Packet Dropping Mechanisms: Some Examples and
Analysis

Rong Pan, Chandra Nair, Brian Yang, Balaji Prabhakar
Department of Electrical Engineering
Stanford University
Stanford, CA 94305
{rong,mchandra,balaji} @ stanford.edu

Abstract

Recertly, there have been atternpts to design packet dopping mechanisms for sharing the bandwidth at a
congested link fairly among the flows nsing this link. Such mechanisms would allow the use of a simple FIFO
buoffer at the egress link of a ronter, instead of the more complicated buffer stuctures reguired by algorithms
like Fair (Joeneing. These varions paclket dropping mechanisms provide diffeent degiees of fairness and incar
differert levelsof implementation complexity. Their performance is genarally evaluated by simalation. This paper
atternpts to develop theoretical models for analyzing the trade-off between fairness and complexity. We begin by
considering some very simple packet diopping mechanisms, which capture the essential features of the problem,
and go on to build more accuate theoretical models asing fluid analysis. A pravicasly-intreduced algorithm,
called CHOKe, iz analyzed in detail. The accoracy of the fluid model is also verified nsing simuolations.

1. InTRoDUCTION

The Internet provides a connectionless, best effort service using the Internet Protocol (IP). It
relies on end hosts to regulate their instantaneous offered traffic during periods of congestion.
Given the increasing variety of transport layer protocols, and the diverse requirements of ap-
plications, there is a need for network routers to allocate bandwidth faicly. But fairness can be
expensive to provide: the well-known Fair Queueing (FQ) algorithm [1] provides packet-by-
packet fairness but requires per-flow state and per-flow queueing, which can be expensive to
implemnent.

Recently, a collection of algorithms have been proposed for providing fairness by differen-
tially dropping packets, rather than by differentially queueing and scheduling them as in FQ.
Such packet dropping schemnes are generally based on “active management schermes”, such as
the Random Early Detection (RED) algorithm [2]. These differential dropping algorithms or-
ganize the output or egress buffer of a router as a simple FIFO queue, and by dropping packets
belonging to the different flows in different proportions, they aimto allocate the outgoing link’s
bandwidth faicly among these flows. Although these differential dropping mechanisms usually
require a stnall data structure, in addition to the FIFO buffer, to guide dropping decisions, the
extent of faicness that they can achieve can be substantial.

For our purposes, we shall classify packet dropping schemes into three categories, depending
on the type of information they use to drop packets: (i) size-based schemes, (ii) history-based
schernes, and {iii) content-based schemes. We briefly describe these schemes now, and will
elaborate later in Section II. Size-based schemes drop packets based on the current size of the
FIFO packet buffer. They do not use any information about the constitution of the FIEO butfer,
i.e. the numbers of packets belonging to different flows that currently inhabit the buffer. Nor
do they use any information of the number of past arrivals and packets dropped from individual
flows. History-based schemes may take into account both the current size of the FIFO buffer

and the history of past arrivals andfor packet drops from individual flows. Finally, content-
based schermnes only take into account the current buffer-size and its imstanianeous constiition;
they do not use any history of past arrivals or packet drops. Note that size-based schemes drop
packets non-preferentially while history-based and content-based schemes preferentially drop
packets of individual flows to achieve fairness.

Our aim in this paper is to develop some very simple queueing models to understand the
effectiveness of these schemes in providing a fair bandwidth allocation, and the attendant com-
plexity of implementing them. The models we study in Section III are caricatures: they are
meant to be very simple, and represent a first attemnpt at understanding the trade-off between
fairness and implementation complexity. We shall see that, despite their simplicity, they reveal
somme interesting features of actual packet dropping schemes.

In Section IV we analyze the CHOKe alzorithm in detail using a fluid model. The goodput
obtained by a source as predicted by the theoretical luid model is compared with sitnulations
performed in ns [B]. These simulations show that the fluid model is very accurate. The model
also provides insight into the degree of fairness achieved as the number of samples used by

CHOKe is increased.

