268

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 3, MARCH 1988

A New CAD Method and Associated Architectures
for Linear Controllers

STEPHEN P. BOYD, MEMBER, 1EEE, VENKATARAMANAN BALAKRISHNAN, CRAIG H. BARRATT,
NASSER M. KHRAISHI, sTUDENT MEMBER, IEEE, XIAOMING LI, STUDENT MEMBER, IEEE,
DAVID G. MEYER, anp STEPHEN A. NORMAN

Abstract—A new CAD method and associated architectures are
proposed for linear controllers. The design method and architecture are
based on recent results which parameterize all controllers which stabilize a
given plant. With this architecture, the design of controllers is a convex
programming problem which can be solved numerically.

Constraints on the closed-loop system such as asymptotic tracking,
decoupling, limits on peak excursions of variables, step response, settling
time, and overshoot, as well as frequency domain inequalities are readily
incorporated in the design. The minimization objective is quite general,
with LQG, H., and new I, types as special cases.

The constraints and objective are specified in a control specification
language which is natural for the control engineer, referring directly to
step responses, noise powers, transfer functions, and so on. This control
specification language will be the input to a compiler which will translate
the specifications into a standard convex program in RZ, which is then
solved by some numerical convex program solver. A small but powerful
subset of the language has been specified and its associated compiler
implemented.

The architecture proposed simplifies not only design of the controller
but also its implementation. These controllers can be built right now from
off the shelf components or integrated using standard VLSI cells.

I. INTRODUCTION

VEN with great advances in control theory and enormous

advances in available computing power, the design of a linear
time-invariant (LTI) controller which stabilizes a given LTI plant
and meets some given engineering specifications can still be quite
a challenge. There are two basic schemes for LTI controller
design—one is based on parameter optimization, usually by
numerical methods, and the other is based on analytical methods
for determining a controller which is optimal in some well-defined
sense, say in terms of a quadratic cost function.

With only a few parameters and not very demanding specifica-
tions, a controller can often be designed by hand, using techniques
like root locus, loop shaping, and tuning (experienced guessing)
based on tuning rules or reasoning from Bode or Nyquist plots.
This is the case with many industrial single-loop PID controllers.
Because of the simplicity of these design problems, it is possible
to directly consider the specifications of interest, say, overshoot,
settling time, and actuator authority.

For more complicated multiinput multioutput (MIMO) sys-
tems, tuning by hand is not feasible, and it is natural to use a
computer to do the tuning or parameter optimization (see, e.g.,

Manuscript received January 12, 1987; revised August 24, 1987. Paper
recommended by Past Associate Editor, D. P. Looze. This work was
supported by the Office of Naval Research under NOO014-86-K-0112 and by
the National Science Foundation under Grant ECS-85-52465.

S. P. Boyd, V. Balakrishnan, C. H. Barratt, N. M. Khraishi, X. Li, and S.
A. Norman are with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305-4055.

D. G. Meyer is with the Robotics and Control Laboratory, University of
Virginia, Charlottesville, VA 22903.

IEEE Log Number 8718716.

[25], {31], [32], [27]). Despite the vast computing power now
available, parameter optimization techniques of controller design
have had certain basic problems. Given a plant and a controller
which depends on a (vector) parameter, just finding a parameter
value which results in a closed-loop stable system (or determining
that none exists) is in fact a very difficult problem about which
very little is known, and no practical algorithm exists which can
do this. There is no practical algorithm which will determine
whether no parameter value exists which results in a controller
which meets the given specifications.

A simplified, informal explanation of this is as follows.
Suppose the controller itself is affine in the parameters (this is
often the case). Then any closed-loop quantity, say, a transfer
function evaluated at a certain frequency, varies in a linear
fractional way with the controller parameter. This linear frac-
tional dependence, although simply described analytically, is quite
complicated. Nice convex constraints on closed-loop quantities do
not result in convex constraints in parameter space. Thus, the set
of parameter values which satisfy the specifications is generally
not convex, and in fact, it is often disconnected.

The second scheme is optimal controller design. The most
obvious example is linear quadratic Gaussian (LQG) based
controller design; more recently H-optimal controller design has
been developed. These schemes are based on an analytical method
for finding a controller which minimizes a simple objective
functional of the closed-loop system (we usually specify parame-
ters, €.g., weight matrices, in the objective criterion). The
advantage of such design schemes is that they always find
stabilizing controllers.

A great disadvantage is that the actual engineering specifica-
tions must be translated into a choice of the weight matrices
expected by the LQG design process. Various rules of thumb are
available (e.g., Bryson’s rule [5, p. 149]), and experienced LQG
designers have a good feel for the relation of the weight matrices
to control authority, peaking, and other properties of the closed-
loop system, not unlike experienced designers of PID controllers.

This gap between the actual engineering specifications and the
specification of the LQG weight matrices is large, and in practice
growing. While the objective function for an LQG design can be
given a physical interpretation in terms of rms response to
disturbances having a specific spectral density, it is rarely used in
this direct a way in practice. Instead, we find LQG used more as a
box-with-crank method' for finding a stabilizing controller
which sometimes has good properties: weight matrices are fed in,
and a controller comes out. Thus, with recent techniques like loop
transfer recovery (LTR), the actual physical interpretation of the
objective function has all but disappeared. In a sense, a technique
like LTR can be considered a sophisticated variant of a PID tuning
rule. The result is that the task of translating lower level
engineering specifications into LQG weight matrices is more an
art than a science.

Similar comments could be made about other optimal controller

! We quote G. Stein.

0018-9286/88/0300-0268$01.00 © 1988 IEEE

BOYD et al.: NEW CAD METHOD

design methods: these methods really only push the design
problem back one stage, from direct design of a controller to
design of weight matrices, or weighting transfer matrices in Ho.
controller design.

In this paper we describe a controller design method which has
some of the good properties of each of these two basic design
schemes. Like a very simple tuning method, our method will work
directly with the given engineering specifications with no need to
mold them into a single simple objective. Like the optimal
controller design methods, our method is effective, that is, always
finds a solution if one exists. Indeed, it answers the question of
whether there is a stabilizing controller satisfying the given
constraints.

The theoretical basis for the method we describe is the
parameterization of stabilizing controllers, or more importantly
the so-called Q-parameterization of the closed-loop input/output
(I/0) maps achievable with controllers which stabilize the system.
The usefulness of the Q-parameterization for controller design has
been noted by several authors, e.g., Desoer and Gustafson [9],
[10].

For single-input single-output (SISO) systems, a technique
which is equivalent to the Q-parameterization has been known and
used in controller design since 1958 {33, ch.-7]. The technique is
very simple—the closed-loop transfer function H = 1/(1 + PC)
is designed, subject to the requirement that it must vanish at every
unstable pole of the plant and equal one at every unstable zero of
the plant. These conditions guarantee that the controller C = (1
— H)/PH yields a closed-loop stable system.? This technique
was used in a very interesting series of papers written by Fegley
and his students starting in 1964 [16], [29], [17], [30], [8], and
[4], inspired by a paper by Zadeh and Whalen [39]. Some of these
papers, for example [29], propose a controller design method
which is not far from the method we describe here.

One aspect of our proposed design method which is entirely
new, as far as we know, is our proposal to use a compiler to
translate the actual engineering constraints into constraints on Q.
Of course, this entails the design of a formal language for
specifying control system constraints and objectives.

Another new aspect is the observation that controller model
reduction may not be necessary, if the controller is implemented
with a special architecture—feedback around a MIMO finite
impulse response (FIR) filter.

The structure of this paper is as follows: in Section Il we
describe the basic setup we consider; in Section III we discuss the
Q-parameterization and its interpretation in terms of observer-
based controllers. In Section IV we take a close look at many
typical specifications on closed-loop quantities and point out that
many result in convex constraints on the free (design) parameter
0. In Section V we consider the design of a control specification
language to express the actual engineering constraints, and the
design of a compiler to translate those constraints into constraints
on the design parameters. In Section VI we briefly discuss special
purpose architectures for directly implementing the controllers
designed by our method. In Section VII we describe the design
system we have already implemented, and briefly explain how we
implemented it. A future paper will cover the implementation in
detail.

A simple example, introduced in the next section, is used
throughout the paper. In Section VIII we show how our method
might be used to design a controller for this example.

II. Basic SETuP

The basic plant we consider is shown in Fig. 1. We decompose
its input into two signal vectors, w, the exogenous inputs, and u,
the control or actuator inputs. Its outputs we decompose into y,

2]t is not clear whether the users of this method understood that these
conditions are not only sufficient, but necessary as well. The method yields all
controllers which stabilize P.

269

Plant
w z

—

exogenous inputs regulated variables

—_—

u P y
measured variables

control inputs
(sensor outputs’

(actuator inputs)

Controller

-K

Fig. 1. Basic plant and controller.

d (disturbance torque)

7 (motor torque)

Shaft Encoder

(6"/)

Fig. 2. Example system.

the measured or sensor outputs, and z, the regulated variables.
Our job is to design a controller K, with input y only, and output
u: u = —Ky. (The negative sign reflects the tradition that
feedback should be negative; more importantly, it is the standard
use in the Q-parameterization formulas, e.g., in [36].) Similar
decompositions of the inputs acting on a plant and the outputs
coming from a plant can be found in the work of many authors,
for example, Nett [28].

The signal y represents the signal actually accessible to the
controller K, including any command inputs, which may be
considered exogenous inputs (i.e., components of w) passed
directly to some of components of y.? Similarly, the signal u
represents those inputs to the plant which our controller may vary,
that is, those inputs to the plant manipulable by the controller.
Thus, it is by definition that the controller has input y only and
output u only.

The exogenous input w will include real physical disturbances
or noises (torques, forces) acting on the plant, any actuator or
sensor noise, and, as mentioned above, any command inputs. w
may also contain fictitious inputs injected anywhere in the plant.

