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Overview

« The stability (“unit step response”) of congestion control
algorithms are analyzed theoretically in the following way
— Write down equations describing evolution of algorithm
« Usually, these are nonlinear delay-differential equations
— Analyze these equations for stability

« Usually, linearize equations around operating point and analyze linear
system

« The reason QCN equations were hard to get were that the
Fast Recovery cycle is different from the usual source

behavior (there is usually no Target Rate--Current Rate)

— We show how the equations can be obtained
— And check their accuracy using simulations



Fluid Model for QCN

We will model only the key features of the QCN protocol.
Namely, we do not consider:

- Timer, HAI, extra fast recovery, window jittering, drift increase.

Switch behavior is not too different from what we have seen
for BCN => Easy to describe

But source behavior appears to have a new ‘memory’
element in the Fast Recovery phase. It’s not possible to
model this with a single variable, namely the current rate at
the source

This motivates using two variables at the source: Current
Rate, and Target Rate



Fluid Model for QCN

Target Rate (TR) is the rate that the source tries to reach by
successive phases of fast recovery

— Anytime the source sends 100 packets, and it receives no
congestion signals, CR increases to halve the distance between
CR and TR, i.e.: CR « (CR + TR)/2

— Anytime the source receives a congestion signal, it
multiplicatively decreases CR, i.e.. CR « (1-G4F,) CR

Upon receiving congestion signal, TR drops to CR, i.e.:
TR « CR

In Active Increase, after sending 100 packets and not
receiving congestion signals: TR < TR + a
— a =5 Mbps



Fluid Model for QCN
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10 sources, 300 us
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10 sources, 500 us
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10 sources, 2 ms
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