QCN: Quantized Congestion Notification
An Overview

Rong Pan, Balaji Prabhakar, Ashvin Laxmikantha
IEEE 802.1 Interim Meeting
May 29, 2007
Geneva

Outline of presentation

« Qverview of QCN

— Including a discussion of options and choices
— Implementation, deployment

 Discussion of simulations

* Rong Pan’s presentation
— Details of QCN
— Simulation results

Congestion management loop

components
Reaction Congestion Congestion Reflection Destination
Source Point Point1 ®®*® Pointn Point

Reaction Point: Where the rate of injection of a flow (or flows) is changed due
to congestion signals; usually, the place where rate limiters reside.

Congestion Point: Where resources (buffers/links) exist and can be
congested, and where congestion signals are generated; usually, switch
buffers and the links they are attached to.

Reflection Point: Where congestion signals are reflected back to the source.

Congestion Management Domain: ReaP -- CPs -- RefP.

Basic QCN

e 2-point architecture: Reaction Point -- Congestion Point

1. Congestion Points: Sample packets, compute feedback (Fb), quantize Fb
to 6 bits, and reflect only negative Fb values back to Reaction Point with a

probability proportional to Fb.

>

P

ax
PM
>

IFbl

Fb = -(Qorr + W Qgetta)
= -(queue offset + w.rate offset)

Reflection
Probability

2. Reaction Points: Transmit regular Ethernet frames. When congestion
message arrives: perform multiplicative decrease, fast recovery and active
probing.

Fast recovery similar to BIC-TCP: gives high performance in high bandwidth-

delay product networks, while being very simple.

Fast Recovery and Active Probing

< > '
R Fast Recovery [---
Rd/8
Rd/4
Q
= Rd/2 >
’ Active Probing
Rnew
v Time

Congestion message recd

Basic QCN: Outcomes/results

e Easy to deploy, light resource requirement
— No header modifications, no tags, immediately deployable.
— Can work with a single rate limiter.

« Alias all flows which have received negative feedback onto the rate limiter. RL
becomes “meta-flow” with fast recovery + active probing ensuring good
performance.

« The algorithm is well-defined; i.e. does not rely on the existence of multiple rate
limiters for correctness of specification since it has no tags or probes.

* Quantizing Fb simplifies implementation
— Fbvalue used to index into a small table to find the decrease factor.
* No potentially expensive hardware resources needed for computations.

— Lookup table also makes the scheme easily reconfigurable (if Fb -->
Rate relation changes), a useful workaround.

QCN: 3-point architecture

ReaP--CP--RefP

Allows signaling Fb=0 values to ReaP, which indicate /ack of congestion.
Only the RefP can do this without the use of RP-->CP association tags.

When a ReaP receives an Fb=0 signal, it just skips to the next cycle of
Fast Recovery or Active Probing; i.e. it increases the rate appropriately and
it restarts the byte counter

 Simple behavior, no increase gains or parameters.

Two flavors of signaling
 In-band: Using packet headers
e Qut-of-band: Using probe packets (as in E2CM and FECN)

In-band signaling

In the pseudocode released, we showed how the 6-bit Fb field in the
packet header can be modified at the switch for sampled packets and how
reflection occurs at CP and RefP.

A probe version of this scheme can also be done.

Simplifying signaling further

Note that

To maintain low drops while allowing sources to come on at 10 Gbps, we
need negative Fb values to be signaled backward; the forward path has a
larger delay.

To grab extra bandwidth, it is useful to signal Fb=0. We can employ
forward signaling to do this without tags.

Therefore, we propose

All Fb-negative signals generated probabilistically by CPs

RefP reflects only Fb=0 signals

This elegantly extends the 2-point architecture to the 3-point architecture
As we will see in the simulations, it also performs excellently

Two concrete signaling methods based on this proposal are...

Signaling in the 3-point architecture

1. Use probe packets, say 1 in K packets from the source
* Probe enters network with a single Fb0-bit set to 0 and passes through the CPs
e |fa CP has Fb < 0 value, it sets the Fb0-bit to 1
— When RefP receives a probe
 If FbO-bit is set to 1, do nothing
o Else, reflect probe with small probability (e.g. 1-3%)

2. Using the DE (Discard Eligible) bit in the packet header
 DE bit set to 0 when packet leaves source

— If a CP samples the packet

o |f DE bit is set to 0 and CP sends Fb-negative message for this packet, set DE
bit to 1

« If DE bit is set to 1, do nothing (specifically, don’t send Fb-negative message)
— When RefP receives a packet

o If DE bit is set to 1, do nothing

 Else send Fb=0 signal to source with small probability (e.g. 1-3%)

About the pseudocode

e The pseudocode is complete, but it is important to note that

— Some points pertaining to signaling (e.g. use probe packets or headers?) are
not yet finalized in the p-code because they are under discussion.

— The Fbfield in the packet header may not be needed if we use the DE bit or
probes.

— Parts of the p-code will be affected by decisions on above points (e.g.
overwriting Fb field in packet header).

 The performance of the algorithm does not depend on these decisions which are
signaling-related.

— Finally, the p-code continues to be edited because of user feedback. We will
post updates periodically.

10

- Have performed basic simulations
— Infinitely long-lived flows: stability of control loop
— Dynamic flows: FCT
— Baseline simulations

« More simulations, which study relationship of performance with
limited number of rate limiters is for further work. This is
v.useful to understand and an important implementation

consideration.

11

Unit step response vs FCT

« Historically, congestion control research has considered the performance of a
scheme under infinitely long-lived flows

— This gives the unit step response of the scheme

— Very useful for control-theoretic analysis and hence for picking the parameters for the
stability of the control loop

— But, it does not capture dynamic situation of flows arriving and departing (which is the
actual situation)

— It does not have a notion of “load” which can be increased; it is always at 100% load
— It does not capture flow completion time (FCT), a quantity users care about

- The recent literature takes a 2-step approach
— First study scheme under infinitely long-lived flows
— After picking parameters and ensuring stability of control loop, consider FCT

— This is consistent with CPU performance under “workloads” consisting of files and
brings the role of algorithms into focus

— Key metric: FCT

- The study of dynamic flows and FCT has a firm intellectual basis, extensively
used; I'll give a tutorial soon and discuss concrete steps with Mitch, et al

12

