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Abstract

The problem of multiobjective H2/Hoo optimal controller de-
sign is reviewed. There is as yet no exact solution to this
problem. We present a method based on that proposed by
Scherer [14]. The problem is formulated as a convex semidef-
inite program (SDP) using the LMI formulation of the .
and Hoo norms. Suboptimal solutions are computed using fi-
nite dimensional @Q-parametrization. The objective value of
the suboptimal @’s converges to the true optimum as the di-
mension of @ is increased. State space representations are
presented which are the analog of those given by Khargonekar
and Rotea [11] for the s case. A simple example computed
using FIR (Finite Impulse Response) @’s is presented.

1 Introduction

The multiobjective tradeoff paradigm [3] has become a very
valuable design tool in engineering problems that have con-
flicting objectives. When the objectives being traded off are
convex, very definitive conclusions can be obtained as to the
feasibility or infeasibility of certain combinations of costs.
The multiobjective controller design problem has been
solved exactly for the case where the tradeoff objectives are
all Ha norms of various closed loop transfer functions [3, 11].
However, as soon as any other norm is introduced (eg: Hoo Or
l1), there is as yet no exact solution, and various approxima-
tions, relaxations, and bounds must be used [14, 11, 12, 16].
In [2], a pragmatic approach was taken: a finite dimensional
Youla parameter ) was used, system impulse responses were
truncated and infinite horizon costs and constraints were also
truncated to a finite horizon. The problem was then solved
as a standard constrained, convex optimization problem. One
problem with this approach is that there is no guarantee that
the controller designed in this way will be feasible in the true
closed loop system, with respect to the infinite horizon costs
and constraints. Another problem is that even when the di-
mension of () is taken to be small, the method may produce
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very large optimization problems in situations where the sys-
tems in the Youla parametrization have very lightly damped
modes. Despite these limitations, the method has produced
some impressive designs.

In recent years, it has been shown that when a state space
description is available, then many of the infinite horizon costs
and constraints can be represented as linear matrix inequalities
(LMIs) and minimized ezactly and efficiently as semidefinite
programs (SDPs), see [4, 13] for a catalog of such constraints.
So in this paper, we take the design procedure of [2] to the
natural next level and formulate the multiobjective H2/Hoo
problem using LMIs for the objectives and constraints and
solve it as an SDP. In this way, the errors due to cost, con-
straint and pulse response truncation in [2] are eliminated.

We focus on the case where the objectives being traded off
are all Ho or Hoo norms of different discrete time closed loop
transfer functions. This problem falls into the general class of
problems that was thoroughly analyzed by Scherer [14]. There,
the method we present in this paper was briefly mentioned and
a very simple one-block SISO example was given. However,
none of the details of the computational implementation were
given. These turn out to be nontrivial in the MIMO case.
We give an explicit description of the method, together with
state space representations and complete statements of the
semidefinite programs that must be solved for the general four-
block MIMO case.

The LMI formulation of the H2 and H costs [15, 4, 1, 7] in-
troduces auxiliary Lyapunov matrices into the problem. As a
result of product terms between these Lyapunov variables and
the state space matrices of ), the resulting constraints become
nonlinear and hence, in general, nonconvex. In [13], convexity
was recovered by a coordinate transformation of the controller
variables, under the restriction that all the Lyapunov variables
be equal. While this restriction makes the problem tractable
in the LMI framework, it leads to conservatism in the over-
all design. There are as yet no results on the degree of this
conservatism.

Other approaches to this problem include [12, 16, 5]. In [12],
an exact solution to a heuristic upper bound is obtained. In
[16, 5], the authors use the finite dimensional ) parametriza-
tion idea presented here to obtain sequences of problems whose
optima converge to the true optimum. However, only the
special case of the general problem treated here is comnsid-
ered: minimizing the 72 norm of a single closed loop (MIMO)



transfer function subject to a single Ho, constraint on another
(MIMO) closed loop transfer is considered.

