gpposy
 A Matlab Solver for Geometric Programs in Posynomial Form

Kwangmoo Koh
deneb1@stanford.edu
Almir Mutapcic
almirm@stanford.edu

Seungjean Kim
sjkim@stanford.edu
Stephen Boyd
boyd@stanford.edu

May 22, 2006

1 Introduction

gpposy solves an optimization problem of the form

$$
\begin{align*}
& \text { minimize } \quad \sum_{k=1}^{K_{0}} b_{k}^{(0)} x_{1}^{a_{11}^{(0)}} x_{2}^{a_{2 k}^{(0)}} \cdots x_{n}^{a_{n}^{(0)}} \\
& \text { subject to } \quad \sum_{k=1}^{K_{i}} b_{k}^{(i)} x_{1}^{a_{k}^{(i)}} x_{2}^{a_{k 2}^{(i)}} \ldots x_{n}^{a_{n}^{(i)}} \leq 1, \quad i=1, \ldots, m \text {, } \tag{1}\\
& h_{i} x_{1}^{g_{1 i}} x_{2}^{g_{i 2}} \cdots x_{n}^{g_{i n}}=1, \quad i=1, \ldots, p, \\
& l \preceq x \preceq u,
\end{align*}
$$

where the optimization variable is the vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}_{+}^{n}$. The problem data are $a_{k j}^{(i)}, g_{i j} \in \mathbf{R}, b_{k}^{(i)}, h_{i} \in \mathbf{R}_{+}$, and $l, u \in \mathbf{R}_{+}^{n}$. Here \preceq means componentwise inequality between vectors. This problem is called a geometric program in posynomial form. For more information about geometric programming, see [BV04, BKVH].

2 Calling sequences

The complete calling sequence of gpposy is
>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,l,u,quiet);

Input arguments represent the problem data of the problem (1). Output arguments are the optimal point (if feasible), sensitivity information (if feasible) and the solution status.

Input arguments

- A: matrix with n columns and $\sum_{i=0}^{m} K_{i}$ rows that specifies the exponents of the objective and equality constraints, i.e.,

$$
A=\left[\begin{array}{c}
A^{(0)} \\
\vdots \\
A^{(m)}
\end{array}\right], \quad A^{(i)}=\left[\begin{array}{ccc}
a_{11}^{(i)} & \cdots & a_{1 n}^{(i)} \\
\vdots & \ddots & \vdots \\
a_{K_{i} 1}^{(i)} & \cdots & a_{K_{i} n}^{(i)}
\end{array}\right] \in \mathbf{R}^{K_{i} \times n}, \quad i=0, \ldots, m .
$$

A can be in sparse format.

- b: vector of length $\sum_{i=0}^{m} K_{i}$ that specifies the coefficients of the objective and inequality constraints, i.e.,

$$
b=\left[\begin{array}{c}
b^{(0)} \\
\vdots \\
b^{(m)}
\end{array}\right], \quad b^{(i)}=\left[\begin{array}{c}
b_{1}^{(i)} \\
\vdots \\
b_{K_{i}}^{(i)}
\end{array}\right] \in \mathbf{R}_{+}^{K_{i}}, \quad i=0, \ldots, m
$$

All elements $b_{k}^{(i)}$ must be positive.

- szs: vector of length $m+1$ that specifies the number of terms in each objective and inequality constraints, i.e., $\left(K_{0}, \ldots, K_{m}\right)$.
- G: matrix with n columns and p rows, that specifies the exponents of equality constraints, i.e.,

$$
G=\left[\begin{array}{ccc}
g_{11} & \cdots & g_{1 n} \\
\vdots & \ddots & \vdots \\
g_{p 1} & \cdots & g_{p n}
\end{array}\right] \in \mathbf{R}^{p \times n} .
$$

G can be in sparse format.

- h: p-vector that contains the coefficients of equality constraints, i.e.,

$$
h=\left[\begin{array}{c}
h_{1} \\
\vdots \\
h_{p}
\end{array}\right] \in \mathbf{R}_{+}^{p} .
$$

All elements h_{k} must be positive.

- 1: n-vector that specifies lower bounds on x. If not given, it will be set to the default lower bounds $\left(10^{-100}, \ldots, 10^{-100}\right)$. All elements l_{i} must be positive.
- u : n-vector that specifies upper bounds on x. If not given, it will be set to the default upper bounds $\left(10^{100}, \ldots, 10^{100}\right)$. All elements u_{i} must be positive.
- quiet: boolean. Suppresses print messages during execution if true. The default value is false.