The signal z represents any system signal about which we will
express a specification, regardless of its accessibility to the
controller. Obvious examples are the actual positions, forces,
temperatures, etc., we wish to regulate or control. z may include
internal states or variables we wish to limit. Some components can
be fictitious, e.g., linear combinations of state variables or even
filtered versions of signals. z may also include components of % or

Thus, H,,, the multiinput multioutput closed-loop map from
the exogenous inputs w to the regulated variables z, contains, by
definition, every closed-loop map of interest.

To illustrate this decomposition of inputs and outputs, we
present a simple example. A motor with shaft encoder is used to
regulate the angle 6 of a pointer to some (small) commanded
angle, 6., while a disturbance torque, d, acts on the pointer; see
Figs. 2 and 3.

Let 8., denote the shaft encoder output, and let Z1.en; = 0 — b,

3 We may think of the exogenous inputs which represent commands as the
actual physical command inputs, e.g., angle of a potentiometer. The
corresponding components of y are thought of as the sensed command, €.g.,
voltage output from a potentiometer.

270
O,er
d Motor]
w Npens Pointer ']
oot Dynamics . v, } z
Ores
u Vl‘ﬂ. 0'9 } y

Controller

Fig. 3. Block diagram of example system.

the difference between the actual angle and the sensed angle, that
is, sensor quantization noise. Let 7, denote a fictitious actuator
noise signal; its use will become clear in the sequel. Exogenous
inputs are

Gref
d

Rens
Hact

There are two sensed outputs

_ -oref

y= ow] . @
Note that the command 6 is simply passed through P; thus the
block diagram of Fig. 3 could be drawn in a more conventional
way as a two degree of freedom SISO controller.

There is only one actuator input, the motor input voltage Vi,;
that is, u = V,,. A possible choice of regulated variables is

z=[£m] . €))

We will refer to this example throughout the sequel.

Returning to our general setup, we assume only that the I/0
map of the plant P is linear and time-invariant. For the moment,
we do not say whether the system is continuous or discrete time,
since much of the ensuing discussion is independent of this. In any
case, a real system is almost certainly hybrid with a continuous-
time physical plant and a discrete, possible multirate, controller.

We partition the map P as

P,, P,
P - w u
5 %]

so that

Of course, we have
H,,=P,,—P,K(I+ P,K)"- lew @)

where H, is the closed-loop map from the exogenous inputs w to
the regulated variables z.

Note that H,,, depends on the controller X in a linear fractional
fashion. A relatively simple constraint on H,,, e.g., that a certain
entry be zero, corresponds via (4) to a much more complicated
constraint on the controller K. We remark here that if P,, = 0,
then (4) simplifies considerably to

H,,=P,,—P,,KP,,.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 3, MARCH 1988

Here H,, is affine in K. Note that this corresponds to the case
where there is essentially no feedback (through K') in the system.

III. PARAMETERIZATION OF STABILIZING CONTROLLERS

In Section III-A we discuss the recent parameterization of all
stabilizing controllers; in Section ITII-B we apply this to our pointer
example system. Precise definitions and all details can be found in
Vidyasagar’s book [36].

A. Q-Parameterization: Theory

A basic requirement is that the controller stabilize the plant. A
recent advance in control theory is a fairly explicit description of
the set of H,,’s achievable with controllers which stabilize the
system [38], [11], [36].

This set is a linear variety, that is, a translation of a linear
subspace. A linear variety £ in a vector space V is often
described as the nullspace or range of an affine map from or to V.
Thus, we might have

L£={v € V|Av=b}

where A4 is a linear map from V to W, b € W, and ‘W is some
vector space. This is a description of £ in terms of a linear
equality constraint; if W is R*, then we can interpret each
component of A4v = b as a single linear functional equality
constraint in V. Let 3¢ = {H,,| system is closed-loop stable},
the set of achievable H,,’s. JC may be described via linear
equality constraints using the interpolation conditions (see, e.g.,
[18], [3]; early versions can be found in the references cited in
Section I).

Alternatively, we may describe a linear variety, £, as the range
of an affine map

L={Cu+dju € U}

where C is a linear map from some vector space U to Vand d €
V. Such a representation can be regarded as a free parametric
representation of £; u is a free parameter.

A free parametric representation of JC can be derived using
stable coprime fractional theory [36]. One standard form, used by
Doyle and colleagues at Cal Tech and Honeywell SRC, is the Q-
parameterization

3¢={T, + T,QT;| Q stable}

where T, T, and T; are some stable maps.
Note that the Q-parameterization

H,,=T+T,QT;)

has exactly the same form as the no-feedback formula mentioned
in Section II. We will soon see a block diagram interpretation of
the Q-parameterization in which the parameter Q sees no
feedback. In particular, H,, is affine in Q. We remark that Q is
called a parameter in the sense that (5) is a parameterization of
all closed-loop maps, and not in the sense of being an unspecified
real number such as the integrator gain in a PID controller.

The derivation of the Q-parameterization starts with any
controller, K., which stabilizes the plant and which we will call
the nominal controller. Let K., = Y 'X be a left stable
coprime factorization [36] of the nominal controller and P,, =
D~'N be a left stable coprime factorization of P,,. Then every
controller of the form

K=(Y-QN)~Y(X+QD), Q stable

BOYD et al.. NEW CAD METHOD

w z
P
u Y
— —y-1 X l—
v
Q
~ e -~
-K
L

P
u Y
modified
~Knom
v e
auxiliary input Q auxiliary output

Fig. 5. Q-parameterization as modification to nominal controller.

stabilizes P and conversely every controller which stabilizes P has
this form for some stable Q. There is a similar characterization of
the stabilizing controllers in terms of right coprime factorizations.

Since K,on stabilizes P,,, there is a right coprime factorization
P,, = ND ! with XN + YD = I, the identity map. A little
calculation yields the Q-parameterization formula, H,, = T; +
TzQT3 > with

T1=Pzw_quDXwa,
T2= _quDy

T3 = D~P ywe (6)

A simple block diagram of the Q-parameterization is shown in
Figs. 4 and 5.

T, is simply the H,, achieved with the nominal controller Kyom;
T, is the map from v to z, T; is the map from w to e (see Fig. 5).
The key to the parameterization is that the closed-loop map from v
to e is zero, so that Q sees no feedback.

Doyle [13] has given a very nice interpretation of the Q-
parameterization when the nominal controller is an estimated state
feedback. In this case e is simply the output prediction error § — y
of the observer, and v is just added before the observer tap to the
output of the nominal controller as shown in Fig. 6. The controller
shown in Fig. 6 is sometimes called an observer-based controller
(OBC); the point is that every controller which stabilizes P can be
realized as an observer-based controller.

Doyle’s interpretation can also be given to the general Q-
parameterization. In this case the ‘observer’ is reconstructing a
pseudostate associated with the plant factorization, and the

271

w z
P
u y
Observer

e c I3
—‘Kvwm

v Q e

auxiliary output prediction
error

input

Fig. 6. Doyle’s interpretation of Q—parameterization for estimated state
feedback nominal controller. Here F is a stabilizing state feedback gain and
y = Cx where x is the plant state.

auxiliary output e can be thought of as the pseudostate reconstruc-
tion error; similarly the auxiliary input v can be thought of as
simply added to the plant input, but before the ‘observer’ tap.
Thus, the Q-parameterization can be thought of as a generalized
OBC.

B. Q-Parameterization: Example

To demonstrate the results of this section, we will now find a Q-
parameterization for the pointer system of Section II. We first
describe its dynamics.

We assume that there is a point mass m at the end of the
pointer, connected to the motor shaft by a stiff, light rod of length
I. The shaft angle 8 is measured such that 6 is zero when the
pointer is standing straight up. The total torque on the shaft has
three terms—the motor torque 7, the disturbance torque d, and the
gravitational torque mg/ sin 8. We neglect friction. The (nonlin-
ear) equation of motion of the pointer is

mli?h = 7 + d + mglsin 6.

Since @ will be small, we will use instead the linearized dynamics
near the equilibrium point § = 6 = 0

mi* =7+ d + mglo

which gives a transfer function from 7 to § (or d to 6) of (mi*s? —
mgl)~1. To be concrete we set m = 2.67 kg, / = 0.613 m, and g
= 9.8 m/s?, so the transfer function above is (s2 — 16)~'. For
simplicity, we ignore motor dynamics and assume that 7 = Vj,,
that is, we model the motor as having a constant gain of 1 N —
m/V.

We discretize the plant at 40 Hz, assuming that the motor
torque 7 is held constant between samples (zero order hold). The
transfer function from the sequence of values of 7 at sampling
instants to the sequence of values of 6 at sampling instants is

0.0003128(z+1) 0.0003128(z+1)

722—2.0100z+1 (z—0.9048)(z—1.1052) ™

The effect of the disturbance torque on the pointer at sampling
instants will be modeled by a piecewise constant (zero order
holded) disturbance sequence. We will use the same symbol dto
denote this disturbance torque sequence, since we will not
mention the continuous-time disturbance torque in the sequel.
Thus, the transfer function from d to 8 is also given by (7).