In the approach we present here, convexity in the LMI’s
is recovered by using an alternative state space description
for the closed loop system, and by restricting the Youla pa-
rameter () to a finite dimensional subspace of Ho. The al-
ternative state space description is obtained from the Youla
parametrization via system Kronecker products. Similar tech-
niques were used by Khargonekar and Rotea [11] for the multi-
objective H2 case. The restriction on the dimension of @ also
introduces conservatism in to the design. However, in con-
trast to [13], this conservatism can be made arbitrarily small
by increasing the dimension of Q.

The only practical limitation on this approach is the size of
the SDP’s that can be solved. The method is demonstrated
on a simple four-block problem.

2 Notation

Consider the general feedback system shown in Fig.1, where
P is the open loop LTI plant P : (we,u) — (zr,y), K is
the controller, and we, u, zr, and y are the exogenous input,
control input, regulated outputs, and sensed outputs, respec-
tively. Let p and ¢ be the dimensions of u and y, respectively;
let m; and n; be the dimensions of z; and w; respectively; and
let dimensions of the closed loop map G be m x n.

Fig.1 Multiobjective controller design problem.

The set of all achievable stable closed loop maps is given by:
{G=P., . +P., KI-P,,K) 'P,,, | K stabilizing}

This representation is linear fractional, and a more convenient
representation for us will be the equivalent Youla parametriza-
tion [3]:

{G=H-UQV|Q e HE!}

where Q is a free parameter in H2X? and the transfer matrices
H,U,V and @ are all stable. This parametrization is affine in
Q). Given state space realizations of H, U, () and V, the closed
loop transfer matrix G has the state space representation:

[ Aq | Bg .
Xarah
[ Ay 0 0 0 By
0 Ay 0 0 By
0 BoCv Ag 0 BgDv
0  BuyDgC, BuCqo Av | BuDgDy
| Cu —DyDoCv —DyCq —Cu | Du — DyDqDy

where Ap,...,Dqg are the state space matrices of H,U,V
and Q. From this, particular closed loop n;-input/m;-output
transfer matrices G; can be obtained as

G; = LiGR;
where the matrices L; € R™*™ and R; € R"*" select the

appropriate channels [13]. The state space realization of G; is
then

Ai | Bi | _[_Ac | BcR; (1)
Ci | Di LiCq | LiDGR; |’
Similarly, we define H; as
H,=L;HR;

with the state space realization

Bu, ] [ Am | BuR
Dyu, | | LiCu | LiDuR; |’

Aun,
Cu,

In the next section, we will be concerned with the following
vector valued cost V : HP*? — RE:

V(@) = (1G1(Q)]l2, -, 1GL(Q)]o0)- 2)

where the first no components of V are all H-norms and last
Moo components are all Hoo-norms, so n2 + ne = L. We will
also use the notation ||G;||,; for the components of V, where

{2
pi =
0

3 Problem Statement

i=1,... ,n2
it=mn2+1,...,L

The notion of Pareto optimality defines what we mean by min-
imizing the vector valued cost V. The following definition and
theorem can be found for example in [11, 3].

Definition 1: A Qopt € HE'Y 4s Pareto optimal with
respect to V iff there is no other Q € HEY such that
IG:(@)llp: < Gi(Qopt)llp; for all i, and ||Gip(Q)llp:;, <
IGio (Qopt)llps, for at least one io.

Theorem 1: Define the set A = {A € RF
Ai >0, Zle Ai = 1} and define the multiobjecitve cost as
JM(Q) = ATV(Q). Then the set of all Pareto optimal Q is
the set of solutions (when they ezxist and when they are unique)
of inf {J3(Q) : Q € HEX} for all X € A.

There is as yet no exact solution to the multiobjective prob-
lem of minimizing J* over Q € HEX?. The objective of this
paper is to show how to compute Pareto optimal solutions of
V using convex optimization.

Remark: For computational convenience, we redefine the
vector valued cost V with all the entries squared, ie:

V(@) = (IG1(Q)l3, -, IGL(Q)II)- 3)

From definition 1 it is clear that the Pareto optimal points
for this cost are the same as those of (2). Therefore Theorem
1 can still be used to generate the set of all Pareto optimal
points.



