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Abstract—We present a method for jointly modeling power
generation from a fleet of photovoltaic (PV) systems. We propose
a white-box method that finds a function that invertibly maps
vector time-series data to independent and identically distributed
standard normal variables. The proposed method, based on a
novel approach for fitting a smooth, periodic copula transform
to data, captures many aspects of the data such as diurnal
variation in the distribution of power output, dependencies
among different PV systems, and dependencies across time. It
consists of interpretable steps and is scalable to many systems.
The resulting joint probability model of PV fleet output across
systems and time can be used to generate synthetic data, impute
missing data, perform anomaly detection, and make forecasts.
In this paper, we explain the method and demonstrate these
applications.

Index Terms—photovoltaic systems, photovoltaic fleet model-
ing, distributed power generation, power generation planning,
forecasting, convex optimization, copula method, probability
distributions, forecast uncertainty

I. INTRODUCTION

Modeling the power output of a fleet of photovoltaic (PV)
systems is of great importance for digital operations and
maintenance in the PV sector, which is now a multi-billion
dollar industry [1]. Applications include predicting power pro-
duction, detecting anomalies, and making informed decisions
about when and where to send workers to service a site.
In recent years, there has been a significant increase in the
deployment of PV systems, making it necessary to develop
scalable models that can handle thousands of systems simul-
taneously, while staying robust to real-world data challenges,
such as the ability to handle missing data.

In this paper we propose a method to estimate the joint
probability distribution of the power outputs of a fleet of
PV systems, modeling all relevant correlations in the data—
across individual PV systems and across time. As a copula
method, we first develop a novel set of nonlinear marginal
transforms that map the power from each system to a scalar
Gaussian, and then develop a set of linear transformations
that model the marginally transformed data as a large joint
Gaussian distribution. We interact with that model to carry
out various applications including synthetic data generation,
data imputation, anomaly detection, and forecasting.

II. PRIOR WORK

a) Fleet models: Modeling PV systems for operations
and maintenance (O&M) purposes based on measured data
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has a long history [2]-[7]. These techniques focus on pre-
dicting either the maximum power point or the full current-
voltage relationship of a PV system under a given set of
environmental conditions. O&M tasks are then carried out
using the model. Fault detection is performed by comparing
actual system power generation to the predicted power from
the model. Forecasting future PV system power output is
done by running the models on predicted weather trends, such
as those generated by NOAA [8]. ‘Fleet modeling’ is the
practice of constructing an independent, bespoke model for
each system in a PV fleet and is quite labor intensive. More
recently, researchers have attempted to reduce the effort of
fleet modeling using systematic approaches such as learning
algorithms and machine inference [9]. These approaches tend
to be more task dependent, e.g., focusing on the task of
anomaly detection [10]-[12] or forecasting [13]-[19]. While
these methods reduce the human effort to create a PV system
model, they do not provide joint models of system behavior in
a fleet. Several recent papers have explored models to predict
aggregate quantities of fleets, such as temporal variability and
maximum feed-in power [20]-[23].

b) Copula models and Gaussianization: Our proposed
method draws on previous work on both copula models and
Gaussianization methods.

Copulas are tools for modeling dependence of several
random variables, first proposed by Abe Sklar in 1959 [24]
and recently translated into English in [25]. The basic idea is
to apply a nonlinear invertible mapping to each component of
a random variable so it has some standard distribution such as
uniform or Gaussian, and then model the dependence of these
transformed variables [26]-[28]. Copulas have been applied
in many domains [29]-[33], including PV data analysis [34].
Copula models may be based on theoretical constructions (e.g.,
the multivariate Gaussian copula) or may be learned directly
from data [27]. The quantile transform is a typical choice for
data-driven models of the marginal distributions, and various
options exist [35], [36]. Our method includes an autoregressive
component in the copula model, an approach that has been
explored by other authors [37].

An alternative approach to modeling multivariate joint dis-
tributions is Gaussianization, also called ‘normalizing flows’.
These methods seek an invertible mapping under which the
transformed variable has a standard (jointly) Gaussian dis-
tribution [38]-[40]. The transformations are typically built
in steps, so the transformation is a composition of multiple
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Fig. 1: Relative location of the six PV systems.

transformations, with the distribution of mapped variables
getting closer to Gaussian as more layers or steps are added.
We can think of a Gaussian copula as a simple first step in
such a normalizing flow. While a normalization method can in
principle model any probability distribution, Gaussian copula
models cannot. On the other hand a Gaussian copula model
makes several operations such as conditioning on some known
values very easy, involving just basic linear algebra. (These
computions can be done for more complex normalizing flows,
but they are much more involved, e.g., requiring Monte Carlo
or other sampling type methods.)