We will take the definitions of u, y, w, and z given in Section I
(1)-(3). The plant is then

272

d Tsens
bres D + Vat e |9 +l 6
re. - 0.0003128|
0.84 9~ 720 -620:7! b R

Fig. 7. Nominal controller for pointer.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 3, MARCH 1988

IV. CLOSED-LOOP CONSTRAINTS AND OBJECTIVES

In this section and the next, we consider the problem of
designing the parameter Q, given the nominal maps 7, 7>, and
T;. We first observe that many typical requirements on the
closed-loop performance of our system result in convex con-
straints on H,,,, and thus on the parameter Q. By this we mean
precisely: if H,, is a closed-loop response which meets our per-

0.0003128(z+1) 0 0.0003128(z+ 1) 0.0003128(z+ 1)
z2-2.0100z+ 1 z2-2.0100z+1 z2-2.0100z+1 @)
|0 0 0 1 1 (V)
1 o 0 0 0 Ors)
0.0003128(z+ 1) 0.0003128(z+1) 0.0003128(z+ 1)
z2-2.0100z+1 z22-2.0100z+1 z2-2.0100z+1 (0)
(aref) (d) (”sens) (nac!) (Vm)

We have designed a very simple nominal controller, shown in
Fig. 7, which is essentially a discretized PD controller. With this
controller, the closed-loop transfer function from 6. to @ is

0.189222+0.0263z—0.1629
23 —1.78482z%2+1.0313z—-0.1939

_ 0.189222+0.0263z7—0.1629
(z—0.7908)(z - 0.5394)(z — 0.4545) *

The 0.84 scale factor in Fig. 7 yields a D.C. gain from 6, to 6 of
1, so this controller yields asymptotic tracking.
Using our notation we have nominal controller

Koom=1[—0.84(720 — 620z~ ') 720—620z'].
Since this is stable, we use Y = 1 and X = K, as a left coprime
factorization of K.

Left and right coprime factorizations of P,,

P,,=D-'N=ND-!

with
XN+YD=1I
are given by
[0
P,,=| 0.0003128(z+ 1)
22-2.0100z+1
[1 0 -1 0
= z—1.1052 0.0003128(z+ 1)
z—0.9048 (z—0.9048)2
[0
= 0.0003128z(z+ 1)
Lz3 —1.7848z2+1.0313z—0.1939

) 2(z*-2.0100z+1) . -1
z°—1.784822+1.0313z2-0.1939 ’

T,, T,, and T; can now be calculated from (6).

formance requirements, and H,, is any other closed-loop re-
sponse which meets our requirements, then the closed-loop
response (H,, + H,,)/2 meets our requirements. Stated briefly,
a specification on a control system is convex in H,,, if and only if
the average of two closed-loop responses meeting the specifi-
cations always meets the specifications. Thus, one of the key
results described in the previous section can be simply stated: the
requirement of closed-loop internal stability is a convex
constraint on H,.

Before proceeding, we note that requirements on the open-loop
system generally do not result in convex constraints on A, of Q.
One important example is the requirement that the controller K be
diagonal, that is, that K be a decentralized controller. Another
important example is the requirement that the controller be (open-
loop) stable.

Suppose our design problem is specified as

minimize ¢ (H,,)
Hp,€XNIK

where ® is a convex functional, X a convex (constraint) set, and
JC is the set of H,,’s achievable with stabilizing controllers. This
is equivalent to

miréig}cize (Q) 8)
where
X={Q|T\+T,QT; € X, Q stable}
and
(Q)=%(T, + T»QT>).

Note that & and & are convex. Of course & may be empty; this
simply means that no stabilizing controller can satisfy the
constraint H,,, € X.

We now list some typical constraints (and objectives) on F,,,,
some collection (sum) of which might describe the constraint set
X (objective functional). While reading through this list, the
reader should keep in mind the criterion, given in the first
paragraph of this section, for a constraint to be convex in H,,,.
When an objective is described, the reader should check that the
object value corresponding to the average of two closed-loop
responses is less than or equal to the average of the objective
values corresponding to the two closed-loop responses.

For purposes of discussion, we assume the system is discrete-
time. H will denote the transfer matrix of H,,, A its impulse
response matrix, and s(¢f) = Z!{_, h(/) its step response matrix.

BOYD e al.: NEW CAD METHOD

12 . . ‘ '
| \ ----------
-
g 08t : ‘
3)
12
g |
E 06+ .} _
g
% ot
02+
0 s ! . I
0 5 10 15 20 25 " P 0

t

Fig. 8. Step response overshoot, undershoot, and settling time constraints.
Step response with nominal controller is shown.

Of course, a convex constraint or functional of H, h, of s is a
convex constraint or functional of H,,,.

When possible, we will refer to our pointer system of the
previous sections. When referring to this system, we will use
symbolic subscripts written in square brackets, for the reader’s
convenience. Thus, we will write 2[01[0,;](?) instead of Ay, ().

e Asymptotic Tracking, Decoupling, and Regulation: The
step response from some command input to the regulated variable
it is supposed to control must converge to one, €.g.,

lim s[0Y[0ecl(t) = 1.
Equivalently,

H[0)[0ec)(e’%) = 1. ®

This constraint is a single linear functional equality constraint on
H, hence, of course, a convex constraint. Alternatively, if s and §
are two step responses converging to one, then their average (s +
§)/2 also converges to one.

Asymptotic tracking of ramps or more complicated inputs can
be handled as two or more linear functional equality constraints,
e.g., H[010r(e’®) = 1, H' [0][6rrl(e’®) = 0.

Asymptotic regulation and asymptotic decoupling are simi-
lar constraints. We may require that a regulated variable
asymptotically reject constant inputs appearing at certain exoge-
nous inputs. When the exogerious input is another command input,
this constraint is asymptotic decoupling; when the exogenous
input is some disturbance, this constraint is asymptotic regulation.
For example, to ensure that 6 asymptotically rejects any constant
disturbance torque, we might specify

H[8][d1(e/%)=0. (10)

e Overshoot, Undershoot, and Settling-Time Limits: We
may require that some step response lie between the dashed limits
shown in Fig. 8§,

0=<s[6][brl(1)=<1.1
|S[61[0es1(£) — 1] <0.8¢

0<t=<10,

£=10. (11
(The step response shown in Fig. 8 is that with the nominal
controller.)

A constraint such as (11) can be expressed as a collection of
linear functional inequalities on s (hence, H,,): L({) =
s[016.1(f) < U(t) for ¢ = 0, 1, ----. Thus, the set of H,,’s
satisfying this constraint is convex (it may of course be empty).

273

This can also be seen by noting that if two step responses lie
between given lower and upper limits, then so does their average.

e Bounds on Closed-Loop Signal Peaks: Given bounds W;
on each exogenous input, we may require that each regulated
variable be bounded by some given maximum Z;. This constraint
could arise from the requirement not to saturate an actuator or
sensor or exceed some internal variable force, torque, or current
limit. This constraint is equivalent to

Of

24 .
W, Y, b0 <2 fori=1, -, Neg
1 t=0

Nex

Mn

J

where N, is the number of exogenous inputs and N, the
number of regulated variables.
Thus, the constraint

0.1 S [A[Vll0re)(0)] +0.03 Y |A[VlId1(O)]

t=0 =0

+0.001 Y [ALVnllten] ()] <50 (12)

t=0

is necessary and sufficient to guarantee that whenever the
command input 8, is bounded by 0.1, the disturbance d by 0.03,
and the Sensor Noise M by 0.001, the motor voltage input V,,
will be bounded by 50.

Again, this is a convex constraint on A, and thus on H,,.

o Small rms Disturbance Response: If the exogenous input w
is driven by a wide-sense stationary stochastic process with some
specified spectral distribution, then Ez(?) TGTGz(t), where G is
some weighting matrix, should be as small as possible.

We have

Ez()TGTGz(t)
=L Tr G < 521 H(ejﬂ)Sw(ejn)H(e“m)TdQ> GT
27 0

where S,, is the power spectral density of the stochastic process
driving w. This objective is a nonnegative quadratic Sfunctional
of H, and thus of H,,, in particular it is convex; this is the form of
the objective in LQG problems.* In words, the total noise power
response of the average of two closed-loop responses is less than
the average of their respective noise power responses.

For our pointer example, a possible physically motivated S,
would be

0 0 0 07 (6o

s ei= |° Sie/ 0 0| @
¥ 0 0 AY12 0| (Mem)
6 0 0 0] (ma)

where S,(e’®) is the spectral density of the disturbance torque and
A is the step size of the shaft encoder. If we are interested in the
noise power in the pointer angle § then we let G = [1 0] and the
functional above is simply

By = [(| HOaYe D Sute)
T J0

+ | H[0l[Neens M/ 20%7/121 dQ - (13)

which can be interpreted as the total noise power in 6 due to the
disturbance and sensor noise. We remark that the second term

4 Here quadratic functional includes a linear functional and a constant
(functional) term.

274

IH[THETA][DIST] /dB

35

freq

Fig. 9. Disturbance rejection bandwidth constraint (dashed line). Response
shown is that of our pointer system with nominal controller.

above can be expressed

A2 2 5 A2 5
—zg B 10N s)(O)? =35 AL 3

It is rare for designers in practice to use an objective based solely
on actual noises and disturbances present; usually fictitious noises
are added to temper the design, improve robustness, and so on.

® Bounds on Transfer Function Peak Magnitudes: We may

specify an upper bound for some entry (or block of entries) of H,

e.g., |Hss(e/M| = U(Q) for all Q, where U(Q) is some bound
function. This important constraint may arise in several ways,
which we discuss in the next few entries.

First, many classical specifications of bandwidth or peaking are
expressed this way. Referring to our pointer system, we might

specify

| H[0][d)(e/®)| <0.01 for |0} <Qp (14)
so that for frequencies below 25, the disturbance torque to shaft
angle transfer function is at most —40 dB. This constraint is
shown in Fig. 9 with Q5 = 0.35, along with the | H[0][d](e’®) |
achieved with the nominal controller. This is a convex constraint
on H,,, since if H and H both satisfy (14), then so does (H +
H)/2.

® H, (Minimax Transfer Function) Objective: The modern
version of the previous classical constraint is the topic of H.,
control theory. If we require a small rms response of some
regulated variable, as above, but know only a bound on the total
power in the process driving the exogenous input w, and not its
specific spectral distribution, then we are led to a transfer function
peak magnitude (singular value) constraint

1 H o = sUp omax (H (/M) <M (15)

where M is the ratio of maximum allowable rms response (Z) to
maximum rms level of disturbance (w).

