
Tetris Models for Multicast Switches

Balaji Prabhakar

BRIMS

Hewlett-Packard Labs, Bristol.

Email: balaji@hplb.hpl.hp.com

Nick McKeown

Departments of EE & CS

Stanford University.

Email: nickm@ee.stanford.edu

Jean Mairesse

BRIMS

Hewlett-Packard Labs, Bristol.

Email: jem@hplb.hpl.hp.com

Abstract

This paper presents a uni�ed approach to

the analysis of schedulers for input-queued

multicast ATM switches. It is shown that the

general multicast scheduling problem can be

mapped onto a variation of the popular block-

packing game Tetris. Within this common

framework, one is able to describe and an-

alyze any multicast scheduling policy in an

intuitive and geometric fashion. One such

policy - TATRA, is described and its salient

features are discussed. This builds on earlier

work presented in [4] and [5].

1 Introduction

This paper presents a uni�ed approach to

the analysis of schedulers for multicast ATM

switches. A number of architectures have

been proposed for the design of multicast

switches [1, 2, 3]; however, we restrict atten-

tion to input-queued crossbar switches. This

allows us to exploit the inherent copying prop-

erties of the crossbar fabric; that is, the abil-

ity of the crossbar fabric to copy an input cell

to a plurality of outputs in one cell time. By

choosing an input-queued architecture, we are

also able to design high-speed switches with-

out being constrained by the (currently un-

satis�able) need for high memory bandwidth

required for the implementation of high-speed

output-queued switches.

Brie
y, we now describe our model. The

switches are assumed to have M input ports

and N output ports. Each input maintains a

single FIFO queue for arriving multicast cells.

It is also assumed that only the cell at the

head of line (HOL) can be observed and sched-

uled at one time. The scheduler is required

to be work-conserving, which means that no

output port may idle as long as there is an

input cell destined to it; and it is required to

be fair, which means that no input cell may

be held at HOL for more than M cell times

(M is the number of input ports). The goal

is to �nd a work-conserving, fair policy that

delivers maximum throughput and minimizes

input queue latency.

When a scheduling policy decides which

cells to schedule, contention may require

that it leave a residue of cells to be sched-

uled in the next cell time. The selection

of where to place the residue uniquely de-

�nes the scheduling policy. Theoretical re-

sults and simulations were presented in in

[4] and [5] in support of concentrating the

residue on as few inputs as possible. In

[5], a sample path proof established the op-

timality of the residue-concentrating policy

for the case of 2�N switches, and simula-

tion results presented in [4] and [5] supported

the residue-concentrating heuristic for general

M�N switches.

As a starting point we take the simple de-

scription of the Tetris analogy to multicast

scheduling presented in [4]. We make this de-

scription more precise and further elaborate

upon one such policy, TATRA. In particular

an algorithmic implementation of TATRA is

presented and we conclude by exploring some

its properties.

2 Tetris Models

Recall that the switch has M input and N

output ports and that each input maintains a

single FIFO queue for arriving multicast cells.

The input cells are assumed to contain a vec-

tor indicating which outputs the cell is to be

sent to. The size of this vector is referred to as

its fanout. It is imagined that each input cell

is constituted of a number of identical copies

of itself - one destined to each output. Each

of these copies is then referred to as an out-

put cell. (The terminology is clari�ed shortly

with the aid of Figure 1.) An input cell is con-

sidered to be completely served when all of its

constituent output cells have been discharged

to their respective outputs.

The class of policies considered: In ad-

dition to requiring that policies be fair and

work-conserving, we also require that they

assign departure dates to input cells once

the cells advance to HOL. This departure date

(DD) is some number between 1 and M spec-

ifying how long, from the current cell time,

the input cell will be held at HOL before being

discharged. Once assigned, the DD of a cell

cannot be changed (except for decremented it

by 1 at the end of each cell time). Clearly, this

class of policies is smaller than the class of

fair and work-conserving policies, since fair-

ness allows one to reassign departure dates

to input cells at HOL (but not beyond M cell

times).

Class of inputs: Following [5], we make

the \static input assumption" for switches.

That is, it is assumed that at time 0 an in-

�nity of cells has been placed in each input

bu�er according to some (possibly random)

con�guration. The description of the policies

holds equally well for \dynamic inputs" since

scheduling is based only on cells at HOL and

there is no look-ahead.

2.1 Tetris models: a sketch

We map the operation of an M�N multi-

cast switch onto a Tetris-like game in the fol-

lowing fashion. Input cells are mapped onto

Tetris blocks and since each input cell is com-

posed of a set of output cells, this Tetris block

will be an amalgamation of smaller blocks,

one for each output cell. Upon assignment of

DDs, the input cells at HOL will be dropped

into a box of size M�N - each slot in the box

capable of holding one output cell. Each of

the N columns of the box holds cells destined

to a speci�c output; i.e., column j holds cells

destined to output j. Refer to the example of

a 5�5 switch shown in Figure 1. In this �gure

and the others, the labels on the cells denote

the input port from which the cell has arrived.

