Lecture 1 Signals

- notation and meaning
- common signals
- size of a signal
- qualitative properties of signals
- impulsive signals

Signals

a signal is a function of time, e.g.,

- f is the force on some mass
- $v_{\text {out }}$ is the output voltage of some circuit
- p is the acoustic pressure at some point
notation:
- $f, v_{\text {out }}, p$ or $f(\cdot), v_{\text {out }}(\cdot), p(\cdot)$ refer to the whole signal or function
- $f(t), v_{\text {out }}(1.2), p(t+2)$ refer to the value of the signals at times $t, 1.2$, and $t+2$, respectively
for times we usually use symbols like t, τ, t_{1}, \ldots

Example

Domain of a signal

domain of a signal: t 's for which it is defined
some common domains:

- all t, i.e., \mathbf{R}
- nonnegative $t: t \geq 0$ (here $t=0$ just means some starting time of interest)
- t in some interval: $a \leq t \leq b$
- t at uniformly sampled points: $t=k h+t_{0}, k=0, \pm 1, \pm 2, \ldots$
- discrete-time signals are defined for integer t, i.e., $t=0, \pm 1, \pm 2, \ldots$ (here t means sample time or epoch, not real time in seconds)
we'll usually study signals defined on all reals, or for nonnegative reals

Dimension \& units of a signal

dimension or type of a signal u, e.g.,

- real-valued or scalar signal: $u(t)$ is a real number (scalar)
- vector signal: $u(t)$ is a vector of some dimension
- binary signal: $u(t)$ is either 0 or 1
we'll usually encounter scalar signals
example: a vector-valued signal

$$
v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

might give the voltage at three places on an antenna physical units of a signal, e.g., $\mathrm{V}, \mathrm{mA}, \mathrm{m} / \mathrm{sec}$
sometimes the physical units are 1 (i.e., unitless) or unspecified

Common signals with names

- a constant (or static or DC) signal: $u(t)=a$, where a is some constant
- the unit step signal (sometimes denoted $1(t)$ or $U(t)$),

$$
u(t)=0 \text { for } t<0, \quad u(t)=1 \text { for } t \geq 0
$$

- the unit ramp signal,

$$
u(t)=0 \text { for } t<0, \quad u(t)=t \text { for } t \geq 0
$$

- a rectangular pulse signal,

$$
u(t)=1 \text { for } a \leq t \leq b, \quad u(t)=0 \text { otherwise }
$$

- a sinusoidal signal:

$$
u(t)=a \cos (\omega t+\phi)
$$

a, b, ω, ϕ are called signal parameters

Real signals

most real signals, e.g.,

- AM radio signal
- FM radio signal
- cable TV signal
- audio signal
- NTSC video signal
- 10BT ethernet signal
- telephone signal
aren't given by mathematical formulas, but they do have defining characteristics

Measuring the size of a signal

size of a signal u is measured in many ways for example, if $u(t)$ is defined for $t \geq 0$:

- integral square (or total energy): $\int_{0}^{\infty} u(t)^{2} d t$
- squareroot of total energy
- integral-absolute value: $\int_{0}^{\infty}|u(t)| d t$
- peak or maximum absolute value of a signal: $\max _{t \geq 0}|u(t)|$
- root-mean-square (RMS) value: $\left(\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} u(t)^{2} d t\right)^{1 / 2}$
- average-absolute (AA) value: $\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}|u(t)| d t$
for some signals these measures can be infinite, or undefined
example: for a sinusoid $u(t)=a \cos (\omega t+\phi)$ for $t \geq 0$
- the peak is $|a|$
- the RMS value is $|a| / \sqrt{2} \approx 0.707|a|$
- the AA value is $|a| 2 / \pi \approx 0.636|a|$
- the integral square and integral absolute values are ∞
the deviation between two signals u and v can be found as the size of the difference, e.g., $\mathrm{RMS}(u-v)$

Qualitative properties of signals

- u decays if $u(t) \rightarrow 0$ as $t \rightarrow \infty$
- u converges if $u(t) \rightarrow a$ as $t \rightarrow \infty(a$ is some constant $)$
- u is bounded if its peak is finite
- u is unbounded or blows up if its peak is infinite
- u is periodic if for some $T>0, u(t+T)=u(t)$ holds for all t
in practice we are interested in more specific quantitative questions, e.g.,
- how fast does u decay or converge?
- how large is the peak of u ?