® Classical Single-Loop Gain/Phase Margin (M-Circle)
Constraints: Suppose we break a single loop in our control
system, as shown in Fig. 10(a) and (b), and require that the
Nyquist plot of the transfer function from point A4 to point B
maintain a distance at least M (the M-circle radius) from the point
+ 1. Usually the loop is broken at a summing junction where a
sign change occurs. This produces the usual requirement that the
Nyquist plot maintain a distance at least M from the point — 1, as
shown in Fig. 11. This specification concerns open-loop maps,

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 3, MARCH 1988

LOOP_INI LOOP.OUT
(c)

Fig. 10. (a) Some signal path in control system. (b) Signal path broken;
margin of loop gain from A to B is to be constrained. (c) Fictitious input
and output are added to original system to allow convex constraint on
margin of loop gain from A4 to B.

loop gain
margin constraint

Imaginary part of loop gain

B I B
2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Real part of loop gain

Fig. 11. Nyquist diagram is required to maintain a distance at least M for
the point — 1; shown is Nyquist diagram of loop gain for pointer system
with nominal controller with M = 0.7. Note that the nominal controller
does not quite meet this constraint.

and hence, one might guess, would not result in convex
constraints on H,. But in fact, this constraint can be recast as a
maximum peaking constraint on a certain closed-loop map, as
follows. A fictitious input LOOP_IN and a fictitious output
LOOP__OUT are added to the original system, as shown in Fig.
10(c). Then the M-circle constraint described above is entirely
equivalent to

| H[LOOP_OUT][LOOP_IN]|| o < M~!

which is a constraint already discussed above. For our pointer
example, to guarantee an M-circle radius of 0.7 we would use the
constraint
| HIVnllnadl <0771 16)
This would guarantee a phase margin exceeding about 41 degrees
and gain margins exceeding about + 10.4, —4.6 dB (see Fig. 11).
® Small Gain (Sufficient) Condition for Robustness: The
modern version of the previous constraint is considered in
robustness theory. Briefly, a sufficient condition to stabilize not
just the plant, but all plants near our given plant (in a peak
frequency response deviation sense), may be formulated as a
bound on certain closed-loop frequency response magnitudes (or
singular values) [15], [6]; indeed in [7] a sufficient condition for

BOYD et al.: NEW CAD METHOD

robust disturbance rejection is given which is a bound on certain
closed-loop frequency response magnitudes. These constraints
have the form (15), and are convex constraints on H,,.

Doyle [12] has demonstrated that these sufficient conditions for
robustness of a control system can be quite conservative. His
work has shown that a combination of good scaling along with the
use of the constraints described above can greatly reduce their
conservativeness. For a fixed choice of scaling D(e/%), we have
the convex constraint

Oua (D(e/M H(e/®)D(e/®)~1)<M for all Q, an
and the point is that, depending on D, (17) may be a far less
conservative condition for robustness than (15). Unfortunately, if
we seek the least conservative choice of D, say with the constraint

min o, (DEDHH@EY)DEY ")<M forall @
appropriate D
we no longer have a convex constraint on H,,. See, for example,
Safonov [34].

o Miscellaneous Bounds and Objectives: We mention here
some less common constraints. A slew-rate constraint on the step
response, say S;;, may be enforced as

|h11(t)|SR for all £.

A passivity or minimum dissipation constraint, say on the 1, 1
entry of H,,, can be formulated as
®RH,(e/NY=-D for all Q.

Such a constraint can be used, for example, to guarantee stability
of the system with a saturating actuator. All constraints involving
step responses can be generalized to other, arbitrary, input
signals, or even sets of signals. Thus, we may specify a maximum
peak tracking error for command inputs bounded by B.q and slew

rate under R 4.

The boundary between constraint and objective is not sharp; we
could, for example, try to minimize an overshoot in a certain step
response, or put hard constraints on the rms response.

At this point it should be clear that a large number of practical
constraints on, and objectives for, closed-loop system perform-
ance can be formulated as a standard convex program for the
parameter Q. This program for Q is infinite dimensional and
generally cannot be solved analytically except in special cases.
The small rms disturbance response objective alone can be solved
using Hiener-Hopf or LQG methods; certain forms of the small
peak transfer function objective problem are solved by He-
optimal control theory; certain forms of the small peak distur-
bance objective problem are solved by the new /-optimal control
theory introduced by Vidyasagar [37] and developed by Dahleh
and Pearson [14]. None of these methods allows any inequality or
time domain constraints.

We propose that this convex program be solved numerically.
There has been some work on the numerical solution of infinite-
dimensional convex programs [2]. Let us briefly describe a very
naive method, in fact the one we have implemented. An
approximate solution of the infinite-dimensional convex program
for Q can be found numerically when the parameter Q is restricted
to a large, but finite, dimensional space. Let

0= %0

i=1

where x; € R and Q; are fixed stable maps. For example, if Q) is
SISO, we could take gq;(f) = &, where g; denotes the impulse
response of Q;, so that Q is a FIR filter with coefficients (tap
weights) x;. We will call x = [x, ---, x.]7 the decision
variables. With this additional restriction, we have a standard

275

finite-dimensional convex program in R*

(18)

minimize f(x)
where f(x) = #(CL, x,0) and X = {x € R*|ZL, %0 €

In our implementation we make use of one more naive
approximation. Often the convex constraint set J involves semi-
infinite constraints, for example, one frequency response con-
straint for each point on the unit circle in a peak transfer function
constraint. We simply approximate these semi-infinite constraints
by discretization, replacing a peak transfer function constraint by
a very large number of single frequency constraints equally spaced
on the unit circle. No doubt great improvements in performance
would result from the use of sophisticated methods for semi-
infinite constraints such as those described in Polak ef al. [31].

We will demonstrate with a simple example how a control
constraint is transformed into a convex constraint on the decision
variables x; in (18). For simplicity, we assume the system is
discrete time and each of z, w, u, and y is scalar. Suppose the
decision variables x; are simply the impulse response of the Q
filter, that is,

0=1" 7
= 0, t=L

where g is the impulse response of the Q filter. Let 4, #, and #3
denote the impulse responses of Ty, T, and T3, and let hand s
denote the impulse and step response, respectively, of H,. Of
course, T}, T, and T are causal, so if k is negative, £;(k) is zero.
Suppose the specified constraint is on the step response:

ass(i)<B, i=0. 19)

We will show that (19) is equivalent to a linear inequality
constraint on x

y=cTx<é (20)

for appropriate v, 8 € R, ¢ € RL. Since H,,, = T, + T2QT;,
we have

L-1

r()=t;()+) <E xjts(k—j)> L(i—k)
k=0

j=0
so that

i i L-1
s(i)=2; (tl(i)+2 D x,-t;(k—j)tz(i—k)>

i=0 k=0 j=0
and (19) is equivalent to

L-1

io ig io
a3 u=Y x (2 > ta(k—j)tz(i—k)> =B-3 n()
i=0 k=0

i=0 i=0 i=0

which is (20) where

iy
y=a-Y; t(i)
i=0
io
6=8-3, ti(i)
i=0
and
o i
=3 3 tlk=j)ti=k),

i=0 k=0

j=0’ 1, e

276

Control
specifications

|

|

|

|

|

|

|

| Specification to
| convex program
|

|

|

|

|

|

|

|

compiler

convex .
additional
program information
(table of constraints, etc.)
Convex program
solver
-~
-~
-
—
Solution z* additional
information
| | (feasibility,)
Lagrange multipliers, etc.
L -

Fig. 12. Overall structure of design procedure.

Note that to evaluate v, §, and ¢, the impulse responses of T; are
required up to time J.

When there are several actuators and sensors, there are two
additional summing loops involved in the translation, complicat-
ing the formulas above even more. Thus, while the translation
from closed-loop constraints or objective on H,, to convex
program for the parameter Q is mathematically straightforward,
the very simple example just given illustrates that the translation is
quite cumbersome.

V. SPECIFICATIONS TO CONVEX PROGRAM COMPILER

We turn now to the practical problem of translating a large
number of constraints on step responses, transfer functions, rms
responses, and so on, along with a large number of objective
terms, into the corresponding convex program for the decision
variables.

HI[THETA]IDISTI(1) = =0;

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 3, MARCH 1988

mate bandwidth; this could be done using LQG or any other
method. Coprime factorizations of K, and P,, are formed; this
step can also be done using LQG methods, that is, by solving a
few Riccati equations [36]. T}, T3, and T; are determined from
the coprime factorizations, and a set of Q,’s is selected.

The list of control specifications (in the CSL) along with Ty, 7>,
T;, Q, * -, Q. form the input to the compiler. From these it
produces a convex program in R%; it might also produce an
auxiliary table relating the control specifications to the constraints
in the convex program.

A convex program solver attempts to solve the convex
program, perhaps using a previously designed Q as the starting
condition. If successful, the solver finds a solution x*; one useful
additional output is a list of the Lagrange multipliers. Together
with the auxiliary table generated by the compiler, we can find the
sensitivities of the optimum objective with respect to each active
constraint; based on this, the specifications might by tightened and
some portion of the process repeated (see the dashed line).

If the solver finds the problem to be infeasible, it will produce
x* which minimizes some combination of the objective and a
penalty function or some sum-of-infeasibilities if it is a Phase 1/
Phase II type algorithm. In this case the Lagrange multipliers are
extremely useful since they tend to identify the offending
constraints. After relaxing the specifications (dashed arrow
terminating at control specifications) or changing the plant
hardware (dashed arrow terminating at plant) the process is
repeated.

