Effects of Pause and QCN on TCP Sources: Part 1 (Redo of simulation with slightly different topology)

Berk Atikoglu, Balaji Prabhakar

Analyze the Effects of Pause and QCN on TCP Sources: System Parameters

Congestion Management Schemes

- TCP Only
- TCP + PAUSE
- TCP + QCN + PAUSE

Switch Parameters

- PAUSE Disabled
 - Output queue limit of 150kbytes
- PAUSE Enabled
- No output queue limit
 - Applied on a per input basis based on watermarks
 - Watermark_hi = 130kbytes
 - Watermark_lo = 110kbytes

- QCN Parameters
 - W = 2.0
 - Q_EQ = 26kbytes
 - Gd = 1/128 = 0.0078125
 - Base marking: once every 150kbytes
 - Jitter on marking: 30%
 - Runit = 1Mb/s
 - MIN_RATE = 10Mb/s
 - BC_LIMIT = 150kbytes
 - TIMER_PERIOD = 15ms
 - R_AI = 5Mbps
 - R_HAI = 50Mbps
 - FAST_RECOVERY_TH = 5
 - Quantized_Fb: 6 bits
 - Jitter at RP: 30% (byte counter and timer)

• TCP Version \rightarrow NewReno

Topology and Workload

- Topology
 - Link Speed \rightarrow 10Gbps for all links
 - Loop Latency \rightarrow 18us
- Traffic Pattern
 - 9k byte transactions arriving with a Bernoulli distribution
 - Node 1 sends to Node 3 at 4Gbs (40%)
 - Node 2 sends data to Node 4 at 4Gbs (40%)
- Congestion Scenario

 Node 3 temporarily reduces its service rate from 10Gbps to 500Mbps between [250-750ms]

TCP and PAUSE

TCP, QCN and PAUSE

Interaction of QCN and TCP Part 2

Berk Atikoglu, Balaji Prabhakar

Overview

- In Part 1 we saw how QCN helps TCP discover the correct bottleneck bandwidth
 - In this case each TCP flow had its own RL
- In Part 2 (this presentation) we consider the case where RLs are shared among TCP flows
- Potential problem with the shared rate limiters
 - When there is a multipath scenario, a shared RL causes an innocent flow to lose throughput
- Proposed solution to the problem
 - A TCP flow can adjust its sending rate if it is aware of the congestion at Layer 2
 - This can be conveyed to it via a flowid
- Simulation results

QCN parameters

- W = 2.0
- Q_EQ = 26 Kbytes
- Gd = 1/128 = 0.0078125
- Base marking: once every 150kbytes
- Jitter on marking: 30%
- MIN_RATE = 10Mb/s
- BC_LIMIT = 150kbytes
- TIMER_PERIOD = 15ms
- R_AI = 5Mbps
- R_HAI = 50Mbps
- FAST_RECOVERY_TH = 5
- Quantized_Fb: 6 bits
- Jitter at RP: 30% (byte counter and timer)

Topology and Workload

- Topology
 - Link Speed \rightarrow 10Gbps for all links
 - Loop Latency \rightarrow 200us
- Traffic Pattern
 - 9k byte transactions arriving with a Bernoulli distribution
 - Two TCP flows at Node 1 generate a total traffic of 8Gbps (80%)
 - Flow 1 sends data to Node 2 at 4Gbs (40%) using the path LS -> CS1 -> RS
 - Flow 2 sends data to Node 2 at 4Gbs (40%) using the path LS -> CS2 -> RS
- Congestion Scenario

– CS1 temporarily reduces its service rate from 10Gbps to 500Mbps between [500ms-2s]

Throughput of the Flows (QCN and TCP)

- Ideally victim flow should get 500Mbps and innocent flow should get 4Gbps
- Shared RL causes innocent flow to also get around 500Mbps

Proposed solution

- If victim TCP flow was aware of the congestion, it could adjust its rate and innocent flow need not be affected
- RL is aware of the congestion
- RL can notify victim TCP flow
 - Drop a packet of the victim flow or,
 - Set the ECN bit of a packet of the victim flow
- In our scheme, we drop a packet of the victim flow

Simulation Results

