Effects of pause and QCN on TCP sources

Berk Atikoglu, Balaji Prabhakar

- Analyze the behavior of the TCP sources
 - With and without Pause and/or QCN
 - Scenario: Baseline

TCP: Discussion

- TCP is very sensitive to drops
- When many drops occur, TCP doesn't use Fast Re-transmit; instead it waits for a timer to expire before resending packets and increasing window size
- Default TCP RTO parameters:
 - Initial RTO: 3s; Minimum RTO: 1s
 - This is too large for our setting
- Our TCP RTO parameters
 - Initial RTO: 0.6s; Minimum RTO: 01.s
 - Following: au-sim-geisler-cm-tcp-effects-1107-v1.pdf
- Maximum window size: 65536 bytes
- TCP version: TCP Reno
- Other parameters have default values

QCN and pause parameters

- W = 2.0
- Q_EQ = 26 Kbytes
- Gd = 1/128 = 0.0078125
- Base marking: once every 150kbytes
- Jitter on marking: 30%
- MIN_RATE = 10Mb/s
- BC_LIMIT = 150kbytes
- TIMER_PERIOD = 15ms
- R_AI = 5Mbps
- R_HAI = 50Mbps
- FAST_RECOVERY_TH = 5
- Quantized_Fb: 6 bits
- Jitter at RP: 30% (byte counter and timer)
- Pause threshold: 120Kbytes
- Pause interval: 96usec

Scenario: OG Hotspot

- Baseline scenario
 - 10 nodes connected through a single switch
 - TCP connection from nodes 1--9 to node 0
 - All connections start at time 0s
 - Each link is 10Gb/s
 - Simulation duration: 0--3 seconds
 - RTT: 25us, 250us
- Switch o/p buffer size: 225Kbytes
- RL buffer size: Unlimited
- Hotspot
 - Service at one link is decreased to 2 Gb/s
 - Hotspot duration: 1sec -- 2 sec
- Simulations
 - No Pause, no QCN
 - Pause only
 - QCN only
 - Both QCN and pause

Topology & Workload Single-Hop with output hotspot

10 Gb/s links, 2 Gb/s hotspot @ $CS1 \rightarrow CO$

No Pause, no QCN; RTT = 25us (Buffer overflows result in dropped packets)

Pause Only, RTT = 25us

Queue Length

Individual Rates

QCN Only, RTT = 25us

Queue Length

Individual Rates

QCN and Pause, RTT = 25us

Queue Length

9

No Pause, no QCN; RTT = 250us (Packets dropped due to buffer overflows)

Pause Only, RTT = 250us

Net Throughput

Queue Length

Individual Rates

QCN Only, RTT = 250us

Queue Length

Individual Rates

QCN and Pause, RTT = 250us

Queue Length

Conclusion

- It is important to have some Layer-2 CM (in this case QCN) to get good, reliable TCP performance
- Delay (RTT) makes little difference
 - Downward transience longer when RTT is longer
- Fairness looks good
 - Maximum--minimum source rate ratio is tight
- Next
 - More extensive scenarios
 - Use BIC TCP at the hosts
 - TCP flow completion times