We now discuss possible forms for a CSL. The discussion in
Section IV suggests the overall structure

minimize {
description of objective;

subject _to {
first constraint;

last constraint;

}

The constraints might have the forms encountered in Section IV
such as given in the equations and inequalities (9)-(12), (14). To
express, say, (10) and (12), we might use

sum from t > = 0 (0.01*|h[V_MOTORI[CMDI(t)|
+0.03*|h[V_MOTORI][DISTI](t) |

+0.001*|h[V _MOTORI[SENS _NOISE](t}}) < =

Similarly the objective (13) might be described as

1/(2*P)* int fromw = O to 2*PI

(|HITHETA)[DISTI(w)|

50;

2 *DIST__SPEC _DENS(w))

+DELTA "2 /12 * norm_h_sqr[THETA][SENS _NOISE];

We propose that this job be mechanized by the use of a
compiler which accepts as input a list of closed-loop constraints
and a description of the objective and as output produces the
convex program for the decision variables. The constraints and
objective would be specified in a control specification language
(CSL), which would be natural for the control engineer, referring
directly to step responses, noise powers, transfer functions, and so
on. The output of the compiler would be a convex program which
could be solved by a convex program solver such as NPSOL [20].

Fig. 12 is a flowchart of the whole design procedure. The
engineer starts with a model of the plant and a set of control
specifications given in the CSL. An estimate of the approximate
bandwidth achievable with these constraints is formed, perhaps
based on earlier design cycles (see the dashed arrow in Fig. 12). A
nominal controller K, is designed which achieves this approxi-

Here we presume that the expressions DELTA, PI, and DIST _
SPEC _DENS(w) have been previously defined.

The compiler we have implemented accepts a CSL of this basic
form, although not of this generality; see Section VII. There are
of course other forms a CSL might have. It is possible to have
even lower level specifications than those mentioned above. To
formulate specifications which ensure that

whenever {for all 7 |d(?)| < Dpax}
we have {for all ¢ |0(f)| <6pu};
we must specify the constraint

Drax 3, | RIONANO)| < Ormas

t=0

BOYD et al..: NEW CAD METHOD

similarly to ensure that

whenever {7, is white with power A2/12}

we have {E£02<0.03};
we must specify the constraint

L il 22003
27 sz T
If we refer to these syntactic constructions of the form

whenever {conditions on w}
we have {constraints on z};

as behaviors, then a control design problem could be specified as
a set of desired closed-loop behaviors. Such a specification is
even closer to the actual engineering problem than the language
we discussed above; the disadvantage is that translating a set of
desired behaviors into a convex program involves far more
computation.

Generally, the use of a compiler to automate the controller
design process allows the use of a specification of the design
problem which is much closer to the actual engineering problem
than is, say, a specification of a set of weight matrices for an LQG
design. This may reduce the artistry required in controller design,
or at the least, make more effective use of the artist’s time.

VI. ON IMPLEMENTATION OF THE DESIGNED CONTROLLER

Let O* = XL x*Q; be a satisfactory Q for the control

problem. The resulltin'g controller

K*=(Y—-Q*N)"'(X+Q*D) @1
will generally be full (each input will affect every output) and
have a large number of states. If the nominal controller is an
estimated state feedback and the coprime factorization is that
shown in Fig. 6, then the order of K* will (generally) be the order
of the plant plus the order of the entire Q-filter. At this point there
are several alternatives.

1) Do not implement K* at all; K* is really only a benchmark
against which to measure the performance of other (presumably
much less complex) controllers.

2) Apply some sort of model reduction to arrive at a low-order
controller, K4, and then implement K4 in some standard way.

3) Implement the full K* using a special purpose architecture.

We will discuss each of these alternatives in turn.

Alternative 1), while obvious, is a perfectly valid use of the
design method proposed in this paper. The procedure finds the
limit of achievable performance, defined in terms of the control
specification, without regard for controller structure or complex-
ity.

Alternative 2) is perhaps the most conventional route. Control-
ler order reduction is by no means a straightforward task, indeed
it is usually not even clear what criterion should be used to judge
the quality or acceptability of a reduced-order controller [1]. In
the context of a controller designed by the method proposed in this
paper, however, there is a very natural criterion by which to judge
the quality and acceptability of a proposed reduced-order control-
ler: K.q is acceptable if and only if it stabilizes the plant and the
resulting closed-loop system meets the constraints specified in the
control specification; the quality of (an acceptable) K., is then
given by the relative increase in the objective specified in the
CSL. Thus, the performance of a reduced-order controller is
Jjudged precisely in terms of the control specifications already
used to design the controller.

We mention one ramification of the above principle. When
designing a controller by the methods of this paper, it is tempting
to crank down the constraints until they are very tight, just barely

277

feasible. This makes the task of finding an acceptable reduced-
order controller (in the sense defined above) extremely difficult, if
not impossible. Thus, in the original design phase it is best to
leave some room in the constraints, to be taken up in the model
reduction phase.

We turn now to alternative 3), the least conventional alterna-
tive. We propose two methods for implementing the full K*, both
based on the Q-parameterization. Both methods rely on the
availability and ease of VLSI implementation of many-tap FIR
filters, used extensively in signal processing, for example, in
equalizers for modems. Thus, controllers implemented in this way
will tend to have far greater orders than is currently common.

A. Modified Nominal Controller Architecture

Consider the block diagram of the Q-parameterization given in
Fig. 5. We propose that controllers actually be built with the
architecture shown in Fig. 5, with Q realized (possibly)
separately in hardware as an FIR filter. This architecture can be
thought of as a simple modification of the nominal controller; the
nominal controller must be modified to yield an auxiliary output
signal e and accept an auxiliary input signal v. In some
controllers, the signal e is easily available, even though Fig. 4
suggests that we need an additional N and D. Similarly, injecting
the signal v as shown in Fig. 4 is often straightforward.

If the nominal controller is an estimated state feedback, then as
mentioned earlier, one choice for e is the output prediction error
of the observer, and v can just be added to the output of the
nominal controller, before the observer tap, as shown in Fig. 6. In
this case the hardware and/or computational costs of modifying
the nominal controller are slight, since the Q filter does all of the
additional processing.

We note that this method can be used to improve existing
controllers.

B. FIR Coprime Architecture

Generally, the nominal controllers which provide easy access to
the auxiliary output e are those with complexity on the order of the
plant, the estimated state feedback nominal controller a good
example. The reason is, roughly speaking, that e is the pseudo-
state observer error, which means that the modified nominal
controller really contains a pseudostate observer within it, which
is likely to have the same complexity as the plant. This is
admittedly vague, and is only offered as our interpretation.

In nominal controllers of much lower complexity than the plant,
e.g., a diagonal PI controller, e is usually not easily accessible,
and must be reconstructed. In this case, we propose that the entire
controller be implemented using FIR filters.

Consider the coprime factorization of the controller K* given in
(21). Suppose Y, Q*, N, X, and D are all FIR, or very nearly
approximated by FIR filters. Recall that unlike the plant or
controller, these operators are stable, and hence their impulse
matrices decay to zero. With proper choice of sample rate and
parameterization, 50-tap FIR filters should be more than ade-
quate. In this case, K* can be realized as a feedback connection
around one FIR filter, as we now show. K* is governed by the
equations

— Yu—Xy=v=—QNu+QDy
(see Fig. 4). We rewrite these equations as
u=(I-Yyu—Xy—v
v=—QONu+QDy

which we interpret as an FIR filter, F, with input «, y, and v, and
output % and v, and

I-Y -X -1
F=[—Q1\7 0D 0]'

278

u 1 u
F — Y
— FIR filter —
v v
Fig. 13. FIR coprime architecture for controllers.

This is shown in Fig. 13. Of course there are many other F’s
which realize K*, and we do not yet know a good procedure for
picking one; this is an area for research.

A common criticism of the two architectures proposed above is
that they will be too ‘sensitive.” The argument is that an FIR filter is
really a companion form (e.g., controllable canonical), and
companion forms are notoriously ‘numerically ill conditioned.” Let
us respond to this criticism for the first architecture. What we will
show is that the pole locations of the closed-loop system are
indeed extremely sensitive, but nevertheless the closed-loop
behavior of the system is not particularly sensitive.

With the architecture of Section VI-A, the Q filter will see no
feedback. But with a practical observer, not quite matched to the
actual plant, the closed-loop map from v to e will not be zero, but
it will be small. By a small gain argument, suitably restricting the
size of Q will guarantee stability of the closed-loop system with
the mismatch between the plant and observer. Moreover, it is not
hard to bound the variation in H,,, induced by variations in Q and
small but nonzero closed-loop map from v to e induced by
mismatch in the coprime factorizations. To be more explicit, let
T s denote the (small) nonzero closed-loop transfer function from
v to e in a practical implementation, and let §Q denote the
perturbation in the Q filter, for example, that due to coefficient
roundoff in a fixed point implementation. In this analysis we will
ignore the perturbations in 7,, 75, and T5; it is an exercise to
include these variations as well. In the following | - || will denote
any operator norm. A small gain condition for stability is

I sl Q1+ 6@ 1D < 1;

assuming this to be satisfied, it can be shown that

H,

Zw,actual ”

= To(Q+ Q) - Tnis(Q +6Q)) ' Ty - TLQTs|

LN TSI + 1l Twss I Q1 + 1521))
L= TaisllI Q11+ 16Q1D '

“ sz,desired -

u_stepl[il[jI(#), i=1,---,n_reg, j=1,
h[/1@), i=1, -+, n_reg, j=1,
aliL1@), i=1, ---,n_act, j=1,
Re _H[i(jKr, 6), i=1,---,n_reg, j=1,
Im_H[L1(r, 8), i=1, -+, n_regq, j=1,

Thus, small T, and small 6Q guarantee not only closed-loop
stability, but also small variation in closed-loop response, and
that, almost by definition, is what we are interested in.

