
OPTIMAL EXCITATION SIGNAL DESIGN FOR FREQUENCY DOMAIN SYSTEMIDENTIFICATION USING SEMIDEFINITE PROGRAMMINGGergely Bal�azs J�avorszky* Stephen Boyd** Istv�an Koll�ar* Lieven Vandenberghe** Shao-Po Wu***Department of Measurement and Instrument Engineering, Technical University of Budapest,Budapest, M}uegyetem rkp. 9, Hungary, H-1521, Phone: + 36 1 463-1774, Fax: + 36 1 463-4112Email: javor@mmt.bme.hu, kollar@mmt.bme.hu**Information Systems Laboratory, Department of Electrical Engineering,Stanford University, Stanford, CA 94305-4055, USAEmail: boyd@isl.stanford.edu, vandenbe@isl.stanford.edu, clive@isl.stanford.eduABSTRACTThe paper discusses two methods of optimal excitationsignal design for identi�cation with Maximum Likelihoodparameter estimation: The \classical", dispersion functionbased method, and a new, semide�nite programming basedone. It is shown that the dispersion function based algo-rithm is a primal-dual method. The problem can be formu-lated as matrix determinant maximization subject to linearmatrix inequalities. We introduce an interior point methodfor excitation signal design. The implementations of the twomethods are compared in practical use. For general prob-lems, the semide�nite programming based approach per-forms better, while for practical optimal excitation signaldesign, the dispersion function based one is recommended.Keywords: semide�nite programming, matrix inequalities,experiment design, optimal excitation signal design, deter-minant maximization, system identi�cation.1. INTRODUCTIONIn frequency domain system identi�cation, the usual goalis to identify a linear, time invariant system, that has atransfer function expressible in rational fraction form:H (s) = e�sT Pnnk=1 bkskPndk=1 akskThe parameters to be estimated can be arranged into avector: P = [bnn; : : : ; b1; and; : : : ; a1; T ]TWe identify the system by exciting it with a periodic sig-nal. The aim of excitation signal design is to distribute agiven amount of signal power among the harmonic compo-nents so that the experiment is optimal in some sense.Usually, the quality of the identi�ed model is character-ized by a scalar function of the Fisher information matrixF of the estimated parameters P [1, 2].The commonly used method for optimal excitation signaldesign is based on the so-called dispersion function [1, 2, 3].Semide�nite programming | or more generally, convexoptimization | is well suited to the above optimal exci-tation signal design, since both the constraint set and thetypical functions to be optimized are convex.

2. OPTIMAL EXCITATION SIGNAL DESIGNWe apply a multi-sine excitation signal at prede�ned radianfrequencies !1; !2; : : : ; !F :x (t) = FXk=1 (Xk cos (!k) + Yk sin (!k))The frequencies !1; !2; : : : ; !F are taken from a su�-ciently dense frequency grid.We suppose that the delay parameter T is 0, or it has beenmeasured in advance. The excitation signal (when appliedto the system) and the measured output are distorted bynoise. The noise is assumed to conform to a noise model,and some of the noise parameters are known [2], eg. theyare determined from a priori measurements.From the input and the output of the system, we can cal-culate the Maximum Likelihood estimate of the parametersby minimizing the so-called cost function with respect toP. The cost function depends on the input, the parame-ters, and the known noise properties [2].The Fisher information matrix of the parameters can beexpressed in the following way:F = FXk=1 X2k + Y 2k2 Fkwhere Fk is a symmetric, positive semide�nite par-tial information matrix belonging to frequency !k, and�X2k + Y 2k � =2 = Qk is the power carried by the excita-tion signal at !k. The total signal power PFk=1Qk is 1.The matrices Fk are of the form Fk = JTk Jk. The costfunction can be expressed as C = 12�T�, and from this,Jk = @[Re (�k) ; Im (�k)]T =@P, where �k is the kth ele-ment of � [1, 2, 3].In excitation signal design, usually a scalar function ofthe Fisher information matrix is optimized. This scalarfunction is often the determinant of F.The inverse of the information matrix is the Cram�er-Raobound on the covariance matrix of the parameters esti-mated [1, 2]: cov (P) � CR (P) = F (P)�1The covariance of the estimated parameter vector P inmost practical situations is close to the Cram�er-Rao bound.