¢) Modeling via convex optimization: Our method relies
on convex optimization in every step. This guarantees effi-
cient algorithms for finding global solutions [41], and mature
tools exist to easily specify convex optimization problems
in code [42], [43]. Many traditional statistical models rely
on convex optimization for fitting such as regression [44,
Chap. 12], auto-regressive (AR) models [44, Ch. 13], and
fitting Gaussian distributions to data [41, §3.5], among many
others. Our method is inspired by recent work on the trade-
off of fit versus roughness in stratified Gaussian models [45],
[46], as well as work on convex optimization based signal
decomposition [47].

III. DATA

We will illustrate our method on PV fleet data provided
by SunPower Corporation under a nondisclosure agreement.
We select six PV systems located in Southern California, with
three grouped in Santa Ana, CA and three grouped in the hills
to the east in Tustin, CA. The relative locations are shown in
figure 1. This choice of system locations was intentional, as we
wanted to verify that our model captures similarity of power
profiles for nearby systems.

The data consist of 15-minute (average) power values (in
kW) for each of the six systems, recorded from 3/1/2017 to
3/31/2017. Figure 2 depicts the power output of the six systems
over the three day period between 3/4/2017 and 3/6/2017. At
night the power output is zero; during daylight hours, we see
different types of power profiles. On 3/6/2017 we see clear-
sky behavior, characterized by a smooth increase until noon
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followed by a gradual decrease until evening. On 3/5/2017,
however, we see the power generation curves with multiple
dips and peaks throughout the day, which can be attributed to
weather factors such as passing clouds. The maximum power
output of the systems varies, with system 4 peaking at around
9 kW, and the other systems peaking at around 2 kW.

We denote the data as y; € Rd, with d = 6, and the time
index running from ¢ = 1 to ¢ = T' = 2976. This particular
data set does not have any missing data. However, our method
gracefully handles missing values, and indeed, relies on this
ability to choose hyper-parameters by cross-validation.

We also use data for the following 2 weeks, from 4/1/2017
to 4/14/2017 as our test set for validating our models and
applications. This data was not used to fit our model. The test
data set has index running from ¢ = 1 to 7% = 1344.

IV. METHOD

We propose a method for fitting the given data yq,...,yr
to a smooth 24-hour-periodic stochastic process. We apply
a sequence of three invertible transformations so that the
transformed data is approximately a standard Gaussian. These
transformations, which respect periodicity and are constructed
to vary smoothly across time, are applied in the three steps
shown in figure 3. First we use a smooth periodic nonlinear
transform to make the data approximately marginally Gaus-
sian. This allows us to model the changing distribution over a
day, in addition to the differing maximum values seen across
systems. In the second step we use an autoregressive (AR)
model to account for dependencies across time. This results
in a residual that is approximately uncorrelated across time.
Finally, we fit a smooth periodic Gaussian distribution to
the residual of the AR model; from this we can whiten the
residual so that it is approximately a standard Gaussian. In the
language of copula modeling, our first step is our marginal
transformation and the final two steps constitute our copula
(i.e., ‘linking’) function.

A. Fitting a smooth periodic model

Here we describe the general technique, used in steps 1
and 3 of our method, for fitting a smooth P-periodic param-
eter, given by 01,...,07 € © C R™ to some data, where ©
is a convex set of allowed parameter values. We will use a
Fourier series with K harmonics to represent 6,

K
2kt 2kt
0, = (cos <> o + sin <) ﬁk> , (D
2 (s (T P

for t = 1,...,P, where ag,Sr € R™ are the (vector)
coefficients that define 6.
We take as a measure of smoothness the Dirichlet energy,

(2

2 K

s

D = IS (ol + 18603).
k=1

The loss function has the form

T
L= "1(6y),
t=1
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Fig. 2: 15 minute power output data for

Marginal transform ‘H AR model H—)

Fig. 3: Three invertible tranformations used in the pro-
posed method.

where ¢; : © — R is a convex loss function that depends on
some data at time . (If some data are missing, then the sum
is only over ¢ for which the data are available.)

Our generic fitting method takes 6 as a solution of the
convex optimization problem

minimize L + AD,

subject to 6, € O, @)

t=1,...,P,

where A > 0 is the smoothing regularizer hyper-parameter.
The variables are the m-vectors «g,...,ax and (3, ..., k.
This is a convex optimization problem, and readily solved.