The cells in the bottom-most row of the box

in Figure 1 at columns 1, 3 and 5 are all iden-

tical copies of a cell from input 1 destined to

outputs 1, 3 and 5 (note that this input cell

has a fanout of 3). Similarly, the cell at the

HOL of input 2 wishes to access outputs 2, 3,

4 and 5.

5

Input ports

5

Output ports

2

221 1 1

4 5 2

33 4

4

3

3

1 2 3 4

Figure 1: An example. Cells from inputs 1, 2,

3, 4 are assigned DDs 1, 2, 3, 4 respectively,

while the cell from input 5 is assigned a DD

of 4.

Suppose that, at time n, the switch is to

schedule k input cells which have advanced

to HOL; i.e., there have been precisely k de-

partures in the previous cell time (recall the

\static assumption" on inputs). After the

scheduler has assigned DDs to these input

cells, they are dropped into the box which cur-

rently holds the cells or residues at the HOL of

the other (M - k) inputs1. Each new output

cell may occupy any position in its appropri-

ate output slot as long as it (1) does not alter

the DD of any other cell, and (2) does not

leave any slots beneath it unoccupied. Again,

referring to Figure 1, note that there are no

unoccupied slots between cells in any output

column. The reason for this will become clear

momentarily.

At the end of time n, all output cells at

the bottom-most layer of the box are dis-

charged. That is, they are assumed to be

served. For the example in Figure 1, this

means that input 1 is completely served and

can advance a new cell to HOL at time 2. Input

2 manages to discharge cells to outputs 2 and

4 and is left with a residue for outputs 3 and 5.

Note that the discharge at any time is the set

of output cells in the bottom-most layer and

the residue is everything that's left behind.

It should now be clear that we do not allow

unoccupied slots in output columns because

of the restriction to policies which are work-

conserving. That is, these gaps may lead to

an idling of the output in the future.

At the beginning of time n+1, all residue

cells drop down one level and their DDs are

decremented by one. Those inputs which have

been completely served in the previous cell

time advance a new cell to the HOL. These

cells are assigned DDs, and the cycle contin-

1The order in which the scheduler assigns DDs to

the k new cells is important, because if the cells con-

tend for the same outputs it may not be possible to

assign them DDs in parallel. For example, suppose

that two of the new cells have a fanout of 1 and are the

only cells contending for a speci�c output. Then, de-

ciding who goes �rst is important since no two cells in

an output column can have the same DD. In general,

the order of assignment of DDs can either be pre-�xed

or made to depend upon some criterion (e.g., size of

fanout). However, for ease of exposition, we will as-

sume a pre-�xed ordering.

ues.

This is reminiscent of Tetris where blocks

are dropped into a bin and the aim is to

achieve maximum packing. The main dif-

ference here is that whereas Tetris blocks

are rigid and cannot be decomposed, work-

conservation will at times require that the

various output cells constituting an input cell

depart at di�erent cell times. Note also that

there are never more than M input cells in

the box. Thus when an input cell is dropped

into the box, it is guaranteed to depart within

M cell times, since input cells arriving in the

future do not alter its departure date. This

automatically ensures fairness.

2.2 Tetris models: the details

We now make the description of Tetris

models given in Section 2.1 mathematically

precise. As noted earlier, if a plurality of

cells advance to HOL at the beginning of a cell

time, it is important to determine the order

in which they are assigned DDs. In general,

it is better to allow this ordering to depend

on the constitution of the current residue and

of the new cells. However, for simplicity, we

choose the following �xed ordering: for i < j

the new cell at input i will be assigned its DD

before the new cell at input j. Before pro-

ceeding to de�ne a scheduling algorithm, we

make the following de�nitions.

Tetris Box. The Tetris box is speci�ed by a

matrix Ti;j; 1 � i �M; 1 � j � N , where the

rows are numbered from bottom to top and

the columns are numbered from left to right.

Thus T1;1 is the bottom-left slot of the box

and TM;N is the top-right slot.

Occupancy Set of an Input Cell. The oc-

cupancy set of the cell or residue at the HOL

of input l at time n is given by Ol(n) = fTi;j :

an output cell of l resides at Ti;j at time n.g

Peak Cell and Departure Date. An out-

put cell belonging to input l is said to be a

peak cell at time n if it occupies a slot in the

row whose number is given by maxfi : Ti;j 2

Ol(n)g. The corresponding row number is the

departure date (DD) of the input cell at time

n. That is, the peak cell of an input is one

which is furthest from the bottom of the box

and the distance from the bottom is its de-

parture date. Note that there may be more

than one peak cell for a given input.