Impulsive signals

(Dirac's) delta function or impulse δ is an idealization of a signal that

- is very large near $t=0$
- is very small away from $t=0$
- has integral 1
for example:

- the exact shape of the function doesn't matter
- ϵ is small (which depends on context)
on plots δ is shown as a solid arrow:

Formal properties

formally we define δ by the property that

$$
\int_{a}^{b} f(t) \delta(t) d t=f(0)
$$

provided $a<0, b>0$, and f is continuous at $t=0$
idea: δ acts over a time interval very small, over which $f(t) \approx f(0)$

- $\delta(t)=0$ for $t \neq 0$
- $\delta(0)$ isn't really defined
- $\int_{a}^{b} \delta(t) d t=1$ if $a<0$ and $b>0$
- $\int_{a}^{b} \delta(t) d t=0$ if $a>0$ or $b<0$

$$
\int_{a}^{b} \delta(t) d t=0 \text { is ambiguous if } a=0 \text { or } b=0
$$

our convention: to avoid confusion we use limits such as $a-$ or $b+$ to denote whether we include the impulse or not
for example,

$$
\int_{0+}^{1} \delta(t) d t=0, \quad \int_{0-}^{1} \delta(t) d t=1, \quad \int_{-1}^{0-} \delta(t) d t=0, \quad \int_{-1}^{0+} \delta(t) d t=1
$$

Scaled impulses

$\alpha \delta(t-T)$ is sometimes called an impulse at time T, with magnitude α we have

$$
\int_{a}^{b} \alpha \delta(t-T) f(t) d t=\alpha f(T)
$$

provided $a<T<b$ and f is continuous at T
on plots: write magnitude next to the arrow, e.g., for 2δ,

Sifting property

the signal $u(t)=\delta(t-T)$ is an impulse function with impulse at $t=T$ for $a<T<b$, and f continuous at $t=T$, we have

$$
\int_{a}^{b} f(t) \delta(t-T) d t=f(T)
$$

example:

$$
\begin{aligned}
& \int_{-2}^{3} f(t)(2+\delta(t+1)-3 \delta(t-1)+2 \delta(t+3)) d t \\
& =2 \int_{-2}^{3} f(t) d t+\int_{-2}^{3} f(t) \delta(t+1) d t-3 \int_{-2}^{3} f(t) \delta(t-1) d t \\
& \quad \\
& \left.\quad+2 \int_{-2}^{3} f(t) \delta(t+3)\right) d t \\
& = \\
& =2 \int_{-2}^{3} f(t) d t+f(-1)-3 f(1)
\end{aligned}
$$

Physical interpretation

impulse functions are used to model physical signals

- that act over short time intervals
- whose effect depends on integral of signal
example: hammer blow, or bat hitting ball, at $t=2$
- force f acts on mass m between $t=1.999 \mathrm{sec}$ and $t=2.001 \mathrm{sec}$
- $\int_{1.999}^{2.001} f(t) d t=I$ (mechanical impulse, $\mathrm{N} \cdot \mathrm{sec}$)
- blow induces change in velocity of

$$
v(2.001)-v(1.999)=\frac{1}{m} \int_{1.999}^{2.001} f(\tau) d \tau=I / m
$$

for (most) applications we can model force as an impulse, at $t=2$, with magnitude I
example: rapid charging of capacitor

assuming $v(0)=0$, what is $v(t), i(t)$ for $t>0$?