Therefore, an experiment that yields an information matrixthat is \maximal" in some sense (eg. its determinant) cangive a low variance parameter estimate.2.1. Problem Statement with Matrix InequalitiesLet us assume that the total signal power is 1, and thepartial information matrices F1; : : : ; FF (each symmetric,positive semide�nite with rank two) are given. We have todesign an experimentQ = [Q1; : : : ; QF ], that satis�es thefollowing inequalities: Q � 0 (1)F (Q) = FXk=1QkFk > 0 (2)FXk=1Qk = 1 (3)and jF (Q)j is maximal over the above constraint set. Theinequality sign > in (2) means that F (Q) is positive de�-nite.We can express the constraints in the following way:g (Q) is de�ned asg (Q) = " 1� FXk=1Qk! ; Q1; : : : ; QF# (4)As long as g (Q) is non-negative, (1) is satis�ed. The non-negativeness of (4) only yields thatFXk=1Qk � 1which does not equal to the constraint included in (3). Toshow that the conditions are however equivalent, let ussuppose that g (Q) � 0 for a particular Q; F (Q) > 0;PFk=1Qk = L < 1 for a positive L. From this, it comes that1LQ will satisfy (1) and (3); g � 1LQ� will be non-negative;and ���F� 1LQ���� = � 1L�nn+nd+1 jF (Q)j > jF (Q)jTherefore, if (1) and (3) are replaced with g (Q) � 0, at theoptimum L will equal 1.3. CONVEX OPTIMIZATIONThe problem statement has reduced to the following form:maximize jF (Q)jsubject to F (Q) > 0g (Q) � 0 (5)or equivalently, with the commonly used notations:minimize � log jF (Q)jsubject to F (Q) > 0g (Q) � 0 (6)The problem above is a matrix determinant maximizationproblem with linear matrix inequality constraints. Semidef-inite programming | or more generally, convex optimiza-tion | deals with these problems [4].

3.1. The Dual ProblemAssociated with (6) is the so{called dual problem [4]:maximize log jWj � gT0 z+ nn + nd+ 1subject to tr (FkW) + gTk z = 0 k = 1; : : : ; FW =WT > 0z � 0 (7)whereW (a matrix) and z (a vector) are the dual variables.The vectors gk are F + 1 element long, and de�ned in thefollowing way:gk = ek+1 � e1; k = 1; : : : ; F (8)where ek is the kth unity vector and g0 = e1. Note: g (Q)can be expressed with g0; : : : ; gF :g (Q) = g0 + FXk=1QkgkThe duality gap is the di�erence between the primal andthe dual objective:tr (F (Q)W)� log jF (Q)Wj �nn�nd� 1+g (Q)T z (9)The duality gap is always non-negative [4].3.2. Primal-Dual MethodsThe primal-dual methods optimize the primal objective.They calculate the dual variables, and then the duality gap.They stop as soon as the duality gap has become less thanan \absolute tolerance" (that may be a parameter to thealgorithm). This feature provides us with a \certi�cate" ofthe optimality of the results conveyed, since the optimumis in between the primal and dual solutions.Note: The primal-dual methods solve (6), therefore theabsolute tolerance is related to � log jF (Q)j. In optimalexcitation signal design (5) is to be solved. If the absolutetolerance reached was ", then1 � jF (Qresult)jjF (Qopt)j � e"holds, where Qopt is the vector that optimizes (6), andQresult is the result of calculations.4. METHODS OF DETERMINANTMAXIMIZATIONIn this section, two algorithms for solving (6) (or (5)) will bediscussed. One of them is known, the other one is presentedhere. We will illustrate the di�erences between the two andgive suggestions when each one should be used.4.1. Determinant Maximization using the Disper-sion FunctionThe dispersion function is de�ned as [2, 3]� (!k) = tr �F (Q)�1Fk� (10)provided that the total signal power is 1.We can construct a simple iterative algorithm based onthe dispersion function [2, 3]. As the �rst step, an input



signal is constructed by distributing the total signal powerevenly among the frequencies !1; !2; : : : ; !F . In eachiteration, the dispersion of the current input signal is calcu-lated for every frequency !k, and the next approximationQi+1 of the optimal excitation signal amplitudes will beQk;i+1 = Qk;i � (!k)nn+ nd+ 1where Qk;i is the kth element of Qi.The excitation signal amplitudes are always sum up to1 (in other words, the �rst element of g (Q) is always 0).This algorithm strictly monotonically converges to the op-timum [1, 2].The algorithm can be stopped as soon asmaxk (� (!k))� nn� nd� 1 (11)becomes less than an \absolute tolerance". Expression (11)reduces in each iteration step.From this point on, we refer to the dispersion functionbased iterative algorithm as DF.4.2. DF and DualityDF is a primal-dual method, with (11) being the dualitygap. To prove this, �rst we need to construct a dual Wand z for the current iterate Q. Let W be F (Q)�1. Then,from (7) and (10),tr �FkF (Q)�1� = � (!k) = �gTk zfor k = 1; : : : ; F . From (8), it follows that gTk z = zk+1�z1,that is zk+1 = z1 � � (!k) = z1 � tr �FkF (Q)�1�where zi is the ith element of z. Now, if we assignz1 = maxk (� (!k))we get a dualW and z, that satis�es the constraints in (7).The duality gap (9) with these constructed W and z willbe tr �F (Q)F (Q)�1�� log ��F (Q)F (Q)�1���nn� nd� 1 + g (Q)T z= nn + nd + 1� 0� nn� nd � 1 + g (Q)T zfrom (4), it further equals toFXk=1 zk+1Qk= FXk=1Qk �z1 � tr �FkF (Q)�1��= FXk=1Qkz1 � FXk=1 tr �FkQkF (Q)�1�= z1 � tr �F (Q)F (Q)�1�= maxk (� (!k))� nn� nd� 1which is the same as (11).