Scheduling Policy. Given k � M new cells

c1; c2; � � � ; ck at the HOL of inputs i1 < i2 <

� � � < ik at time n, a scheduling policy � is

given by a sequence of decisions f�(n); n 2

Z+g, where �(n) associates to each of

c1; c2; � � � ; ck (in that order) the correspond-

ing occupancy sets Oc1
(n); Oc2

(n); � � � ; Ock
(n)

subject to the following rules.

1) No cell should change the DD of a cell

that is already scheduled. This means that

no peak cells should be raised or lowered.

2) For every i and j, if Ti;j and Ti+2;j are oc-

cupied, then so must Ti+1;j be. That is, there

should be no gaps in the output columns.

Algorithm for �. Given the above de�ni-

tions, the algorithm for implementing a policy

� just requires a speci�cation for transition-

ing from one cell time to the next. The fol-

lowing steps enumerate the procedure.

a) At the end of time n, all output cells oc-

cupying slots in the set fT1;j ; 1 � j � Ng

are discharged. In particular, input cells (or

residues thereof) with DDs = 1 are completely

served.

b) Each output cell occupying slot Ti;j for i

and j in the set f2 � i � M; 1 � j � Ng

is assigned to the slot Ti�1;j . The occupancy

set, peak cell(s), and the departure dates of

the residue are recomputed. For example, the

occupancy set of the residue at input l is given

by Ol(n + 1) = fTi;j : Ti+1;j 2 Ol(n)g. From

this peak cells and DDs are easily computed.

c) New cells advancing to HOL are then sched-

uled according to �(n+ 1).

2.3 An Example

Consider the example of Figure 1 again.

The input cells were scheduled in the order 1,

2, 3, 4 and 5. The occupancy sets are:

O1(1) = fT1;1; T1;3; T1;5g

O2(1) = fT1;2; T2;3; T1;4; T2;5g

O3(1) = fT2;1; T3;2; T3;3; T3;4g

O4(1) = fT2;2; T4;3; T3;5g

O5(1) = fT4;2; T2;4g.

From this the peak cells and DDs are eas-

ily calculated:

PC1(1) = O1(1); DD1(1) = 1

PC2(1) = fT2;3; T2;5g; DD2(1) = 2

PC3(1) = O3(1) � fT2;1g; DD3(1) = 3

PC4(1) = fT4;3g; DD4(1) = 4

PC5(1) = fT4;2g; DD5(1) = 4:

At the end of cell time 1, input 1 is com-

pletely served and advances a new cell to HOL.

Suppose that this new cell wishes to access

outputs 1 and 5. Figure 2 shows two di�erent

ways of scheduling the new cell.

Input ports Input ports

5

Output ports

1 2 3 4 5

24 5 2

33 1

4

3

3

4

1

Output ports

1 2 3 4 5

24 5 2

33 4

4

1

3

1

3

5

Figure 2:

3 TATRA: A multicast scheduling

algorithm

In this section we formally describe a spe-

ci�c multicast scheduling algorithm, TATRA,

�rst introduced in [4] and discuss its optimal-

ity properties.

Again we assume that the switch has been

idle prior to time 0 and that the \static in-

put assumption" holds. We denote by �� =

f��(n); n 2 Z+g the policy TATRA. Since

TATRA schedules input cells solely based on

their DDs, we assume that this number is

stamped upon all the output cells belonging

to a speci�c input cell (both peak and non-

peak cells). In this section, the departure date

of an input cell is not merely a number to be

inferred after scheduling the cell. Rather, as

will be shown below, it is used in the very

process of scheduling.

For time n � 1, the algorithm is speci�ed

by the following steps.

(1) At the beginning of time n, ��(n) assigns

a DD to each new cell at HOL according to the

formula given in Equation 1 below. The order

in which the DD is assigned when there is a

plurality of new cells is in increasing order of

their input port numbers.

(2) Each new output cell is dropped to the

lowest possible level in the appropriate out-

put slot, without getting ahead of another cell

whose DD is less than or equal to its own.

Remark: It follows that a non-peak cell can-

not be ahead of a peak cell unless it has the

same DD as the peak cell. If such a non-peak

cell exists, we call it a pseudo-peak cell. Cor-

responding to each output slot, there is thus

a (possibly empty) column of peak/pseudo-

peak cells. This column is called the peak col-

umn.

(3) Cells in the bottom-most row are dis-

charged. New DDs are computed for the

residue cells. Time is advanced to n+ 1.

Using the terminology introduced in the

remark above, and from the constitution of a

new input cell its DD is computed as follows

DD = maxfheight of peak columns across

fanoutg+ 1 (1)

3.1 An Example

By applying the above algorithm to the

example of Figure 1, it is fairly easy to see

that TATRA schedules the cells as shown in

Figure 3 below.