- $i(t)$ is very large, for a very short time
- a unit charge is transferred to the capacitor 'almost instantaneously'
- $v(t)$ increases to $v(t)=1$ 'almost instantaneously'
to calculate i, v, we need a more detailed model
for example, include small resistance

$$
i(t)=\frac{d v(t)}{d t}=\frac{1-v(t)}{R}, \quad v(0)=0
$$

as $R \rightarrow 0, i$ approaches an impulse, v approaches a unit step
as another example, assume the current delivered by the source is limited: if $v(t)<1$, the source acts as a current source $i(t)=I_{\max }$

$$
i(t)=\frac{d v(t)}{d t}=I_{\max }, \quad v(0)=0
$$

as $I_{\max } \rightarrow \infty, i$ approaches an impulse, v approaches a unit step
in conclusion,

- large current i acts over very short time between $t=0$ and ϵ
- total charge transfer is $\int_{0}^{\epsilon} i(t) d t=1$
- resulting change in $v(t)$ is $v(\epsilon)-v(0)=1$
- can approximate i as impulse at $t=0$ with magnitude 1
modeling current as impulse
- obscures details of current signal
- obscures details of voltage change during the rapid charging
- preserves total change in charge, voltage
- is reasonable model for time scales $\gg \epsilon$

Integrals of impulsive functions

integral of a function with impulses has jump at each impulse, equal to the magnitude of impulse
example: $u(t)=1+\delta(t-1)-2 \delta(t-2)$; define $f(t)=\int_{0}^{t} u(\tau) d \tau$

$f(t)=t$ for $0 \leq t<1, \quad f(t)=t+1$ for $1<t<2, \quad f(t)=t-1$ for $t>2$
$(f(1)$ and $f(2)$ are undefined)

Derivatives of discontinuous functions

conversely, derivative of function with discontinuities has impulse at each jump in function

- derivative of unit step function (see page $1-6$) is $\delta(t)$
- signal f of previous page

$$
f^{\prime}(t)=1+\delta(t-1)-2 \delta(t-2)
$$

Derivatives of impulse functions

integration by parts suggests we define

$$
\int_{a}^{b} \delta^{\prime}(t) f(t) d t=\left.\delta(t) f(t)\right|_{a} ^{b}-\int_{a}^{b} \delta(t) f^{\prime}(t) d t=-f^{\prime}(0)
$$

provided $a<0, b>0$, and f^{\prime} continuous at $t=0$

- δ^{\prime} is called doublet
- δ^{\prime}, $\delta^{\prime \prime}$, etc. are called higher-order impulses
- similar rules for higher-order impulses:

$$
\int_{a}^{b} \delta^{(k)}(t) f(t) d t=(-1)^{k} f^{(k)}(0)
$$

if $f^{(k)}$ continuous at $t=0$
interpretation of doublet δ^{\prime} : take two impulses with magnitude $\pm 1 / \epsilon$, a distance ϵ apart, and let $\epsilon \rightarrow 0$

for $a<0, b>0$,

$$
\int_{a}^{b} f(t)\left(\frac{\delta(t)}{\epsilon}-\frac{\delta(t-\epsilon)}{\epsilon}\right) d t=\frac{f(0)-f(\epsilon)}{\epsilon}
$$

converges to $-f^{\prime}(0)$ if $\epsilon \rightarrow 0$

Caveat

there is in fact no such function (Dirac's δ is what is called a distribution)

- we manipulate impulsive functions as if they were real functions, which they aren't
- it is safe to use impulsive functions in expressions like

$$
\int_{a}^{b} f(t) \delta(t-T) d t, \quad \int_{a}^{b} f(t) \delta^{\prime}(t-T) d t
$$

provided f (resp, f^{\prime}) is continuous at $t=T$, and $a \neq T, b \neq T$

- some innocent looking expressions don't make any sense at all (e.g., $\delta(t)^{2}$ or $\left.\delta\left(t^{2}\right)\right)$

