Lecture 7
 Circuit analysis via Laplace transform

- analysis of general LRC circuits
- impedance and admittance descriptions
- natural and forced response
- circuit analysis with impedances
- natural frequencies and stability

Circuit analysis example

initial current: $i(0)$
$\mathrm{KCL}, \mathrm{KVL}$, and branch relations yield: $-u+L i^{\prime}+y=0, y=R i$
take Laplace transforms to get

$$
-U+L(s I-i(0))+Y=0, \quad Y=R I
$$

solve for Y to get

$$
Y=\frac{U+L i(0)}{1+s L / R}=\frac{1}{1+s L / R} U+\frac{L}{1+s L / R} i(0)
$$

in the time domain:

$$
y(t)=\frac{1}{T} \int_{0}^{t} e^{-\tau / T} u(t-\tau) d \tau+\operatorname{Ri}(0) e^{-t / T}
$$

where $T=L / R$
two terms in y (or Y):

- first term corresponds to solution with zero initial condition
- first term is convolution of source with a function
- second term corresponds to solution with zero source
we'll see these are general properties . . .

Analysis of general LRC circuits

consider a circuit with n nodes and b branches, containing

- independent sources
- linear elements (resistors, op-amps, dep. sources, . . .)
- inductors \& capacitors
such a circuit is described by three sets of equations:
- KCL: $A i(t)=0$
- KVL: $v(t)=A^{T} e(t)$
- branch relations
where
- $A \in \mathbf{R}^{(n-1) \times b}$ is the reduced node incidence matrix
- $i \in \mathbf{R}^{b}$ is the vector of branch currents
- $v \in \mathbf{R}^{b}$ is the vector of branch voltages
- $e \in \mathbf{R}^{n-1}$ is the vector of node potentials

Branch relations

- independent voltage source: $v_{k}(t)=u_{k}(t)$
- resistor: $v_{k}=R i_{k}$
- capacitor: $i_{k}=C v_{k}^{\prime}$
- inductor: $v_{k}=L i_{k}^{\prime}$
- VCVS: $v_{k}=a v_{j}$
- and so on (current source, VCCS, op-amp, . . .)
thus:
circuit equations are a set of $2 b+n-1$ (linear) algebraic and/or differential equations in $2 b+n-1$ variables

Laplace transform of circuit equations

most of the equations are the same, e.g.,

- KCL, KVL become $A I=0, V=A^{T} E$
- independent sources, e.g., $v_{k}=u_{k}$ becomes $V_{k}=U_{k}$
- linear static branch relations, e.g., $v_{k}=R i_{k}$ becomes $V_{k}=R I_{k}$
the differential equations become algebraic equations:
- capacitor: $I_{k}=s C V_{k}-C v_{k}(0)$
- inductor: $V_{k}=s L I_{k}-L i_{k}(0)$
thus, in frequency domain, circuit equations are a set of $2 b+n-1$ (linear) algebraic equations in $2 b+n-1$ variables
thus, LRC circuits can be solved exactly like static circuits, except
- all variables are Laplace transforms, not real numbers
- capacitors and inductors have branch relations $I_{k}=s C V_{k}-C v_{k}(0)$, $V_{k}=s L I_{k}-L i_{k}(0)$
interpretation: an inductor is like a "resistance" $s L$, in series with an independent voltage source $-L i_{k}(0)$
a capacitor is like a "resistance" $1 /(s C)$, in parallel with an independent current source $-C v_{k}(0)$
- these "resistances" are called impedances
- these sources are impulses in the time domain which set up the initial conditions

Impedance and admittance

circuit element or device with voltage v, current i

the relation $V(s)=Z(s) I(s)$ is called an impedance description of the device

- Z is called the (s-domain) impedance of the device
- in the time domain, v and i are related by convolution: $v=z * i$
similarly, $I(s)=Y(s) V(s)$ is called an admittance description ($Y=1 / Z$)

Examples

- a resistor has an impedance R
- an inductor with zero initial current has an impedance $Z(s)=s L$ (admittance $1 /(s L)$)
- a capacitor with zero initial voltage has an impedance $Z(s)=1 /(s C)$ (admittance $s C$)
$c f$. impedance in SSS analysis with phasors:
- resistor: $\mathbf{V}=R \mathbf{I}$
- inductor: $\mathbf{V}=(j \omega L) \mathbf{I}$
- capacitor: $\mathbf{V}=(1 / j \omega C) \mathbf{I}$
s-domain and phasor impedance agree for $s=j \omega$, but are not the same
we can express the branch relations as

$$
M(s) I(s)+N(s) V(s)=U(s)+W
$$

where

- U is the independent sources
- W includes the terms associated with initial conditions
- M and N give the impedance or admittance of the branches for example, if branch 13 is an inductor,

$$
(s L) I_{13}(s)+(-1) V_{13}(s)=L i_{13}(0)
$$

(this gives the 13 th row of M, N, U, and W)
we can write circuit equations as one big matrix equation:

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & I & -A^{T} \\
M(s) & N(s) & 0
\end{array}\right]\left[\begin{array}{c}
I(s) \\
V(s) \\
E(s)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
U(s)+W
\end{array}\right]
$$

hence,

$$
\left[\begin{array}{c}
I(s) \\
V(s) \\
E(s)
\end{array}\right]=\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & I & -A^{T} \\
M(s) & N(s) & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
0 \\
U(s)+W
\end{array}\right]
$$

in the time domain,

$$
\left[\begin{array}{c}
i(t) \\
v(t) \\
e(t)
\end{array}\right]=\mathcal{L}^{-1}\left(\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & I & -A^{T} \\
M(s) & N(s) & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
0 \\
U(s)+W
\end{array}\right]\right)
$$