A very interesting observation is that while the closed-loop map
varies only slightly with perturbations in Q and mismatch in the
coprime factorizations, the closed-loop poles can and do vary
wildly. A simplified example will demonstrate this. Let us
consider the effect of wrapping a small constant feedback of 10-#
around a 100 tap SISO FIR filter whose coefficients are on the
order of one. An argument as above shows that the perturbation in
the I/O map of the filter is quite small, on the order of at most one
part in 10%. Thus, the I/O map hardly changes. On the other hand,
let us now consider the effect of this small perturbation on the
poles. With no perturbation they are all at zero; for an extremely

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 3, MARCH 1988

small perturbation e the poles move away from the origin on 100
3.6 degree spaced rays, at the incredible rate of €'1%. In
particular, the poles for our 108 perturbation could be anywhere
inside the unit disk. We remind the reader that the 1/0 map of the
filter has remained essentially unchanged.

The point is that for large-order systems, pole location may not
be particularly meaningful, as in the example just presented. Even
extreme pole sensitivity is possible in a functioning, well-designed
robust engineering system. These points have broader implica-
tions, for example, for the eigenvalue assignment problem for
large scale systems, and are not widely appreciated in the control
community.

VII. IMPLEMENTATION OF A SUBSET

We have implemented a compiler qdes which accepts a small
but powerful subset of control specification language. The
subset was carefully selected for ease of implementation and to
allow interesting control design problems to be specified. In order
to directly use the quadratic programming code LSSOL [19], we
designed the subset so that our compiler output is a standard
quadratic program which closely approximates the convex pro-
gram for the decision variables. We are currently implementing a
much more general compiler.

The system must be (single-rate) discrete-time. We restrict Q to
be an n_sens input, n_act output FIR filter of length (in each
channel) n__tap. Thus, the decision variables are

qlillj1@), i=1, -+, n_act,
Jj=1,---,n_sens, t=0, ---,n_tap—1.

All calculations in qdes are based on the assumption that the T;
have impulse response matrices which are zero for t = n_
sample.

A control specification consists of up to three sections:
declarations, constraints (or subject __to), and objective (or
minimize). In the declarations section the parameters n_exog,
n_reg, n__act, n_sens, n_tap, n_sample are specified, as
well as the impulse matrices T}, T, and T3, and optionally an
initial value for Q. More precisely, the first n__sample samples
of these impulse matrices are specified. The (optional) con-
straints section consists of a list of constraints, and in the
(optional) objective section the objective is specified as a sum of
objective terms.

Let us first describe the constraints recognized in the con-
straints section. A constraint is simply a functional inequality,
that is, an inequality involving some functional of the decision
variables. Our compiler recognizes five basic affine functionals of
the decision variables

<++, n_exog, =0, ---, n_sample—1,
c+s,n_exog, t=0, ---, n_sample—1,
-+-,n_sens, t=0, +--, n_tap—1,
cre,n_exog, r,0 € R

ses,n_exog, r, 0 € R.

The expressions on the left are, respectively, the step and impulse
responses from exogenous input j to regulated output / at time ¢
[that is, s;;(#) and A;(#)], the impulse response of Q from its jth
input to /th input at time ¢, and the real and imaginary part of the
transfer function from exogenous input j to regulated output 7 at
frequency z = re/’(R H(re/’) and 3Hj(re’%)).

Affine functional inequalities are allowed to take the forms

f=e

f=ze

f=e
e<f<e;

lfl=e

BOYD et al.: NEW CAD METHOD

where f is one of the functionals above and e represents any scalar
expression. Real scalar variables and scalar expressions involving
standard mathematical functions are allowed.

Since we require our compiler output to be a standard quadratic
program, which allows only linear (affine) constraints, we cannot
directly handle inequality constraints involving the nonaffine
functional | H;(re/®)|, such as | H;(re/?)| < e, where e is some
scalar expression. Instead, our compiler accepts inequalities of the
form

mag _H[/[JI(r, 9)<e

but approximates them by

|Re _HUILF1(r, 6)| <eVcos /8;
Jlm _H{iJ)(r, 8)| <eVcos 7/8;

|Re _HILj1(r, 0) +Im_H[[1(r, 0)| <e ‘% cos ©/8;
IRe _HLL/ 17, 0)—Im _HIAL1(r, 0)] <e f% cos /8

—at the expense of at most a +0.34 dB error. It could of course
be modified to approximate the complex magnitude constraint as
more (than four) affine constraints on the real and imaginary
parts, yielding less error.

Several more complicated nonlinear convex functionals are
recognized, among them

max _mag _H[i1Ljl, i=1, --+,n_reg, j=1, -+, n_exog,
overshoot[i]{/], i=1, -, n_reg, j=1, -++, n_exog,
undershoot[i][j], i=1,---,n_reg, j=1, -*-, n_exog

which are, respectively, approximations to the maximum magni-
tude of the transfer function, maximum of the step response minus
one, and minus the minimum of the step response, all from
exogenous input j to regulated output /. The maximum magnitude
is approximated by the maximum of the magnitude approxima-
tions described above at, typically, 2048 points on the unit disk.
The overshoot and undershoot are approximated by substituting
the maximum (minimum) of the step response up to time n__
sample (as opposed to the maximum or minimum over all time).

We turn now to the objective section. The objective is a
convex functional of the decision variables, which is described as

ql11 (1] (O)

gin_act] [n_sens] (n_tap—1}
u_step[THETA] [CMD] (0)

final objective value = 0.0032.

the sum of any number of terms of the form ex convex
functional, where the optional nonnegative scalar expression e
allows weighting. Convex functional includes any of the
functionals described above, such as max_mag_H, over-
shoot, or u_step, and in addition the following quadratic
functionals:

h_sarli]0j 1),

mag _H _sar[i][j1(r, 6),
q—sarli}l; 1),

norm _h _saqr[ill/j],
norm_q_saqr[i][j].

These are, respectively, h;(1)?, |H(re?)|?, qli1Lj1(t)%, S0-5mPe-!
hi ()%, and Z7-=~1 g;(t)?, respectively.

279

Having described some of the functionals recognized, we turn
now to some of the more general features. The standard C
language preprocessor, cpp [24], [23] is used, which allows the
use of macros and file include facilities, as well as C language
style comments. The #define feature allows specification files to
use the symbolic subscripts introduced in Section IV by placing

/* exogenous inputs */

#define CMD 1 /* command input */
#define DIST 2 /* disturbance torque */
#define SENS _NOISE 3 /* sensor noise */

#define LOOP _IN 4 /* for margin constraint */

/* regulated variables */
#define THETA 1 /* actual shaft angle */
#define MOTOR_V 2 /* motor voltage */
#define LOOP _OUT 2 /* for margin constraint */

near the top of the file. Thereafter, h([THETAI[CMDI(t) refers to
hu(?), since cpp will convert h[THETAI[CMDI(t) to h[1][11(1).

Another more traditional use of the #define feature is to collect
important constants or functions (which might change with new
hardware or specification) in one place, e.g.,

#define DIST_REJ_BW 0.35
/* dist. rejection bandwidth */
#define MARGIN 0.7 /* M-circle radius */.

To make repetitive constraints and objective terms easy to
specify, (nested) looping is allowed, as in

for t=10 to n__sample — 1 R
1 — 0.80"t< =u_step[THETA] [CMD] {t)< =1 + 0.80t;

A fairly complete specification file for our pointer system is
given in the next section.

If qdes succeeds in its compilation, it invokes the quadratic
programming code LSSOL; the final output starts with a listing of
the form

functional value lower bd. upper bd. Lag. mult. status

where status is either blank or one of Ib (lower bound), ub (upper
bound), violates ub, or violates Ib. The first functionals listed
are simply the decision variables; then come all functionals cited
in the constraints section; finally the objective value is listed.
Thus, output has the form

0.12 -.90 0.90 0.00

0.90 -.90 0.90 -.23 ub
0.00 0.00 1.10 0.00 Ib

qdes was implemented using the UNIX utilities lex and yacc
[261, [22], [35]. [23], a lexical analyzer generator and compiler
compiler, respectively. yacc allows the user to describe a set of
parsing rules along with code to execute (called actions) when an
instance of a parsing rule is recognized. Our source code is in
spirit quite like Section IV; yacc generated code recognizes the
various constraints or objective terms, and then actions written in
C perform the actual translation from control constraint to
quadratic program constraint, as we did for the step response
example at the end of Section IV.

VIII. EXAMPLE

In this section we show how gdes might be used to design a
controller for our pointer example. For purposes of presentation,

280

we have limited the number of constraints and used a very simple
objective. This example is presented only to illustrate how a
program like qdes might be used, and is not presented as a
particularly realistic or good controller design; indeed one of our
points is that a real specification should be quite detailed.

In Section III we gave the various coprime factorizations
required to compute 7y, 7>, and T; for our pointer with its
nominal controller. These impulse matrices are specified in the
declarations section. Recall that the nominal controller yielded
asymptotic tracking, but not asymptotic disturbance rejection
from the disturbance torque (see Figs. 8 and 9).

Our constraints are just equations (9)-(11), (14), (16) of
Section IV. Thus, we will require asymptotic tracking from 0,
(defined as CMD) to 6 (THETA); the nominal controller meets
this requirement. The step response from CMD to THETA will be
constrained as shown in Fig. 8; note that the step response of the
nominal design overshoots these constraints. We will require
asymptotic rejection of constant disturbance torques in 6; our
nominal design provides only 38 dB of asymptotic (DC) rejection
(see Fig. 9). Of course, we could have designed a nominal
controller which met this constraint, by augmenting our plant with
an integrator, but we will see that gdes will automatically ‘insert’
an integrator, that is, a pole at 1 in the controller, to meet this
constraint. To give an example of an H,, type constraint, we will
insist on at least 40 dB of disturbance rejection from DIST to
THETA for frequencies below 0.35 (14); this constraint too is
violated by our nominal design (Fig. 9). Finally, we will require
the controller to have M-circle margin at least 0.7 as shown in
Fig. 11. The nominal controller violates this constraint as well.