Input ports

4

Output ports

2

1 1 1

2

3

4

5 5

2

3

4

3

2

1 2 3 4 5

3

Figure 3:

3.2 Properties of TATRA

In this subsection we discuss some desir-

able properties possessed by TATRA. Due to

a lack of space, the properties are stated and

only brie
y explored. There is no claim to

completeness, indeed not all conditions under

which properties hold are stated. However,

we have strived to be as clear as possible.

Property 1: Under TATRA there is guaran-

teed to be a departure every cell time. This

is equivalent to the statement that there is a

peak cell in every row of the Tetris box. To

see this, merely observe that (1) under every

peak cell there is a column of peak (or pseudo-

peak) cells, and (2) the cell furthest from the

bottom of the box must be a peak cell.

Property 2: Suppose that we are given the

occupancy sets, Ol(n) and Om(n), of two in-

put cells l and m. If Ti;j 2 Ol(n) and Ti+k;j 2

Om(n) for some j and for some k > 0, then

it is impossible that there exists an output

j0 6= j such that Ti0;j0 2 Ol(n) and Ti0�k0;j0 2

Om(n), where k
0 > 0. That is occupancy sets

cannot \criss-cross". This follows from the

fact that output cells are arranged in output

columns according to a monotonic increase of

DDs. The \no criss-crossing" property cor-

responds to residue concentration (otherwise,

there could be a situation where some output

cells are discharged from one input and some

from another input leaving residues on both).

An interesting point is that as opposed to

the 2 � N case, in the general case of M�N

switches, residue concentration may not be

the \optimal" thing to do at all times. The

following counter-example shows that by de-

liberately distributing residue at some times

one can bene�t at future times.

3.3 Counter-example

Consider a 4 � 4 switch. Assume that

there is only a �nite number of input cells

to be scheduled (they all are in the input

queues at time 0 and the switch has been

idle prior to that time). There are 6 input

cells in all, 3 in input 1, and 1 each in in-

puts 2, 3 and 4. Their fanout (FA) is given

by: (I/p 1) FA = f1; 2; 3g then FA = f3g

then FA = f4g, (I/p 2) FA = f1g, (I/p 3)

FA = f1; 2g, and (I/p 4) FA = f2; 3g.

3 1

1443 3 4 434

1 2 3 4

Non-TATRA: Makespan = 3

11

43

1

2

1 2 3 4

11

13

1

2

Time 0 + +Time 1

1 2 3 4

11

13

1

2

Time 2+

1 2 3 4

11

44

1

2

33

1 2 3 4

11

44

1

2

3 1

Time 0 + +Time 1

1 2 3 4

11

44

1

2

33

1

Time 3+

TATRA: Makespan = 4

Figure 4:

From Figure 4, one gathers that the last

input cell leaves earlier under non-TATRA

than under TATRA. Note that non-TATRA

does not concentrate residue (at time 2, there

are residues from inputs 1, 3 and 4 as opposed

to just 1 and 3 for TATRA). One might think

that the policy non-TATRA has somehow an-

ticipated future inputs and has doctored a sit-

uation that is favourable for the speci�c input

pattern2. However, more elaborate counter-

examples exist which are not input-speci�c.

Conclusions: TATRA operates by schedul-

ing cells as early as possible, given knowl-

edge of HOL cells and the current state of the

residue. Each input cell is pushed as far down

towards the bottom of the box as allowed, and

is therefore able to depart early. Thus, despite

the counter-examples, the heuristic of residue-

concentration and the algorithm TATRA are

simple and e�ective ways of scheduling mul-

ticast cells.

Acknowledgement: B. Prabhakar and N.

McKeown thank R. Ahuja of Stanford Uni-

versity for several interesting discussions on

multicasting switching.

References

[1] Lee, T.T.; \Nonblocking copy networks for
multicast packet switching," IEEE J. Se-
lect. Areas Comm., vol.6, pp.1455-1467. Dec
1988.

[2] Turner, J.S.; \Design of a broadcast switch-
ing network," Proc. IEEE INFOCOM '86,
pp.667-675.

[3] Huang, A.; \Starlite: A wideband digi-
tal switch," Proc. IEEE GLOBECOM '84,
pp.121-125.

[4] Prabhakar, B. and McKeown, N.; \Designing
a Multicast Switch Scheduler," Proc. of the
33rd Annual Allerton Conference, 1995.

[5] McKeown, N. and Prabhakar, B.; \Schedul-
ing Multicast Cells in an Input-queued
Switch," Proc. IEEE INFOCOM '96.

2Input 1 holds 3 cells and thus will take 3 cell times

to be served out completely. Non-TATRA has en-

sured that input 1 is able to send out cells in each

successive cell time.