4.3. Properties of DFBecause the total signal power in each iteration is 1 (ie.the �rst element of g (Q) is always 0), DF is not an interiorpoint method, unlike the one described later in section 4.4.The theoretical convergence of DF has not yet been cov-ered. Since it is a gradient-like method [1], and not a New-ton or quasi-Newton one, its convergence is most probablyworse than that of the method introduced in section 4.4.,at least in terms of complexity (number of iteration steps).However, the exact statement needs further research.4.4. An Interior Point MethodRecently, a more e�ective interior point primal-dual methodhas been developed for determinant maximization. The de-tailed description of the algorithm can be found in [4]. Thisalgorithm will be referred to as MAXDET in this paper.MAXDET requires for a worst case runO�p(1 + F ) log �"(0)="��number of Newton iterations, where "(0) is the initial dualitygap, and " is the desired absolute tolerance [4]. The termlog �"(0)="� can be regarded as a constant value, since itdoes not grow fast with reducing " and, in most practicalsituations, the achievable values of " are limited below bythe computing platform accuracy and the roundo� noise ofcalculations.The complexity of one Newton step depends heavilyon the problem structure. Generally, the complexity isO �F 2 �(F + 1)2 + (nn + nd+ 1)2��.Numerical experiments indicate that behavior is muchbetter in practice than the worst case. The number of iter-ations usually lies between 5 and 50, almost independentlyof problem dimensions [4].5. IMPLEMENTATIONS OF DF AND MAXDETIn this section, the implementations of the two algorithmsare compared. Testing in a practical setting is very impor-tant. A theoretically \good" implementation can performmuch worse in practice than a \bad" one if its goodnessonly shows up with extremely large problem sizes.The theoretical memory complexity of the programs is inthe range of the size of the matrices involved, independentlyof the absolute tolerance required. Thus, we only measuredthe time complexity versus the absolute tolerance.5.1. Comparability of ImplementationsBoth algorithms are primal-dual methods (see sections 4.1.and 4.4.). They stop as soon as they have reached a su�-ciently small duality gap. In this sense, DF and MAXDETare theoretically comparable.However, implementation and algorithm always di�er.We prepared a list of aspects of implementation compara-bility. In the testing, we paid particular care to the pointsbelow:� The two programs have to start their iterations fromthe same Q.� Convergence of MAXDET depends on a parame-ter  [4]. We had to �nd the appropriate value of for excitation signal design.