We will take the objective to be the very simple (LQG)
objective

| H101[5ens] (|3 + 100]| H0]1d1]| 2+ 0.0001 || H[V1 (Beecl | 2.

The two groups of #defines of Section VII appear at the top of
our specifications file. The constraints and objective sections
are:

minimize {
/* a simple LQG type objective */
norm_h _sqriTHETAI[SENS _NOISE];
100*norm _h_sqr[THETAI][DISTI;
.0001*norm _h _sqr[MOTOR _V][CMDJ;

subject _to {
/* bounds on step response from CMD to THETA */
fort = Oto 10
0 < = u_step[THETA][CMDI({t) <= 1.1;
fort = 10 to n_sample—1
1 - 0.80°t <= u_step[THETAJICMDI(t)
<=1+ (0.8071);

/* asymptotic tracking */
Re _H[THETAJ[CMD}{1, Q) == 1.0;

/* rejection of DIST over DIS _REJ_BW */ _
max _mag__H[THETA][DIST](0,DIS _REJ_BW)

<= 0.01;
/* asymptotic rejection of DIST */
Re _HITHETAIDISTi{1, 0) == O;

/* margin constraint */
max _mag _H[LOOP _OUT][LOOP _IN]
< = 1/MARGIN;

}

The extra two arguments at the end of the maximum magnitude
functional in the disturbance rejection line are lower and upper
frequency limits. We also note that it is unnecessary to constrain

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 3, MARCH 1988

12

W T T
g 081
121
<
E 06f
g
J o4}
0.2}
0 . ‘ "
0 5 10 15 20 25 30 35 40
t
Fig. 14. Step response with designed controller. cf. Fig. 8.
-20
230+
m
= J
=
2
a
G
B
T
35
Fig. 15. Disturbance torque to shaft angle transfer function with designed

controller. cf. Fig. 9.

the imaginary parts of transfer functions to be zero at DC; this is
automatically satisfied.

These constraints are found to be feasible, and the resulting
controller yields the command to angle step response shown in
Fig. 14; this should be compared to the nominal response shown
in Fig. 8. The disturbance torque to shaft angle transfer function
with the designed controller is shown in Fig. 15 (cf. Fig. 9). One
can see clearly that asymptotic rejection of constant torques has
been achieved. The Nyquist plot of the loop gain with the designed
controller is shown in Fig. 16 (cf. Fig. 11).

As mentioned above, the final controller has apoleatz = 1, a
consequence of our requirement of asymptotic disturbance rejec-
tion. Aside from this pole at z = 1, however, the controller is
stable. Of course, there is no guarantee in general that the
designed controller will be (open loop) stable.

To give some idea of the computation involved, the quadratic
program generated for this example had 2367 linear constraints.
We first set n_tap = 5 (hence, 10 decision variables). Starting
from the nominal controller (Q = 0) a feasible controller was
found in 17 iterations, and the optimal controller in a total of 36
iterations. The 5-tap optimal controller yielded an objective value
of 1.9. The total computation time for n_tap = 5 was 24
seconds CPU on a SUN 3/260 (68020 based) workstation with a
floating point accelerator.

We then set n _tap = 15 (30 decision variables) and ran qdes
using the optimal 5-tap Q coefficients, padded with 10 zeros in

BOYD et al.: NEW CAD METHOD

——loop gain
margin constraint

TImaginary part of loop gain

2 15 -1 05 0 0.5 1 15 2
Real part of loop gain

Fig. 16. Nyquist plot of loop gain with designed controller. cf. Fig. 11.

each channel, as the starting Q. The optimum 15-tap Q was found
in 57 iterations, taking 40 seconds CPU time. The resulting
objective was 0.72. Figs. 14-16 were constructed using the
optimal 15-tap Q.

For n _tap > 15, the resulting optimal design hardly changed.
The plots given in this paper were indistinguishable for n _tap =
15 and n_tap = 25. For n_tap = 25, the objective had
dropped to 0.71. The initial 15 (pairs of) coefficients of the
optimal 25-tap Q agreed very closely with the optimal coefficients
of the 15-tap optimal Q, a good indication that 15 taps (L = 30) is
yielding a good approximation to the infinite-dimensional prob-
lem.

Clearly the computation involved is orders of magnitude
greater than, say, that involved in LQG or H., controller design,
but is nevertheless quite reasonable. Again, we emphasize that the
method we used to approximate the infinite-dimensional convex
program and the various semiinfinite constraints involved were
naive, and not intended as the final word either in terms of
accuracy or computation time.

IX. CONCLUSION

We close with some comments on the two basic schemes for
controller design mentioned in Section I. The method we have
described is in one sense in the second class—our algorithm finds
a controller which is optimal in the sense of minimizing our
objective while satisfying our constraints. (In another sense it is in
the first class after we have chosen the Q;, since then we have a
(convex, however) parameter optimization problem). One big
difference between the method described here and the other
optimal controller design methods, say, LQG and H.,, is that
these methods produce a more or less explicit analytical solution;
ours does not.>

It is very important to distinguish between algorithms which
find a globally optimal controller and algorithms based on local
parameter optimization techniques. Controller design methods
based on local parameter optimization can have great advantages
when they succeed. Controller structure and complexity can be
constrained, and as a result the controllers produced are usually
far simpler than those produced by other algorithms, especially
the one we have described. For example, we may require a
diagonal (decentralized) PI controller, which meets some set of
specifications. Constraints such as stability of the controller or

* The notion of explicit is quite vague, e.g., one could argue that an optimal
controller described in terms of a quadratic program is just as explicit as an
optimal controller described in terms of a stabilizing solution of a Riccati
equation, since we have effective algorithms for solving both.

281

robustness to large plant deviations can be incorporated [32],
[25].

The main disadvantage of such methods is that these algorithms
are not effective, meaning that they are not guaranteed to find a
solution if one exists, nor are they guaranteed to find the global
minimum of the objective function. Thus, if a local method fails to
find a diagonal PI controller which meets certain specifications,
we cannot conclude that there is no diagonal PI controller which
meets the specifications; the same algorithm with a different initial
controller, or another algorithm could very well be successful.
Similarly, we have no guarantee that the controller designed
yields the smallest possible objective value. We hasten to add that
in many applications, the requirement of low or fixed (e.g.,
decentralized) controller complexity will override the advantages
of having an effective algorithm for controller design.

On the other hand, the method we describe is effective, since
algorithms for convex programs are effective, meaning that the
algorithms can determine if the program is feasible, and if so find
the global minimum of the objective function. If we translate a
certain set of specifications into a convex program which our
convex program solver determines is not feasible, then we may
conclude that no controller of any form will meet the specifica-
tions. Of course this must be qualified by reasonable choice of the
T;s and Q;’s, since in practice we do not consider the full infinite-
dimensional convex program, but only a finite-dimensional
approximation of it. Thus, if the design method we describe
determines that some step response will always overshoot by at
least 30 percent whenever a certain set of specifications is met,
then 30 percent overshoot is close to the minimum achievable over
all controllers meeting the specifications. A similar conclusion
cannot be reached using any design algorithm based on local
optimization.

Finally, we mention that our design method can be used to
generate upper bounds on performance, which can be very useful
information to a designer using a local parameter search method
of control design. Here our method simply shows what perform-
ance is possible with no constraints on the controller structure. If a
structured controller, say diagonal PI, yields a 40 percent
overshoot, then the fact that any stabilizing controller which meets
the specifications yields at least a 30 percent overshoot tells us our
design cannot be improved much.

ACKNOWLEDGMENT

Varjous preliminary forms of this material were presented at
seminars at Berkeley, USC, Cal Tech, and Honeywell SRC;
several people made substantial suggestions (which the authors
took): C. A. Desoer, J. Doyle, M. Safonov, P. Kokotovic, and R.
L. Kosut. The authors thank the reviewers for careful, detailed,
constructive reviews. They thank P. Gill, W. Murray, M.
Saunders, and M. Wright of the Stanford Optimization Labora-
tory for providing the convex optimization code LSSOL [20],
[21].

REFERENCES

{11 B. D. O. Anderson, ‘‘Controller reduction: Concepts and ap-
proaches,” in Proc. Automat. Contr. Conf., 1987, pp. 1-9.

[21 E. J. Anderson and A. B. Philpott, Eds., Infinite Programming
(Springer-Verlag Lecture Notes in Economics and Mathematical
Systems). Sept. 1984.

[3] A. Bhaya and C. A. Desoer, ‘‘Necessary and sufficient conditions on
Q(= C{ + PC)~") for stabilization of the linear feedback system
S(P, C),” Syst. Contr. Lett., vol. 7, no. 1, pp. 35-38, Feb. 1986.

[4] S. Blum and K. A. Fegley, ‘‘A quadratic programming solution of the
minimum energy control problem,” IEEE Trans. Automat. Conir.,
vol. AC-13, pp. 206-207, Apr. 1968.

{51 A.E.Brysonand Y. C. Ho, Applied Optimal Control.
Hemisphere, 1975.

[6] M. J. Chen and C. A. Desoer, ‘‘Necessary and sufficient condition for
robust stability of linear distributed feedback systems,”” Int. J. Contr.,
vol. 35, no. 2, pp. 255-267, 1982.

, ““The problem of guaranteeing robust disturbance rejection in

New York:

M

282

(8)

19

[10)

(11}

(12]

[13]
(14

[15]

L16]

(17

(18]

(19]

(20}

(21]

[22]

[23]

[24]

(25]

[26]

127

(28]
129

(30]

(31]

(32]

133]
[34]
135]

linear multivariable feedback systems,”” Int. J. Contr., vol. 37, no. 2,

pp. 305-313, 1983.

