b]\|_p \le \rho} \|(A + \Delta A)x - (b + \Delta b)\|_p$$

• If there's **structure** e.g.A is sparse or Toeplitz, can reduce conservatism by using

$$\mathcal{S} = \{ [\Delta A \Delta b] \mid \Delta A = \sum_{i=1}^{L} A_i \, \delta_i,$$
$$\Delta b = \sum_{i=1}^{L} b_i \, \delta_i,$$
$$\|\delta\|_p \le \rho \}$$

which gives

$$\boldsymbol{\varepsilon}_{sp}(x) = \max_{\|\boldsymbol{\delta}\|_{p} \le \rho} \left\| \left(A_0 + \sum_{i=1}^{L} A_i \delta_i \right) x - \left(b_0 + \sum_{i=1}^{L} b_i \delta_i \right) \right\|_{p}$$

Stochastic Formulation

- If know statistics of $[\Delta A \Delta b]$, can
 - 1. define **stochastic** error function

$$\boldsymbol{\varepsilon}_{us}(x) \stackrel{\Delta}{=} \mathbf{E}_{[\Delta A \, \Delta b]} \| (A + \Delta A)x - (b + \Delta b) \|_{2}^{2}$$

2. solve

$$\min_{x} \mathop{\mathbf{E}}_{[\Delta A \, \Delta b]} \| (A + \Delta A)x - (b + \Delta b) \|_2^2$$

- ullet For **structured** perturbations, if know statistics of δ , can
 - 1. define **structured stochastic** error function

$$\boldsymbol{\varepsilon}_{ss}(x) \stackrel{\Delta}{=} \mathbf{E} \| (A_0 + \sum_{i=1}^{L} A_i \, \delta_i) x - (b_0 + \sum_{i=1}^{L} b_i \, \delta_i) \|_2^2$$

2. solve

$$\min_{x} \mathbf{E} \| (A_0 + \sum_{i=1}^{L} A_i \, \delta_i) x - (b_0 + \sum_{i=1}^{L} b_i \, \delta_i) \|_2^2$$

• Both ε_{us} and ε_{ss} are **convex** in x (positively weighted integrals of convex functions).

Computing ε_{up}

Recall that

$$\varepsilon_{up}(x) = \max_{\|[\Delta A \ \Delta b]\|_p \le \rho} \|(A + \Delta A)x - (b + \Delta b)\|_p$$

- To evaluate ε_{up} for **fixed** x, must solve **maximization** problem in $[\Delta A \ \Delta b]$.
- triangle inequality + norm defs \rightarrow upper bound for any $\|[\Delta A \ \Delta b]\|_p \le \rho$:

$$||(A + \Delta A)x - (b + \Delta b)||_p \le ||Ax - b||_p + \rho ||(x, -1)||_p$$

$$\max_{\|[\Delta A \ \Delta b]\|_p \le \rho} \|(A + \Delta A)x - (b + \Delta b)\|_p \le \|Ax - b\|_p + \rho\|(x, -1)\|_p$$

• Using properties of norm, exhibit worst case perturbation $[\Delta A \ \Delta b]_{\mathrm{wc}}$ which achieves equality

⇒ upper bound is maximum

Result: Unstructured Minimax

Theorem:

For $p = 1, 2, \infty$ we have

$$\varepsilon_{up}(x) = ||Ax - b||_p + \rho ||(x, -1)||_p$$

and robust approx problem becomes

$$\min_{x} \{ \|Ax - b\|_{p} + \rho \|(x, -1)\|_{p} \}.$$

Remarks

- 1. For $p=1,\infty$, can solve as **Linear Program**
- 2. For p=2 can solve a **second order cone Program**
- 3. Tradeoff accuracy ($||Ax b||_p$) vs large solutions ($||(x,-1)||_p$)
- 4. Least squares problem → Convex optimization problem of same size.

Computing Structured Error

• Recall that

$$\varepsilon_{sp}(x) = \max_{\|\delta\|_{p} \le \rho} \left\| (A_0 + \sum_{i=1}^{L} A_i \delta_i) x - (b_0 + \sum_{i=1}^{L} b_i \delta_i) \right\|_{p}$$

$$= \max_{\|\delta\|_{p} \le \rho} \left\| \sum_{i=1}^{L} (A_i x - b_i) \delta_i + (A_0 x - b_0) \right\|_{p}$$

Define

$$F(x) = [(A_1 x - b_1) \dots (A_L x - b_L)], \qquad g(x) = -(A_0 x - b_0)$$
 then

$$\boldsymbol{\varepsilon}_{sp}(x) = \max_{\|\boldsymbol{\delta}\|_p \le \rho} \|F \, \boldsymbol{\delta} - g\|_p$$

- ullet So to compute $oldsymbol{arepsilon}_{sp}$ must solve convex **maximization** problem
- p=2 use \mathcal{S} -procedure $p=1,\infty$ use fact that max cvx fn over compact set attained at extreme point (ofcourse don't search **all** vertices!).

Result: Structured Minimax

Synopsis

ullet For $p=1,2,\infty$, problems can be solved efficiently using **convex optimization** as Linear and Semidefinite programs

ullet The optimization problems are a factor of L larger (L is number of structured perturbations)

Unlike unstructured case, solutions don't look alike.
 Because use different techniques to solve the maximization problems

Stochastic Case

Theorem:(Unstructured)

Let $R = \mathbf{E}[\Delta A \Delta b]^T [\Delta A \Delta b]$. Then

$$\boldsymbol{\varepsilon}_{us}(x) = \|Ax - b\|_{2}^{2} + (x, -1)^{T} R(x, -1)$$

and the robust approximation problem is solved by

$$\min_{x}\{\|A\,x-b\|_{2}^{2}+(x,-1)^{T}R\,(x,-1)\}$$

Theorem:(Structured)

Let $R_{\delta} = \mathbf{E}[\delta \ \delta^T]$, \tilde{A}_i, \tilde{b}_i be "reshuffled" versions of

$$A_i,b_i$$
, and $S=\left(\sum_{i=1}^L [ilde{A}_i\, ilde{b}_i]
ight)^T R_\delta\left(\sum_{i=j}^L [ilde{A}_j\, ilde{b}_j]
ight)$. Then

$$\boldsymbol{\varepsilon}_{us}(x) = \|A_0 x - b_0\|_2^2 + (x, -1)^T S(x, -1)$$

and the robust approximation problem is solved by

$$\min_{x} \{ \|A_0 x - b_0\|_2^2 + (x, -1)^T S(x, -1) \}$$

- Proofs: direct computation, assume zero mean
- Note tradeoff again
- Both problems are pure quadratics can be solved as augmented weighted least squares problems

Conclusion

- Uncertainty in data can be incorporated **explicitly** into algorithms for linear approximation
- Approximation problems become convex optimization problems which can be solved efficiently
- Rich variety of formulations: minimax, stochastic, different norms...
- Can **exploit structure** to reduce conservatism
- Stochastic and unstructured minimax yield problems of approx same size as original
- ullet Structured minimax yield problems a factor of L larger