This generic fitting method contains the hyper-parameter
A (and possibly others), but good values of these can be
found automatically using cross-validation [48, §7.10], [44,
§13.2], so the method is essentially hyper-parameter free and
automatic.

Two steps of our method solve a different instance of the
problem (2) with A chosen using cross-validation. This method
of fitting a smooth periodic parameter is a special case of
a Laplacian regularized stratified model [45], [46] with the
underlying graph a cycle representing the periodicity. It can
also be thought of as a signal decomposition problem [47].

P

B. Marginal transforms

In this first step, we seek continuous increasing functions
¢¢,i : R — R. We allow these functions to change with ¢ but
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six PV systems from 3/4/2017 to 3/6/2017.

enforce that they are periodic and smooth. Our goal is for the
transformed values,

e = @ri(Yes), Tfort=1,....T,

to have an approximately Gaussian (marginal) distribution for
each i = 1,...,d. Typical quantile transforms are static; but
our method defines a transformation that changes smoothly in
time and is periodic.

We carry out this step for each component of the original
data, so the method described in this section is carried out
separately for each ¢ = 1,...,d. To lighten the notation in
this section, we drop the component index ¢, and consider the
original data y; to be scalar.

Our first step is to estimate a set of quantiles 0 < 7; <
--- < n <1 of the data. By default we take these to be 2nd
percentile, the 98th percentile, and the 10 deciles, so r = 11
and

n = (0.02,0.10,0.20, .. .,0.80, 0.90, 0.98),

but our method is general and any other choice of quantiles
could be used. We denote the estimated 7; quantile of y; as g, ;,
t=1,....,7,i=1,...,r. We assume these are P-periodic
and smooth.

To estimate these quantiles from the data we use standard
quantile regression [49], [50], which relies on the so-called
pinball loss, defined as

P (y;m) = max{(1 — 7)u, 7u} = (7 — 1/2)|u| + (1/2)u,
for quantile 7 € [0, 1]. We take our loss function to be

0ge) = ™ (g — yesm) + -+ L™ @ —yeine), 3

3
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the sum of the pinball losses associated with each of our
r quantiles. To estimate the quantiles we solve the generic
problem (2), with loss function (3), and constraint set

O={q¢|lqn < <q},

which enforces that the quantiles are consistent. This simul-
taneously estimates the r quantiles of y; for each ¢, with the
quantiles being smooth and periodic, and always satisfiying
the consistency constraint. The hyper-parameter A, which
controls how smooth the quantile estimates are, can be chosen
automatically via cross-validation.

Given these periodic smooth quantile estimates, we con-
struct nonlinear mappings ¢, : R — R as continuous piece-
wise linear functions, with knot-points given by the quantiles,
and values at those points given by the associated value of a
standard scalar Gaussian for the same quantiles, i.e.,

(pt(Qt,j):(b_l(’r}j)) jzl,...7’l“7 (4)

where @ is the cumulative distribution function (CDF) of a
standard Gaussian. This gives the marginally transformed data

Ttq = @t(ytﬂi)-
C. Autoregressive model

The time series x1, ...,z has entries with approximately
standard Gaussian marginal distribution, but there are de-
pendencies between the components, as well as across time.
Our next step is to handle the dependency across time. We
fit a vector autoregressive (AR) model to the marginally
Gaussianized data x;. The model is

Te = A1Te1 4+ ApTe—nr + vy, )

where v; is a process noise or residual, M is the memory of
the AR model, and Aq,..., Ay € R% are the coefficients.
We could fit these AR coefficients as smooth and periodic, but
we have found that a constant AR model does just as well as
a more complex time-varying one.

We fit these coefficients by minimizing the mean-squared
error, the average of

by = ||lwy — Aywpq + - + AMCUt—Mﬂg

over those entries where all x; are known. We add ridge
regularization to this average loss,

A (AL lF + -+ [ AnllE)

where A9 > () is a hyper-parameter that scales the regular-
ization, and || - ||% denotes the square of the Frobenius norm,
i.e., the sum of squares of entries. The hyperparameter \"¢e
can be chosen by cross-validation.

We denote the AR residual as

v =ay — (A1zeo1 4+ -+ Auzi—m),

defined when x4, ...,x;_ps are all known. Note that in the
special case M = 0, which corresponds to the model that
x; are approximately uncorrelated for different ¢, the residual
reduces to z;.
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D. Smooth periodic residual fit

Our last step is fit a smoothly varying periodic Gaussian
distribution to the residual vy, vy, ~ N(uy, X)), where we
assume that v and v; are independent for s # ¢t. We model
v € R? as smooth periodic Gaussian,

UtNN(:utaEt)? t:17aT (6)

where ¥, and p; are smooth and periodic. We expect p; to
be small.

