Effects of Pause and QCN on TCP Sources: NewReno

Berk Atikoglu, Balaji Prabhakar

Apr 24, 2008

- Quantify performance of QCN + TCP interactions in terms of Innocent
 Flow and Hot Spot Flow throughput
 - 500ms congestion scenario
 - Periodic congestion scenario
 - (These have been studied by Kwan et al; we use it to validate ourselves.)
- Analyze the effects of Pause and QCN on TCP source

System Parameters

Congestion Management Schemes

- TCP Only
- TCP + QCN
- TCP + QCN + PAUSE
- QCN + PAUSE

Switch Parameters

- PAUSE Disabled
 - Output queue limit of 150kbytes
- PAUSE Enabled
- No output queue limit
 - Applied on a per input basis based on watermarks
 - Watermark_hi = 130kbytes
 - Watermark_lo = 110kbytes

QCN Parameters

- W = 2.0
- Q_EQ = 26kbytes
- Gd = 1/128 = 0.0078125
- Base marking: once every 150kbytes
- Jitter on marking: 30%
- Runit = 1Mb/s
- MIN_RATE = 10Mb/s
- BC_LIMIT = 150kbytes
- TIMER_PERIOD = 15ms
- R_AI = 5Mbps
- R_HAI = 50Mbps
- FAST_RECOVERY_TH = 5
- Quantized_Fb: 6 bits
- Jitter at RP: 30% (byte counter and timer)

• TCP Version \rightarrow NewReno

Topology and Workload: 500ms Congestion Event

- · Multi-stage Output-Generated Hotspot Scenario
 - Link Speed = 10Gbps for all links
 - Loop Latency = 16us
- Traffic Pattern
 - 9k byte transactions arriving with a Bernoulli distribution
 - Transport layer is either UDP or TCP
 - Destination Distribution: Uniform distribution to all nodes (except self)
 - Frame Size Distribution: Fixed length (1500bytes) frames
 - Offered Load
- Nodes 1-6 = 25% (2.5Gbps)
- Nodes 8-10 = 40% (4Gbps)
- Congestion Scenario
 - Node 7 temporarily reduces its service rate from 10Gbps to 500Mbps between [0-500ms]

500ms congestion scenario

Our simulation

Bruce Kwan's simulation

Topology and Workload: Periodic Congestion Events

- Traffic Pattern
 - Same as before
- Congestion Scenario
 - Node 7 periodically reduces its service rate from 10Gbps to 500Mbps
 - Congestion Duration: 100ms
- Duty Cycle = 1/2
- · Simulation Duration: 1 second
- Performance Metric: Aggregate Throughput
 - Ideal Aggregate Innocent Flow Throughput: 24Gbps
 - Ideal Aggregate Victim Flow Throughput: 500Mbps or 3Gbps (Avg = 1.75Gbps)

Periodic congestion scenario

250 ТĊР TCP+QCN QCN+PAUSE TCP 250 TCP+QCN TCP+QCN+PAUSE QCN+PAUSE TCP+QCN+PAUSE 200 200 Queue Length (Kbytes) 150 150 100 100 50 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0,8 0.9 Ô 1 Time (s) Time (sec)

Right picture is taken form: http://www.ieee802.org/1/files/public/docs2008/au-sim-kwan-qcn-tcp-0308.pdf

Our simulation

Bruce Kwan's simulation

Analyze the Effects of Pause and QCN on TCP Sources: System Parameters

Congestion Management Schemes

- TCP Only
- TCP + PAUSE
- TCP + QCN + PAUSE

Switch Parameters

- PAUSE Disabled
 - Output queue limit of 150kbytes
- PAUSE Enabled
- No output queue limit
 - Applied on a per input basis based on watermarks
 - Watermark_hi = 130kbytes
 - Watermark_lo = 110kbytes

- QCN Parameters
 - W = 2.0
 - Q_EQ = 26kbytes
 - Gd = 1/128 = 0.0078125
 - Base marking: once every 150kbytes
 - Jitter on marking: 30%
 - Runit = 1Mb/s
 - MIN_RATE = 10Mb/s
 - BC_LIMIT = 150kbytes
 - TIMER_PERIOD = 15ms
 - R_AI = 5Mbps
 - R_HAI = 50Mbps
 - FAST_RECOVERY_TH = 5
 - Quantized_Fb: 6 bits
 - Jitter at RP: 30% (byte counter and timer)

• TCP Version \rightarrow NewReno

Topology and Workload

- Topology
 - Link Speed \rightarrow 10Gbps for all links
 - Loop Latency \rightarrow 24us
- Traffic Pattern
 - 9k byte transactions arriving with a Bernoulli distribution
 - Node 1 sends to Node 3 at 10Gbs (100%)
 - Node 2 sends data to Node 4 at 10Gbs (100%)
- Congestion Scenario

 Node 3 temporarily reduces its service rate from 10Gbps to 1Gbps between [250-750ms]; congestion propagates to Center Switch, which pauses both incoming links

Victim Flow -Innocent Flow -1e+10 8e+09 Rate (Gbps) 6e+09 4e+09 2e+09 Û 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 1 Time (sec)

Net Throughput at Switch 1 and 2

Queue Length at Switch 1 and 2

TCP and PAUSE

Center Switch

0,9

1

0,8

TCP, QCN and PAUSE

Net Throughput at Switch 1 and 2

Conclusion

- When pause is used, TCP alone has no knowledge of the ultimate bottleneck
 - That is L2 information which QCN is aware of
- QCN moves the bottleneck rate to the appropriate rate limiter at the edge, which TCP can then adapt to