� DF has an optimized Matlab implementation [5], whilethat of MAXDET is only a pilot version.� To the contrary, MAXDET has an optimized binaryexecutable (coded in C [4]), but DF does not.� The implementation of DF [5] has to be slightly mod-i�ed because it does not take into account the dualitygap in the stopping criterion. DF only exits if the max-imum number of iterations (a parameter to the pro-gram) has been exceeded.� The implementation of MAXDET [4] also has to bemodi�ed. Although it exits if the duality gap has be-come less than the absolute tolerance but it also exits ifthe \relative tolerance" has been reached or the \maxi-mum number of Newton iterations" has been exceeded(both are parameters to the program).� For the comparison, we needed to run the programs onthe same platform.� Other circumstances (eg. free memory, processortime etc.) also have to be the \same".In the following sections, the points above will be addressed.5.2. Input to the ImplementationsDF starts iterating from the vector (see section 4.1.)Qstart = h 1F ; : : : ; 1F i(PFk=1Qk = 1, since DF is not an interior point algorithm).MAXDET only works with a particular Q, if that satis�esthe constraints of (6) and g (Q) > 0 (ie. PFk=1Qk < 1,because MAXDET is an interior point algorithm). In otherwords, MAXDET cannot start from Qstart. We overcamethe problem by providing MAXDET 910Qstart. Conver-gence of MAXDET does not depend heavily on the start-ing Q.We run MAXDET with various values of the parameter. The range for  recommended in [4] was 10{1000. Wetested MAXDET for every problem and for every tolerancewith  values chosen evenly (with the di�erence of 50) fromthis range. MAXDET did not show dramatic di�erencesin behavior to this parameter. The greatest di�erence inruntime was less than twofold. The optimal value of  de-pended upon the tolerance. We concluded that  | at leastin excitation signal design | would not a�ect seriously theperformance.In its original form, MAXDET exits under 3 condi-tions [4], namely either� Absolute tolerance is reached� \Relative tolerance" is reached� Maximum number of Newton iterations is exceeded.We had developed a \shell procedure" for MAXDET. Thisprocedure runs MAXDET in a loop as long as it does notreach the absolute tolerance. If MAXDET exits under thesecond condition, the \shell procedure" decreases the valueof relative tolerance parameter for the next run. Similarly, ifthe third condition was true on exit, the maximum iterationnumber parameter is increased. Note: In each iteration

of the \shell procedure", MAXDET starts the iterationsfrom 910Qstart.The original implementation of DF exits if the maximumnumber of iterations has been exceeded. However, it calcu-lates but ignores the duality gap in each iteration. We hadcarried out a straightforward modi�cation of the implemen-tation to make it a \pure" primal-dual program.5.3. Platform and CompilationA PC (486 DX2 at 66MHz, 16Mb RAM) with Windows 3.1operating system was chosen as a platform. The most im-portant consideration of this selection was that this plat-form provided more control over program running thanother platforms, because� A process does not have to compete with other pro-cesses for the processor, since Windows 3.1 is a singleuser, single task environment.� There are no operating system \daemon" processes, orthey can be killed in advance. And in general, the usercan check and determine which processes are runningin a given time instance.� Matlab had been implemented under Windows.In this way, we could provide that both programs had thesame processor power as the other, and as themselves hadhad in the previous runs.We had compiled DF to C using the Matlab to C com-piler [6]. Before compilation, we had removed the conve-nience features (eg. graphical output, convergence statis-tics) and unnecessary calculations (eg. the calculation of thedeterminants and the Cram�er-Rao bound) from the Matlabcode. Also, preallocated matrix space and the so-called typeimputation [6] had been employed to further speed up theprogram. The binary executable had been produced usingthe Watcom C optimizing compiler.MAXDET had been e�ciently implemented in C [4]. Wehad compiled it to the binary format using the same com-piler with the same compiler options as for DF, providinga comparable setting for testing.The Matlab \shell procedure" that we had developed forMAXDET had been compiled in the same way as DF, andthen it had been linked with the MAXDET executable.5.4. Matlab versus Binary Executable Implemen-tationsWe had decided to compare both the Matlab and the bi-nary executable implementations. As it has been pointedout above, DF has not had a binary executable implemen-tation, and MAXDET has not had an optimized Matlabimplementation. Thus, we decided to declare the compari-son valid if the relative behavior of the Matlab implemen-tations and the binary executable implementations are sim-ilar. The Matlab implementations were tested on the PC.We also tested the Matlab �les on a Sun workstation tofurther improve the validity of comparison.Note: The term \binary executable" refers to the Mat-lab MEX �les. The reason behind choosing Matlab as theouter testing environment was that Matlab provided a con-sistent and platform independent interface over the actualhardware.
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Figure 1. Results of runtime analysis on a PC with a sam-ple system. Legend: solid line: MAXDET, dotted line: DF.