Our loss ¢; will be the negative log-likelihood of the
Gaussian model (6), which is

d
d , 1
tr = 5 log(2m) = Y log (dlag (Lt)j) + 5 I12F v = w3,

j=1

with variables L; € R4 and vy € R?. Here, L; is the
Cholesky factor of ;! and v, = L; Ti;. This change of
variables makes the loss a convex function. We can recover
> and py as

Zt = (LtLtT)il, Mt = Lt_ll/t.

once we solve the optimization problem to find L; and v4.
Here too the smoothness hyper-parameter A is found by cross-
validation.

Our final whitened signal is given by

Zt = 2;1/2($t — ,ut) = L?It — Vg,

defined when x; is. According to our model, these are inde-
pendent identically distributed (IID) with z; ~ N(0, ).

E. The whole model

From our first two steps, we see that our model of y; is
a stationary periodic Gaussian process x;, mapped entrywise
through a smoothly periodic transformation. Using all three
steps, we interpret it as [ID Gaussians z;, passed through an
AR filter to obtain y;, and then mapped entrywise.

Such a model allows us to carry out several operations. We
can generate samples from the model. We can evaluate the
density at a sequence y;. We can condition on a set of known
values of some of the components, as well as computing
conditional marginal quantiles for each unknown entry. These
allow us to carry out imputation, i.e., guessing missing values,
by evaluating the conditional median of a missing entry given
the known ones. (We also can get error bars, e.g., the 10th and
90th conditional marginal quantiles.) We can also do anomaly
detection, where we detect known entries that do not fit the
model. To do this we compute the conditional quantile of
each known entry, given the other known entries but not that
particular value; conditional quantile values that are either near
zero or one are then flagged as suspicious.

These operations (and others) can be carried out for many
types of statistical models, for example using Monte Carlo
sampling. But due to the specific structure of our model, we
can carry them out using simple linear algebra, which makes
the operations fast and reliable. Details of how we implement
these operations will be given in a forthcoming paper.

4
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Fig. 5: Time aware copula transform.

V. RESULTS

Here we show the results of our modeling method on the
PV data described above, using default parameters. Estimated
quantiles for each system are shown in figure 4. Note that
the 98th percentile serves as an effective statistical clear-sky
model. The estimated quantiles collapse to zero at night as
expected. The spread between the upper quantiles is narrower
than that of the lower quantiles, especially around noon.
Quantiles for each system exhibit distinct characteristics, with
the systems physically near each other showing similar shaped
quantiles.

A few samples of the associated piecewise linear copula
transforms are shown in figure 5. We see that the same power
value is mapped to different points based on the time of
day and the system. This shows how our time-aware copula
transform adapts to both the time of day and the unique
characteristics of different systems as opposed to a standard
fixed copula transform, which does not.

We use AR memory M = 3, with coefficients. We observe
several interesting phenomena in these coefficient matrices.
First, the entries of A; are generally bigger than those of A,
and Aj, showing that the previous period plays a larger role
in predicting the current values than the previous two values.
We also see that the diagonal entries are generally larger
than the off-diagonal ones, meaning that the previous values
for each system play a larger role in predicting the current
value than the previous values of the other systems. However,
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Fig. 6: Means, standard deviations, and selected corre-
lations of AR residuals.

the many non-zero off-diagonal elements in the coefficient
matrices show that the predictions for each system do depend
on the previous values of the other systems.

Finally we fit a smoothly varying periodic Gaussian distri-
bution to the residuals of the AR model, shown in figure 6.
The top plot shows the means, which are indeed small, as
expected. The middle plot shows the standard deviations of the
residuals. These are smaller than one, which is approximately
the standard deviation of the entries of z;, which means we
are able to predict the current values using previous values
better than simply guessing x; = 0, i.e., treating them as
uncorrelated across time. We can see that the residual standard
deviations vary considerably across systems and time of day.
Roughly speaking, the residual of system 1 has almost twice
the standard variation of the residual of system 6. We also
see that the residual standard deviation is smaller at noon
than in the morning and afternoon. The bottom plot shows the
correlations of selected pairs of residuals. These correlations
are generally around 30%, but we can see that systems that
are physically near each other are more highly correlated. We
can also see variation of the correlation over the day.

VI. APPLICATIONS

A. Generating simulated data

We generate simulated data from our model by simulating
data from the periodic Gaussian stochastic process, and then
applying the inverse nonlinearities ¢, 11 to the entries of these
samples. Figure 7 shows two simulations of fake data for

5
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Fig. 7: Top. System 1 on 4/7/2017. Middle and bottom.
Two simulations from our model.

system 1, with the actual data for the specific day 4/7/2017
shown at top for reference. They appear quite similar.