4 Motivation

The method we present here works for multiobjective design
with transfer matrices corresponding to arbitrary pairings of
input and output vectors and norms. In this section, however,
to motivate the problem, we will focus on the regulator prob-
lem, see Fig.2. The regulated output z, = (z,u) is made up of
the regulated plant variables z and the control u; the exoge-
nous input we = (w,v) where w and v are process and sensor
noises respectively.

i B

Fig.2 Regulator problem.

Typically we are interested in rejecting the disturbances w
and v with efficient use of control u, eg: to avoid saturation.
Thus the transfer matrices of interest are G1 = G, and
G2 = Gyy,.. In the case where very little is known about the
disturbances w and v one might consider minimizing the re-
sponse at z and u, due to the worst case input we € l2. This
corresponds to minimizing ||Gw, ||l and ||Guw, ||so [9], simul-
taneously. Since these are usually conflicting requirements,
one would like to do a tradeoff design as follows: The multi-
objective Hoo cost JA(Q) in this case can be written as:

Q) = (L= N |Gewe (Qllze + A | Guwe (@)l

|
1113
=(1—-M) sup
we0 |lwell3

[[ull>

+ A sup 5 -
we#0 ||well3

where A € [0,1]. Then carrying out the following:

for A e€]0,1]
e solve the following for Qx: mingex . J(Q)
o Plot |G, (Qn)llow versus |G, (Qn)lloc
end

generates the set of all Pareto optimal points (), and the
tradeoff curve shown in Fig.3. This curve gives the set of all
achievable pairs of values (||Gyw. ||oos ||Gzwe ||oo), 1-€., the limits
of performance that are achievable with the given plant and
the given cost function. This is very useful to know in practice.
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e
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Fig.3 Tradeoff curve.

Note that minimizing J is not a standard He, problem. In
the corresponding standard problem, one would set z, = ((1—
N2z X24) and then minimize ||Gzy, (Q)]|o, ie: minimize

2

—N2qG.
5@ =" 5. S
g (=Nl Al
e R A

A fact which follows readily from the definitions of J{/ and
JY is that:

JN(Q)<JV(Q) VQeH
JN(Q) < inf  JV(Q).

QeMBX?

= inf
QenEN?

In the multiobjective design, the maximization of z and u
over we is done independently, where as in the standard de-
sign, it is done simultaneously, which artificially couples z and
u. However, in practice, the control effort and the regulated
outputs are physically independent quantities, so why should
we care about the sum of the gains at z and u? For example,
they could peak at different frequencies.

Since G, (@) and Gy, (Q) are affine in @, both the mul-
tiobjective and standard problems are convez in ). However,
since @ is in H2X¢ (an infinite dimensional space) the problems
of minimizing J{! and J§ are both infinite dimensional.

In the standard case of minimizing J¥ , state space structure
provides means for converting the problem to a finite dimen-
sional one which can then be minimized ezactly via bisection
and Riccati equations or via LMIs. Unfortunately, no such
solutions are available for the multiobjective case. Broadly
speaking, the approaches proposed in the literature obtain ex-
act solutions to a heuristic upper bound [12], restrict the Lya-
punov variables in the LMI’s to be equal [13], or construct
sequences of problems whose optima converge to the true op-
timum [16]. There is rarely any analysis given for the degree of
conservatism, or the rate of convergence. Our approach falls
into the third category.

5 Ho and Ho LMI Constraints

We will now review a couple of standard general results on
the representation of H2 and He norms as LMI constraints
[4, 15, 1]. For convenience, they are stated in terms of the
notation for the G;’s.

Lemma 1: (H2 norm bound) Given any transfer function
Gi = D; + C; (21 — A;))"'B; (not necessarily minimal), we
have:

1 ™

Gi?E—
Gl = 5=

Tr (Gi(e*) Gile™®)) dw <

-7

A; asymptotically stable
if and only if the following LMI in X; and S; is feasible:

AT XA - X, ATXiB;

[ BTX;A;  BI'X:B; —1} <0
X, o0 CF
0 I DI|>o0 (4)
Ci D; S

Tr(S;) — ﬁf <0
X; > 0.