A. J. Calise and K. A. Fegley, ‘‘Quadratic programming in the

statistical design of sampled-data control systems,”” IEEE Trans.

Automat. Contr., pp. 77-80, Feb. 1968.

C. A Desoer and C. L. Gustafson, ‘‘Algebraic theory of linear

multivariable feedback systems,”” JEEE Trans. Automat. Contr.,

vol. AC-29, pp. 909-917, Oct. 1984.

—-—, “‘Design of multivariable feedback systems with simple unstable
lant,”” IEEE Trans. Automat. Contr., vol. AC-29, pp. 901-908,

Oct. 1984.

C. A. Desoer, R.-W. Liu, J. Murray, and R. Saeks, ‘‘Feedback system

design: The fractional representation approach to analysis and synthe-

sig,'o' IEEE Trans. Automat. Contr., vol. AC-25, pp. 399-412, June
1980.

J. C. Doyle, ‘“Analysis of feedback systems with structured uncertain-

ties,”” IEE Proc., vol. 129, Nov. 1982.

-+, ‘“Matrix interpolation theory and optimal control,”” Ph.D.

dissertation, Univ. Calif., Berkeley, CA, 1984.

M. A. Dahleh and J. B. Pearson, ‘‘/!-optimal feedback controllers for

MIMO discrete time systems,”” Dept. Elec. Eng., Rice Univ.,

Houston, TX, Tech. Rep. 8502, Feb. 1986.

J. C. Doyle and G. Stein, ‘‘Multivariable feedback design: Concepts

for a classical/modern synthesis,”” /EEE Trans. Automat. Contr.,

vol. AC-26, pp. 4-16, Feb. 1981.

K. A. Fegley, “Designing sampled-data control systems by linear

programming,”” IEEE Trans. Appl. Ind., vol. Al-83, pp. 198-200,

May 1964. '

K. A. Fegley and M. 1. Hsu, ““Optimum discrete control by linear

programming,”’ IEEE Trans. Automat. Contr., vol. AC-9, pp. 114-
115, Jan. 1964.

B. A. Francis and G. Zames, ‘‘On ho-optimal sensitivity theory for

SISO feedback systems,”” IEEE Trans. Automat. Contr., vol. AC-

29, pp. 9-16, Jan. 1984.

P. E. Gill, S. J. Hammarling, W. Murray, M. A. Saunders, and M. H.

Wright, ‘‘User’s guide for LSSOL (Version 1.0): A Fortran package

for constrained least-squares and convex quadratic programming,’’

Dep. Operat. Res., Stanford Univ., Stanford, CA, Tech. Rep. SOL 86-
1, Jan. 1986.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, ‘‘User’s

guide for NPSOL (Version 4.0): A Fortran package for nonlinear

programming,”’ Dep. Operat. Res., Stanford Univ., Stanford, CA,

Tech. Rep. SOL 89-2, Jan. 1986.

P. E. Gill, W. Murray, and M. Wright, Practical Optimization.

New York: Academic, 1981.

S. C. Johnson, ‘‘Yacc: Yet another compiler compiler,”” in UNIX

Programmer’s Manual, Supplementary Documents, Univ. Califor-

nia, Berkeley, CA, 4.2 Berkeley Software Distribution, 1984.

B. W. Kernighan and R. Pike, The UNIX Programming Environ-

ment. Englewood Cliffs, NJ: Prentice-Hall, 1984.

B. W. Kernighan and D. M. Ritchie, The C Programming Lan-

guage. Englewood Cliffs, NJ: Prentice-Hall, 1978.

U.-L. Ly, A. E. Bryson, and R. H. Cannon, ‘‘Design of low-order

compensators using parameter optimization,”’ in Applications of

Nonlinear Programming to Optimization and Control, 1FAC,
1983.

M. E. Lesk and E. Shmidt, ‘‘Lex—A lexical analyzer generator,’’ in
UNIX Programmer’s Manual, Supplementary Documents, Univ.
Calif., Berkeley, CA, 4.2 Berkeley Software Distribution, 1984.

D. Q. Mayne, E. Polak, and A. Sangiovanni-Vincentelli, ‘‘Computer
aided design via optimization,”’ in Control Applications of Nonlin-
ear Programming, IFAC, 1979.

C. N. Nett, ‘‘Algebraic aspects of linear control system stability,”
IEEE Trans. Automat. Contr., vol. AC-31, pp. 941-949, Oct. 1986.

G. Porcelli and K. A. Fegley, ‘‘Linear programming design of digitally
compensated systems,”’ in Proc. Joint American Contr. Conf.,
1964.

G. Porcelli and K. A. Fegley, ‘‘Optimal design of digitally compen-
sated systems by quadratic programming,”’ J. Franklin Inst., vol.
282, pp. 303-317, 1966.

E. Polak, D. Q. Mayne, and D. M. Stimler, ‘‘Control system design
via semi-infinite optimization: A review,”’ Proc. IEEE, vol. 72, pp.
1777-1794, Dec. 1984.

E. Polak, P Siegel, T. Wuu, W. T. Nye, and D. Q. Mayne,
“‘DELIGHT.MIMO: An interactive, optimization-based multivariable
control system design package,”” in Computer-Aided Control Sys-
tems Engineering, M. Jamshidi and C. J. Herget, Eds. Amsterdam,
The Netherlands: North-Holland, 1985; reprinted from /EEE Contr.
Syst. Mag., no. 4, Dec. 1982.

J. R. Raggazani and G. F. Franklin, Sampled-Data Control Sys-
tems. New York: McGraw-Hill, 1958.

M. G. Safonov, ‘‘Optimal diagonal scaling for infinity-norm optimiza-
tion,”” Syst. Contr. Lett., vol. 7, pp. 257-260, 1986.

A. T. Schreiner and H. G. Friedman, Jr., Introduction to Compiler
Construction with UNIX. Englewood Cliffs, NJ: Prentice-Hall,
1985.

[36]
[37]
[38]

(39]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 3, MARCH 1988

M. Vidyasagar, Control System Synthesis: A Factorization Ap-
proach. Cambridge, MA: M.LT. Press, 1985.

, “‘Optimal rejection of persistent bounded disturbances, IEEE
Trans. Automat. Contr., vol. AC-31, pp. 527-535, June 1986.

D. C. Youla, H. A. Jabr, and J. J. Bongiorno, Jr., ‘“Modern Wiener—
Hopf design of optimal controllers—Part II: The multivariable case,”’
IEEE Trans. Automat. Contr., vol. AC-21, pp. 319-338, June 1976.
L. A. Zadeh and B. H. Whalen, ‘‘On optimal control and linear
programming,”’ IRE Trans. Automat. Contr., pp. 45-46, July 1962.

Stephen P. Boyd (S'82-M’85) received the A.B.
degree in mathematics, summa cum laude, from
Harvard University, Cambridge, MA, in 1980, and
the Ph.D. degree in electrical engineering and
computer science from the University of California,
Berkeley, in 1985.

Since 1985 he has been an Assistant Professor in
the Information Systems Laboratory, Department of
Electrical Engineering, Stanford University,
Stanford, CA.

Venkataramanan Balakrishnan received the B.
Tech. degree in electrical engineering from the
Indian Institute of Technology, Madras, India, in
1985.

He is currently pursuing the M.S./Ph.D. degree
in electrical engineering at Stanford University,
Stanford, CA.

Craig H. Barratt received the B.Sc. degree in
mathematics and physics in 1983 and the B.E.
degree (Hons.) in electrical engineering in 1985
from the University of Sydney, Sydney, Australia,
and the M.S. degree in electrical engineering from
Stanford University, Stanford, CA, in 1987.

He is currently pursuing the Ph.D. degree in
electrical engineering at Stanford.

Nasser M. Khraishi (S’82) was born in Kuwait in
1962. He received the B.Sc. degree in electrical
engineering from Kuwait University, Kuwait, in
1984, and the M.Sc. degree in engineering-
economic systems from Stanford University in
1985.

He is currently pursuing the Ph.D. degree in
electrical engineering at Stanford University,
Stanford, CA. His current research interests include
optimization, mathematical programming, and their
links to system theory and controller design.

Xiaoming Li (§°86) was born in Henan, China, on
July 4, 1963. He received the B.S. degree in
automatic control from Tsinghua University,
Beijing, China, in 1984 and the M.S. degree in
electrical engineering from Stanford University,
Stanford, CA, in 1986.

At present, he is a Ph.D. candidate in the
Information Systems Laboratory at Stanford
University. Since 1986 he has been a Research
Assistant in the Department of Electrical
Engineering, Stanford University, Stanford, CA.

His research interests are in the areas of computer-aided-design of control
systems, system implementation, and adaptive signal processing.

BOYD et al.: NEW CAD METHOD

David G. Meyer received the B.S. degree in math
and the B.S.E.E. degree from the University of
Wyoming, Laramie, in 1982, the M.S.E.E. degree
from Stanford University, Stanford, CA, in 1985,
and the Ph.D. degree in electrical engineering from
Stanford University in 1987.

Since 1987 he has been an Assistant Professor of
Electrical Engineering in the Robotics and Control
Laboratory, University of Virginia, Charlottesville,
His current research interests include computer-
aided design, multirate sampled-data systems, and
the analysis of expert control systems.

283

Stephen A. Norman received the B.Sc. degree in
mathematics and engineering from Queen’s
University, Kingston, Ont., Canada, in 1985, and
the M.S. degree in electrical engineering from
Stanford University, Stanford, CA, in 1986.

He is currently pursuing the Ph.D. degree in
electrical engineering at Stanford University.