Output arguments

- $\mathrm{x}: n$-vector. x is the optimal point of the problem if the problem is feasible, and x is the last primal iterate of phase I if the problem is infeasible.
- status: string; possible values are 'Solved', 'Infeasible' and 'Failed'.
- lambda: vector of length $m+2 n$; the optimal sensitivity vector (see [BKVH, §3.3]) associated with inequality constraints if the problem is feasible. The first m elements, lambda (1:m), are optimal sensitivities of the m inequality constraints, the next n elements, lambda $(\mathrm{m}+1: \mathrm{m}+\mathrm{n})$, are those of the lowerbound constraints $(l \preceq x)$, and the last n elements, lambda $(\mathrm{m}+\mathrm{n}: \mathrm{m}+2 * \mathrm{n})$, are those of the upperbound constraints $(x \preceq u)$. If the problem is feasible, lambda is a certificate of infeasibility (see [BKVH, §5.8.1,§11.4.3]).
- nu: p-vector; the optimal sensitivity vector (see [BKVH, $\S 3.3]$) associated with equality constraints $(G x+h=0)$ if the problem is feasible. If infeasible, nu is a certificate of infeasibility (see [BKVH, §5.8.1,§11.4.3]).

Other calling sequences

Other calling sequences supported by gpposy are:

```
>> [x,status,lambda,nu] = gpposy(A,b,szs);
>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);
>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,l,u);
>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h,l,u,quiet);
>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],l,u);
>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],l,u,quiet);
>> [x,status,lambda,nu] = gpposy(A,b,szs,[],[],[],[],quiet);
```


Caveats

- The equality constraint matrix, G, must be full rank.
- If your problem is large and sparse, be sure that A and G are in sparse format.
- Equality constraints should be explicitly specified as $G x+h=0$. You cannot represent an equality constraint as a pair of opposing inequality constraints.

3 Example

Consider the problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{-1} x_{2}^{-1 / 2} x_{3}^{-1}+2.3 x_{1} x_{3}+4 x_{1} x_{2} x_{3} \\
\text { subject to } & (1 / 3) x_{1}^{-2} x_{2}^{-2}+(4 / 3) x_{2}^{1 / 2} x_{3}^{-1} \leq 1, \\
& 0.1 x_{1}+0.2 x_{2}+0.3 x_{3} \leq 1, \\
& (1 / 2) x_{1} x_{2}=1,
\end{array}
$$

with variables x_{1}, x_{2} and x_{3}. This problem has the form (1) with

$$
\begin{gathered}
A^{(0)}=\left[\begin{array}{ccc}
-1 & -0.5 & -1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right], \quad A^{(1)}=\left[\begin{array}{ccc}
-2 & -2 & 0 \\
0 & 0.5 & -1
\end{array}\right], \quad A^{(2)}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \\
b^{(0)}=\left[\begin{array}{c}
1 \\
2.3 \\
4
\end{array}\right], \quad b^{(1)}=\left[\begin{array}{l}
1 / 3 \\
4 / 3
\end{array}\right], \quad b^{(2)}=\left[\begin{array}{c}
0.1 \\
0.2 \\
0.3
\end{array}\right], \\
G=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right], \quad h=0.5 .
\end{gathered}
$$

The Matlab code for solving this problem is as follows:

```
% Matlab script that solves the above problem
>> AO = [ -1 -0.5 -1 ;\ldots.
    >> A1 =[ [rrrac
>>A2 = [ [\begin{array}{llll}{1}&{0}&{0}&{;\ldots}\\{0}&{1}&{0}&{;\ldots}\end{array}]
    0 0 1];
> A = [ A0; A1; A2 ];
>> b0 = [ 1; 2.3; 4 ];
>> b1 = [ 1/3; 4/3 ];
>> b2 = [ 0.1; 0.2; 0.3];
>> b = [ b0; b1; b2 ];
>> G = [\begin{array}{llll}{1}&{1}&{0}\end{array}];
>> h = [ 0.5 ];
>> szs = [ size(A0,1); size(A1,1); size(A2,1) ]; %i.e., [ 3; 2; 3 ]
>> [x,status,lambda,nu] = gpposy(A,b,szs,G,h);
```

After executing the code, you can see the result by typing x in Matlab.

```
>> x
ans =
    3.4783
    0.5750
    1.1030
```


References

[BKVH] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric programming. To appear in Optimization and Engineering, 2005. Available at www.stanford.edu/~boyd/gp_tutorial.html.
[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. Available at www.stanford.edu/~boyd/cvxbook.html.