Lemma 2: (Ho norm bound) Given any transfer function
Gi = D;+C; (z2I—A;)"' B; (not necessarily minimal), we have:

Gilloo < i
A; asymptotically stable

if and only if the following LMI in X; is feasible:

|'A1TX1'A1' - Xi Al XiB; CZT-|
Bf XA BIX:Bi—yl DI\ <0
l C; « %z —’YiIJ
i >0

This latter lemma is known as the Bounded Real lemma.
Note that in both lemmas, the (1,1)-block in the first inequal-
ity must be negative. Thus it follows from Lyapunov theory
that when A; is known to be stable, the X; > 0 constraint is
automatically satisfied by any feasible X;. In this case it can
be dropped.

Now consider lemma 1. As it stands, the lemma allows
us to check if the Hs norm of G; is bounded by some f;.
However, the LMI is in fact jointly linear in the variables
(6%, Si, X;,Ci, D;). Thus if A; and B; were fixed, then one
could solve the following optimization problem in the vari-
ables (62, Si, Xy, Cy, D;) simultaneously, and thus compute C;
and D; which minimize ||G;]|2:

minimize B2

subject to  (4). (6)

Similarly for the Hoo case, if A; and B; were fixed, one could
compute the C; and D; which minimize ||G;||e by solving:

minimize v

subject to  (5). (7)

Both of these problems can be easily cast as SDP’s.

However, in the realization of G; given in (1), the matrices
of @ appear not only in C; and D;, but also in A; and B;.
This makes the problem nonconvex due to the cross terms
between X; and A; and B;. To recover convexity, we will use
a finite dimensional basis for () and an alternative state space
realization for G; to keep all the variable parameters of () in
Ci and Di.

6 State Space SISO FIR

In what follows, we will use a MIMO N-tap FIR Q-parameter.
Let Qs be the individual SISO FIR component systems in ()
with pulse response {g,s(0),¢rs(1),... ,qrs(N —1),0,0,...}.
These can be realized as:

Ag.,
Caq..

|-t
DQ'r's B Qrs | qo,rs

where Z € RWUXV=1) i the “shift matrix” made up of all
zeros except for ones on the first subdiagonal; e; is the first
column of In_1), ¢rs = [grs(1) ... ¢grs(N — 1)] (row matrix),
and qo,rs = grs(0). We note that all coeflicients of Q,s appear
only in Cg,, and Dq,,.

Remark: Setting the @, to be FIR’s corresponds to choos-
ing the basis {z°,27",..., 27V =1}. We note, however, that
any other basis could be used by simply by specifying different
Agq., and Bg,, matrices.

7 Alternative State Space Representation for G;

The next step towards recovering convexity in the LMI’s comes
from the following simple lemma:

Lemma 3: The transfer functions G; can be written as

Gi(Q)=Hi—= Y Q@ Ty,

where the Qrs are the individual SISO entries of Q, Trs,; :=
(LiUeT)(e;‘FVRi), e; 15 the ith column of the identity matriz
of appropriate dimensions, and Qs @1, ; denotes the system
Kronecker product [11] in Heo of Qrs with Tys,i, defined as:

Q'r‘s T(ln)

78,1 78,1

Qrs ®Trs,i = :
Qrs T(ml) Tt Qrs T(mn)

rs,i T8,

Q'r‘s T(ll)

Proof: First, recall that in the Q-parametrization: H, U, Q,
and V are simply matrices in Ho,. Decomposing () as the
sum of its SISO components @), multiplied by the elementary
matrices E,, = e, ez gives:

Gi(Q) = Hi— LU(D_ Quseres )VR;

T,8

=H; — ZQ” ((LiUeT)(e;‘FVRi))

= Hz - ZQTS Trs,i
7,8

where T,,; = (LiUer)(eSVRi). Now each product term
Qrs Trs,i is just a scalar (SISO) times a matrix (MIMO) in
Hoo- So in fact: Qrs Trs,i = Qrs @ Tps,i by the definition of
the multiplication of a matrix by a scalar in Ho,. H

Note that T)s; is just the series connection of the systems
L;Ue, and e?VR,-, so its state space realization is:

|: ATrs.i BTrsi :|

CTv‘s,i DTv‘s,i
Ay 0 Bv R;