1. A CLASSIFICATION OF PACKET DROPPFING SCHEMES

As mentioned in the introduction, we classify packet dropping mechanisms into three cat-
egories and study a very simple common model for evaluating them. We proceed by making
some definitions.

The packet dropping schemes we are interested in all organize the egress buffer as a single
FIFOQ queue containing all the packets from all the lows. Packets may be dropped from any
location of the buffer, and the decision to drop a packet may be based on one of the following
criteria:

1. The current size of the FIFO buffer. A packet may be dropped either deterministically or
according to a probability which depends on the size of the buffer. The main examples of such
a packet dropping mechanism are DropTail and RED. We shall refer to schemnes of this type as
size-based schemes.

2. A history of past arcivals and/or dropped packets. In this case we assume that in addition to
the current buffer size, a packet dropping mechanism maintains a tally of the nurnber of packets
received and/or the number of packets dropped from each flow. The ducation over which such
tallies {or histories) may be maintained is a parameter of the dropping mechanism. A packet of
a certain flow is dropped by referring to that flow’s history, but not by referring to the contents
of the current queue-size. Examples in this category are RED with penalty box [3], SRED [3],
AFD [7] and RED-PD [4]. These schemes will be referred to as historv-based schemes.

3. The current contents of the FIFQ buffer. In this case the packet dropping mechanism is
allowed to know only the number of packets belonging each flow that are currentfy in the
gueue, and it drops packets using only this information. It does not maintain any history. The
CHOKe algorithm [6] is an examnple of this type of scheme, which we refer to as a conteni-
based scheme.

II1. A S1MPLE MODEL OF PACKET DROPPING SCHEMES

Consider a single flow, and suppose that its packets arrive at a queue. We assume that the
inter-accival time is TID, with an acbitcary distribution on the marginals. Let the mean intet-
arrival time be A~ The queue has a limited buffer space, say equal to B (] < B <« oal.

F A

nn
—

'
Arrival Rate

Fig. 1. A flow's throughpat in the history-based schemes

Arriving packets are either dropped on arrival, or enqueued at this buffer and possibly dropped
later depending on the dropping discipline. Suppose each packet requires a fixed & amount
of service time ()] < § < =a). Using this very simple model, we wish to understand the
performance of each of the three different types of packet dropping schemes.

Size-based schemes: Consider the simple case of B = (J and & = {). Packets arrive at rate A
and are either served instantly or dropped, based on the outcomes of independent coin flips. If
¢ is the probability that a packet is served, then the goodput A, is equal to Ap packetsfsec. As
A grows, this grows without bound.

If B > {and § = 1, say, and packets arriving to a full buffer are dropped, then the goodput
also increases with the arrival rate A and will samrate at 1 as A = oo, A similar conclusion
will hold if arriving packets are dropped with an increasing probability as the congestion-level
of the buffer increases.

Thus, as might be expected, size-based schemes are unable to limit the goodput obtained

by a flow to a value less than the service rate. In particular, a source can consume all of the
server’s capacity by increasing its sending cate.
History-based schemes: Consider the queue with B = {) and § = 1. There is only toom
for one packet — the one in service — at any given time. This packet is served for 1 unit of
time. Separately, let there also be a “history clock™ which is either in the OFF state or in the
ON state. Arriving packets are admitted into the gueue only if the history clock is in the OFF
state. Otherwise, they are dropped. As soon as a packet arrives, the clock is set to the ON state
and stays there for A time units. Note that this opetation is triggered by every acriving packet,
whether it is admitted or dropped.

Now, it is easy to see that the only packets that are served ({i.e. not dropped) are those which
arrive at least A time units after the previous packet. This fact makes it easy to compute the
zoodput given the inter-arrival time distribution. For Poisson arrivals of rate A, the goodput is
A&~ As the sending rate of the source increases, the goodput increases to a maximum of
{He) ! and decreases to 0 as A increases further. Also note that the maximum value of the
goodput decreases as & increases. Figure 1 plots the goodput as a functionof Afor & = 1 and
H=2

Thus history-based schemes, which use some information about past arrivals to decide
whether to drop arriving packets, are able to limit the amount of goodput cbtainable by a
single source to a value strictly less than the service rate.