B. Conditional marginal quantiles

We can compute the marginal quantiles of any entry, condi-
tioned on all other known entries, in time and across systems.
When the entry is unknown, this gives us a sophisticated
method for imputing or guessing what the missing value
might have been. We can use the conditional marginal median
(50th percentile) as the imputed value, with the 10th and 90th
percentiles defining an uncertainty interval. Figure 8 shows the
marginal conditional quantiles for system 1 at 5 times on two
days, one clear and one partially cloudy. We observe that the
model correctly adapts the uncertainty bounds to the weather,
with tighter bounds on clear days. Additionally, we note that
the uncertainty bounds are asymmetric, with decreases in
output (say, due to clouds) more likely than increases. The
predictions themselves, shown as the circle representing the
conditional median, are good.

C. Anomaly detection

We can use marginal conditional quantiles to identify
anomalous entries in our data. To estimate whether a given
known entry is an anomaly we pretend that it is unknown,
compute its conditional marginal CDF given all other known
values, and evaluate it at the known value. We can flag an entry
as anomalous if this quantile value is less than € or more than
1 — ¢, where € is a threshold value such as 10~2. With this
threshold, we would expect a false positive rate around 2e.

To illustrate this, we consider system 2 on 4/1/2017. We
introduce synthetic anomalies by perturbing the power values
at 8:30, 10:00, 11:30, 13:00, 14:15 and 15:30, by randomly
increasing or decreasing the true values by 15%. Table I shows
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at other times. Top. Clear day. Bottom. Cloudy day.

TABLE I: Anomaly detection example.

Time | True value | Perturbed value | Conditional quantile
08:30 0.9919 0.8431 0.0001
10:00 1.7280 1.9872 0.9999
11:30 2.3633 2.7178 0.9999
13:00 2.5890 29773 0.9999
14:15 2.4294 2.0650 0.0001
15:30 1.6576 1.4090 0.0013

true values, perturbed values and conditional marginal quan-
tiles of perturbed values, clipped to the range [0.0001,0.9999].

With threshold ¢ = 0.01, we detect all of the artificial
anomalies. We also have three false positives, i.e., times when
a true value is flagged as an anomaly. The conditional marginal
quantiles for this day are shown in figure 9. The vertical axis
shows min{q,1 — ¢}, with the threshold e = 0.01 shown as
the darker horizontal line. True negatives are shown as blue
circles, and true positives are shown as blue squares. False
positives are shown as orange circles. The three false positives
are all cases where the true power was low compared to our
predicted median. This is not suprising; clouds can easily
reduce power output unexpectedly by 15% or more.

D. Forecast

Here we forecast the values of system 2 from 13:15 on,
using data from all systems up through 13:00. We show the
forecast, which is the median or 50th conditional marginal
quantile, along with the conditional marginal 10th and 90th
quantiles, which give us confidence bands for the forecast
values. This is illustrated in figure 10 on the clear day 4/9/2017
and the cloudy day 4/6/2017. Our forecast on the clear day is
very good, with tight uncertainty bands. Our forecast on the

6
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Fig. 10: Forecast for system 2 on the clear day 4/9/2017,
and the cloudy day 4/6/2017. We forecast from 13:15
on, given values for all systems up through 13:00.

cloudy day is reasonable, but with much wider uncertainty
bands.

In addition to forecasting marginal quantiles of a single
system, we can generate joint forecasts using all systems.
We illustrate this in figure 11, where we forecast the values
of system 2 from 13:15 on, using data from all systems up
through 13:00. We show three different forecasts, sampled
from the full joint conditional distribution. We see that the
forecasts agree with the marginal forecasts, in the sense that
generated instances are within the 10-90% confidence bands
of the marginal forecasts. We also see that the forecasts are
reasonable, since we observe that for cloudy days, the forecasts
are more volatile than for clear days with the latter having a
more stable, smooth behavior.
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Fig. 11: Forecast for system 2 on the clear day 4/9/2017,
and the cloudy day 4/6/2017. We forecast from 13:15
on, given values for all systems up through 13:00.

VII. CONCLUSIONS

We presented a novel approach to modeling and analyzing
fleets of PV systems based on a smooth periodic Gaussian
copula transform, and illustrated some of its applications.
While we have demonstrated the method on a small example,
it can scale gracefully to much larger problems; details will
be given in a forthcoming paper.
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