= BUeTESCV AU BUeTesTDvR,-
LiDye.eTCy LiCu | LiDye.el Dy R;

Next, using a formula from [11], we obtain a (nonunique) state
space realization of the system Kronecker product Qs @ Ty i
in terms of state space matrices of (),s and 155 ;:

AT.S,i BT.S,i _
CTs,i DT.S,i o
[ AQ,. ®Im; Bq,.®Cr,,, | Bq,. ® D, -|
0 ATrs‘i ‘BTrs‘i .
l Cq,, ® Im;  Daq,, ®Cr,,; | Do,, ® D1, ; J

where m; is the number of outputs of G;.

Finally, we arrive at the desired alternative state space rep-
resentation for G;: just add H; in parallel with all the systems
Q'r‘s ® T'r's,i:



A; | B |
o] - (®)
B AHi BHi
All,i Bll,i
qu,i Bypg,i
| Cu; —Chi ~Cpqyi | Dy — 22, Drsyi

From the above, we see that if the @),s have the SISO FIR
structure {Z, e1, grs, qo,rs } then all the coefficients of @, will
appear only in the C and D matrices of Qs ® Tys,;. Specifi-
cally, we have:

C'r's,i =
D'r‘s,i =

[Q'r.s ® Iml q0,rs @ CTv‘s,i]

ldo.rs ® D1, ] ©

which are both linear in the coefficients of (),s. Hence all the
coefficients of @) in (8) appear (linearly) only in C; and Dj,
which is what we wanted. We emphasize this fact by writing
C; and D; as C;(q) and D;(q), where q is the concatenation
of all the coefficients of @), ie:

q = [lqo11,q11] - [q0.a, Gwa]]” -
Furthermore, A; and B; are then fixed. Also, A; is stable since
An,, Avu, Z, and Ay are all stable.
8 Solution of Multiobjective H2>/H. Problem

Let us define f; and g; as the constraints obtained from ap-
plying the LMI conditions (4) and (5) to the alternative state
space realization (8) and (9), i.e.

T T
Xi 0 Ci(a)"
-1 0 I Di(q)?],
Ci(q) Di(q) Si
Tr(S:) — 37 ),
ATX A — X AT X, B; Ci(aq)”
9i(vi,Xi,q) = | B{X;A;  B{X;Bi—~I Di(q"],
Ci(a) Di(q) =il

The X; > 0 constraint has been dropped due to the stability
Of Az

From the formulations in (6) and (7), it follows that ||G;||2
can be minimized by solving the following optimization prob-
lem in the variables (3;, Si, Xi, q):

minimize ,@f
subject to  fi(Bs, Si, Xi,q) < 0

and ||Gi||l can be minimized by solving the SDP in the vari-
ables (vi, Xi,q):

minimize ~Z
subject to  gi(vi, Xi,q) <0’
Again, both of these problems can easily be solved as SDP’s.

Furthermore, using arguments similar to those in [14], it can be
shown that as the number of taps goes to infinity, the objective

values of the ’s which optimize the SDP’s above will converge
to the true optimum from above.

Actually, in [7] a very similar approach was used to solve
the standard He problem ezactly, without using finite dimen-
sional approximations of () or the alternative state space re-
alization. Unfortunately, that approach cannot be extended
to handle multiobjective problems without making some as-
sumptions which lead to conservatism in the design [13].

On the other hand, the approach presented here ex-
tends trivially to the multiobjective case: JM(Q) =
S AllGHQ)E + ZiL:n2+1 illGi(Q)]|2 can be minimized
by solving the following optimization problem in the variables
(ﬁl,Sl,Xl,... ,'yL,XL,q):

min 202 Xif3 +ZiL:n2+1 Ai %‘2
s.t. fi(Bi, Si, Xs,q) <0 i=1,...,n2
9i(7i, Xi,q) <0 i=mna+1,...,L

Of course, this can also be solved as an SDP.
9 Numerical Example

As an example, we now consider the four-block problem of sta-
bilizing an unstable continuous time second order system, with
a discrete-time controller. We assume unknown discrete-time
process and measurement noises as shown in Fig.2. Such prob-
lems could arise, for example, in the stabilization of charged
particle beams in circular accelerators [10]. The continuous
time model (in normalized units) is:

A | B 0 , 1 0
c 1D =| —wy —2Cwo |a |,
e e 1 0 |o
where wg = 2w, { = —0.5, @ = 4w. The system was zero-

order-hold discretized at a sampling period of T, = 0.17s,
with a 0.97 delay in the feedback loop path, to give the final
discrete-time plant Py:

[ A B1 B -|
Ci1|Dun | D12 | =
| Co | D21 | D2 J

( 0.2726  0.2443 0.7217 | 0.7274 | 0.0057

—9.6460 1.8078 8.9537 | 9.6460 | 0.6924
0 0 0 0 |1.0000 [,
4 0 0 0 0

L 1 0 0 0 0

(The sensor readout matrix C2 has been made factor of 4
smaller than C;.) Then P was obtained from Py as shown
in Fig.2.

The solid tradeoff curve in Fig.4 was obtained by minimiz-
ing the multiobjective cost Ji7 for A € [0,1], as described in
section 3. For comparison, the dashed curve was obtained by
solving the standard problem of minimizing .J§. An LQG con-
troller was used to obtain H, U, and V (see [6] p.107) and a
12-Tap FIR @) parameter was used.



Tradeoffs: Multiobjective (solid) vs Standard (dashed)
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Fig.4 Multiobjective Tradeoft curve.

These curves show that there can be a significant difference in
performance, between standard (dashed) and multiobjective
(solid) controllers. Over most of the curve, the multiobjec-
tive controller offers the same regulation of state excursions,
for upto 25% less actuator effort. In fact, we can expect this
kind of behavior in general: since the multiobjective design
paradigm generatees Pareto optimal points, we are guaranteed
that the multiobjective curve will always minorize the corre-
sponding curves of any other controllers. This is provided, of
course, that enough taps are used in Q.

10 Conclusion

The problem of multiobjective optimal controller tradeoff de-
sign when the objectives are the Ho and Hoo norms, as yet,
cannot be solved exactly. Existing methods are either approx-
imate or conservative. We have presented an approximate so-
lution based on that proposed in [14]. Using standard LMI
representations of the H» and H norms, and a finite dimen-
sional Youla parameter @, a finite dimensional approximation
to the original infinite dimensional problem was obtained. As
the dimension of () is increased, the objective values of the
optimal @ converge to the true optimum from above [14].

By using an alternative state space realization for the closed
loop system, the finite dimensional problem was reduced to a
semidefinite program which is convex in the variables of the
finite dimensional ). Explicit state space matrices for all the
relevant transfer matrices were obtained using system Kro-
necker products, similar to those given in [11] for the pure H2
multiobjective problem. The method is easy to implement in
practice on any SDP solver eg: [8, 17, 18].

Our approach offers the following advantages over existing
methods: First, as a benefit of using state space matrices
rather than impulse responses, all errors due to the truncation
of infinite horizon costs and constraints in [2] are eliminated.
The controller is thus guaranteed to be feasible for the true
system with the true costs. Second, in contrast to the method
in [13], since we do not restrict the Lyapunov matrices to be
all equal, the conservatism in our method can, in principle,
be made arbitrarily small by choosing an appropriate basis of
sufficient dimension.

There are two main drawbacks to our approach: First, as
with most finite dimensional () based approaches, we have
no analysis on the rate of convergence of the SDP optima to
the true optimum in infinite dimensions, or on their degree of
suboptimality. Second, the exactness of the LMI formulation is

at the cost of introducing a large number of auxiliary variables,
namely the Lyapunov matrices X;. This produces an order of
magnitude increase in the number of variables which is actually
compounded by the sparse alternative state space realization
that was used to recover convexity. This can be a problem
when the system or the number of basis functions is large.

In closing, we would like to point out that the approach
outlined here is not necessarily limited to just Ha/Hoo multi-
objective design. It may be possible to apply the same idea
to other standard LMI constraints, see [13]. Also, an entirely
parallel development should be possible for continuous-time
systems [3, 4, 5, 14].
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