Content-based schemes: Now, consider again the queue with B ={and & = 1. Anincoming
packet is processed immediately if the server is idle {i.e. there is no other packet being served).

~dmpiwe
--d.mpnhe

N
s
|z \&L

'
urrival Rate

Thicughput
3

Fig. 2. A flow's goodput in the content-based scheme

Otherwise, the system can discard either (i) the packet in service, or {ii) both the incoming
packet and the one in service.

In the former case, it is obvious that the only packets that can successfully depart are those
which arrive at least one unit of time before their followers. Assuming Poisson arrivals of rate
A, it is easy to compute that a flow’s goodput equals 1o Ae™.

In the latter case where both packets are dropped, in order for a packet to depart, it must
satisfy two criteria. First, it must arrive at an empty system to avoid a collision with another
packet. Second, no other packet can arrive while it is being served. For Poisson arcivals of cate
A, it can be shown that the goodput of a flow equals

A=
2—g
Figure 2 shows a flow™s goodput in each of the two cases considered. Note that based
solely on the packet constitution in the system, and without using any history, the content-
based schemes described can limit the goodput of a flow to less than the service capacity.
When B > (], it is more cumbersome to analyze this scheme using the simple model described

here. We will describe a more powerful technique in the following section using CHOKe a5 a2
concrete exarmple.

(1)

V. AFLuiD MooeEL AnaLysis oFf CHOKE

In this section, we study the behavior of a content-based scheme, CHOKe [6], using a fluid
model. The CHOKe algorithm, like the other packet dropping schemes, uses a FIFO buffer
to store packets before transmitting them on the outgeing link. The precise description of the
algorithm is provided in earlier work (see [6]). For the purposes of developing the fluid model,
we describe it here more simply as follows.

When a packet arrives, another packet is drawn uniformly at random from the FIFO butfer,
and its header is compared with that of the arriving packet. If both packets belong to the same
flow, then they are both dropped. Otherwise, the sampled packet is replaced in its original
position in the FIFQ buffer and the arriving packet is queued at the tall of the FIFOQ buffer.
Multiple packets can also be drawn independently and uniformly at random from the buffer for
comparison. We will analyze this version of CHOKe later.

The FIFOQ buffer is modeled as a permeable tube through which packets of the different
flows, modeled as distinct types of fluid, pass. When a fluid unit from flow ¢ arrives at the input

of the tube, a unit amount of fluid is chosen from the tube uniformly at candom. If the fluid
chosen from the tube is of the same type as the arriving fluid, both the incoming fluid and the
fluid from the tube are released from the system. In the real algorithm, the incoming packet
is entirel ¥ dropped or retained. However, here it is possible to drop fractions of packets, since
fluid units can be defined arbitrarily. We can see this as a time-averaged version of what the
CHOKe algorithm does. Thus, on average, the rate at which flow ¢ packets are dropped from
the buffer is equal to the product of the average rate of flow ¢ arrivals, equal to Ay, say, and the
probability that a packet from flow ¢ is drawn from the queue.

A. CHOKe with one sample

In this subsection, we look at the version of the CHOKe algorithm in which only one sample
is drawn from the buffer for comparison. Let F be the total amount of fluid in the tube, and
F; be the amount of flow £ fluid in the buffer. The fraction of type £ fluid in the tube, F;/F,
is denoted by p;. Define L;{#)d# to be the amount of flow £ fluid that is 4 timne units old, i.e.
L;(#)dt represents the amount of flow % fluid that accived £ time units ago and remains in the
tube at the present time. Thus, L;{0} is the rate at which type 7 fluid entered the tube at this
moment, which equals the raw arrival rate A; minus the fraction of fluid that was dropped at
the ingress of the mbe. Since p; is the fraction of type ¢ fluid present in the FIFOQ butfer, the
chance that a randomly chosen fluid unit is of type ¢ equals p;. This will cause acriving type ¢
fluid drops at rate A;p;. Therefore, L{0) = A:{1 — p:).