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Figure 2. Results of runtime analysis on a PC with a sam-ple system. Legend: solid line: MAXDET, dotted line: DF.6. COMPARISON OF THEIMPLEMENTATIONSWe have tested the two programs using various inputs.Runtime results of two experiments with the binary exe-cutable versions can be seen in �gures 1 and 2. The experi-ment results with the Matlab versions are in �gures 3 and 4.The system identi�ed can be found in [2], section 4.3.5,page 179.The frequency vector [!1; : : : ; !F ] = (2�) used for �g-ures 1 and 3 is [20Hz; 40Hz; 60Hz; : : : ; 1000 Hz] | ie.,the frequencies are uniformly distributed in a wide band.In �gures 2 and 4, the frequency grid of the spectrum has�ve narrow bands: 340{360 Hz, 390{410 Hz, 490{520 Hz,620{640 Hz, and 700{720 Hz. The di�erence between fre-quency points in each band is 2Hz. This distribution offrequency points results a more complex problem structure.Note: the �gures verify the fact that the Matlab imple-mentation of DF is highly optimized even in comparison tothe binary executable implementations. The Matlab ver-sion of DF exploits all the optimized features of the Mat-lab interpreter, so compilation does not results tremendouschanges in runtime.6.1. Discussion of the ResultsThe tolerance range used in the experiments was \typical"with respect to usual problems in practice.
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Figure 3. Results of runtime analysis with a sample sys-tem. The relative behavior of the two programs is similar tothat of �gure 1, although the curves cross elsewhere. Leg-end: solid line: MAXDET, dotted line: DF.
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Figure 4. Results of runtime analysis with a sample sys-tem. The relative behavior of the two programs is similar tothat of �gure 2, although the curves cross elsewhere. Leg-end: solid line: MAXDET, dotted line: DF.After various experiments, we found the relative behaviorof Matlab implementations of MAXDET and DF similar tothe relative behavior of the binary executable implementa-tions. Therefore, it is probable that the algorithms behavein a similar way relative to each other in any implementa-tion in the tolerance range inspected.Typically, the curve of DF crosses the curve of MAXDETand reveals an exponential behavior of DF to the toleranceparameter. In some runs, MAXDET runtime was negligiblecompared to that of DF (ie. DF was slower by orders ofmagnitude), especially when small but sensible tolerancehad to be achieved.On the contrary, runtime of MAXDET could have beenregarded as almost \constant", in a wide tolerance range.Both implementations turned out to be sensitive to theproblem structure. Again, MAXDET behaved relativelybetter.6.2. Conclusions for Excitation Signal DesignIt can be concluded from the experiments that MAXDET isgenerally faster, except for low tolerances and simple prob-lems.



However, for excitation signal design, very low tolerancesare satisfactory [2, 3]. At low tolerances, DF is considerably(up to orders of magnitude) faster than MAXDET. Thus,DF is still useful for engineering purposes.6.3. Future ResearchSome areas that have not yet been covered are the following:� Theoretical results on the convergence of DF.� MAXDET is a general program for determinant max-imization. A version that is speci�cally developed foroptimal excitation signal design may perform muchbetter.� From the �gures, it seems that MAXDET needs a lotof iterations to achieve a low tolerance, but with onlya few number of additional iterations a high tolerancerange is covered. DF needs much less time (and itera-tions) for low tolerances. The two algorithms might becombined in such a way, that the initial Q estimatesare conveyed by DF, then MAXDET re�nes the so-lution to a very high tolerance. The time needed forthis combined algorithm may be much less than thatof either one.Future research will also include other approaches to op-timal excitation signal design (eg. design of signals withprescribed crest factor [2, 3]).REFERENCES[1] Goodwin, G. and R. L. Payne, Dynamic System Iden-ti�cation: Experiment Design and Data Analysis. Aca-demic Press, New York, 1977.[2] Schoukens, J. and R. Pintelon, Identi�cation of LinearSystems: A Practical Guideline for Accurate Model-ing. Pergamon Press, Oxford, UK, 1991.[3] Schoukens, J., P. Guillaume and R. Pintelon, \Designof Broadband Excitation Signals," in: \PerturbationSignals for System Identi�cation," edited by K. God-frey. Prentice Hall, Englewood Cli�s, 1993.[4] Vandenberghe, L., S. Boyd and S-P. Wu, Determi-nant maximization with linear matrix inequality con-straints. Report, Information Systems Lab., StanfordUniversity, 1996.[5] Koll�ar, I., Frequency Domain System Identi�cationToolbox for Matlab. The MathWorks, Natick, MA,1994.[6] The Matlab Compiler User's Guide. The MathWorks,Natick, MA, 1995.