- this gives a explicit solution of the circuit
- these equations are identical to those for a linear static circuit (except instead of real numbers we have Laplace transforms, i.e., complex-valued functions of s)
- hence, much of what you know extends to this case

Natural and forced response

let's express solution as

$$
\begin{aligned}
{\left[\begin{array}{c}
i(t) \\
v(t) \\
e(t)
\end{array}\right] } & =\mathcal{L}^{-1}\left(\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & I & -A^{T} \\
M(s) & N(s) & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
0 \\
U(s)
\end{array}\right]\right) \\
& +\mathcal{L}^{-1}\left(\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & I & -A^{T} \\
M(s) & N(s) & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
0 \\
W
\end{array}\right]\right)
\end{aligned}
$$

thus circuit response is equal to:

- the natural response, i.e., solution with independent sources off, plus
- the forced response, i.e., solution with zero initial conditions
- the forced response is linear in $U(s)$, i.e., the independent source signals
- the natural response is linear in W, i.e., the inductor \& capacitor initial conditions

Back to the example

initial current: $i(0)$
natural response: set source to zero, get LR circuit with solution

$$
y_{\mathrm{nat}}(t)=\operatorname{Ri}(0) e^{-t / T}, \quad T=L / R
$$

forced response: assume zero initial current, replace inductor with impedance $Z=s L$:

by voltage divider rule (for impedances), $Y_{\mathrm{frc}}=U \frac{R}{R+s L}$ (as if they were simple resistors!)
so $y_{\mathrm{frc}}=\mathcal{L}^{-1}(R /(R+s L)) * u$, i.e.,

$$
y_{\mathrm{frc}}(t)=\frac{1}{T} \int_{0}^{t} e^{-\tau / T} u(t-\tau) d \tau
$$

all together, the voltage is $y(t)=y_{\mathrm{nat}}(t)+y_{\mathrm{frc}}(t)$ (same as before)

Circuit analysis with impedances

for a circuit with

- linear static elements (resistors, op-amps, dependent sources, . . .)
- independent sources
- elements described by impedances (inductors \& capacitors with zero initial conditions, . . .)
we can manipulate
- Laplace transforms of voltages, currents
- impedances
as if they were (real, constant) voltages, currents, and resistances, respectively
reason: they both satisfy the same equations
examples:
- series, parallel combinations
- voltage \& current divider rules
- Thevenin, Norton equivalents
- nodal analysis
example:

let's find input impedance, i.e., $Z_{\mathrm{in}}=V_{\mathrm{in}} / I_{\mathrm{in}}$
by series/parallel combination rules,

$$
Z_{\text {in }}=1 /(2 s)+(1 \| 4 s)+3=\frac{1}{2 s}+\frac{4 s}{1+4 s}+3
$$

we have

$$
V_{\mathrm{in}}(s)=\left(\frac{1}{2 s}+\frac{4 s}{1+4 s}+3\right) I_{\mathrm{in}}(s)
$$

provided the capacitor \& inductor have zero initial conditions
example: nodal analysis

nodal equations are $G E=I_{\text {src }}$ where

- $I_{\text {src }}$ is total of current sources flowing into nodes
- $G_{i i}$ is sum of admittances tied to node i
- $G_{i j}$ is minus the sum of all admittances between nodes i and j
for this example we have:

$$
\left[\begin{array}{cc}
1+2 s+\frac{1}{3} & -\left(2 s+\frac{1}{3}\right) \\
-\left(2 s+\frac{1}{3}\right) & \frac{1}{3}+2 s+\frac{1}{4}+\frac{1}{5 s}
\end{array}\right]\left[\begin{array}{c}
E_{1}(s) \\
E_{2}(s)
\end{array}\right]=\left[\begin{array}{c}
I_{\mathrm{in}}(s) \\
0
\end{array}\right]
$$

(which we could solve . . .)
example: Thevenin equivalent

voltage source is $\frac{1}{s}-\frac{1}{s+1}=\frac{1}{s(s+1)}$ in s-domain
Thevenin voltage is open-circuit voltage, i.e.,

$$
V_{\mathrm{th}}=\frac{1}{s(s+1)} \frac{1}{1+2 s}
$$

Thevenin impedance is impedance looking into terminals with source off, i.e.,

$$
Z_{\mathrm{th}}=1 \| 2 s=\frac{2 s}{1+2 s}
$$

Thevenin equivalent circuit is:

Natural frequencies and stability

we say a circuit is stable if its natural response decays (i.e., converges to zero as $t \rightarrow \infty$) for all initial conditions
in this case the circuit "forgets" its initial conditions as t increases; the natural response contributes less and less to the solution as t increases, i.e.,

$$
y(t) \rightarrow y_{\mathrm{frc}}(t) \text { as } t \rightarrow \infty
$$

circuit is stable when poles of the natural response, called natural frequencies, have negative real part
these are given by the zeros of

$$
\operatorname{det}\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & I & -A^{T} \\
M(s) & N(s) & 0
\end{array}\right]
$$