After dt period, the amount of fluid that arrived ¢ + d# time ago and still remains in the tube
is L;{t + dt)dt. The difference, L;{t}d# — L;(t + dt)d#, is the amount of fluid dropped from the
tube during the infinitesimal period df. The drop is due to the occurrence of two events: (i) a
unit of fluid belonging to the L;{#)d# volurne is sampled from the tube, and (ii) incoming fluid
of type ¢ was compared against this sampled fluid. Since in the period dt, on average, Adi type
£ fluid arrives, we get
L(t)dt — L{t +dt}dt = At h {;’}dt

_ Lt _ At)
di F
and so, Ly(t) = L0} = A1 —ple ™. (2)

Equation (2) shows that once fluid is admitted into the pipe, it decays exponentially over time.
It also shows that flows with a higher arrival rates die out faster.

We are now left with determining p;. We note that since drops always occur in pairs, the
throughput of flow 2 is g; = A {1 — 2p;). A flow-conservation argument now implies

_A—py
= I
Assuming the expected queueing delay in the FIFD is I, we obtain

—NDfE (X — pJe o/
: ,

(3

i = LD} = (1= pi)dse

Solving for p; yields
A{E—Jqﬂf.tf'
B= o 3 niF (4)

9 _ o —MDfF"

We pause to note that equations (1) and (4) have a strikingly similar form! The notable differ-
ence is due to the delay of £} units introduced by the FIFO buffer, which is common to all the
flows sharing the FIFO buffer. In fact, this difference can be viewed as the result of the FIFO
buffer maintaining a common Aistory of all the packets that arrived within the past L2 units of
time. Thus, the operations in CHOKe are the same as those in the simple content-based scheme
discussed in Section III with the FIFO butfer providing a recent history of arrivals.

Note that I/ F is independent of a particular flow, but depends on the total amount of traffic
input to the FIFO buffer. Hence, for a fixed cate of aggregate input traffic, a flow’s throughput
stays the same no matter what the remaining teaffic mix is. The constant 2/ F can be obtained
by setting the net departure rate from the congested FIFO buffer to equal the service capacity

{normalized to 1 here):
vy
=1 (5)
i=1l

where Ny is the number of flows sharing the FIFOQ buffer. Further, since the congested buffer
cannot be empty, the following condition must be satisfied

Ny
ZP& =L (6)
1

Using equations (3], 4], {5)and (6], one can solve explicitly for the throughput of each flow
t under the CHOKe algorithm when one sample is taken from the FIFQ butfer.

B. CHOKe with muftipfe samples

When multiple packets are sampled from the FIFO butfer, and all packets belonging to the
same flow as the arriving packet are dropped, we may easily write down differential equations
as above. The details follow.

Let M be the number of packets drawn from the queue. Using similar argurnents to those in
Subsection TV-A, we easily obtain

_dLi{t) AML)
d F

()

Thus, L;{t) = L(0)g— Mt

A packet may be admitted and placed at the tail of the FIFQ buffer iff it survives M com-
parisons, one each against the candomly drawn samples. As before let p; be the probability of
drawing a flow ¢ packet from the queue. Then the incoming packet is admitted with probability
{1 —p; Y™, Therefore, L{0) = A:{1 — p:}™. and the throughput of flow 7, p,, equals

M5

= LDy = (1 = piYMe T2, (8)
Flow conservation tells us that L,{0} — p, = A,Mp,, and so
(1-p)H(1 - e 5) = Mp..)

Equations (5] and {6) continue to be hold in the multiple sample case, and together with equa-
tions {8) and (%) they allow one to solve for g explicitly.

C. Appfications of the CHOKe fluid model

In this subsection, we apply the results obtained above to study traffic mixes of UDP and
TCP sources arising at a congested router in the Internet. UDP sources send data at a fixed
rate regardless the level of congestion in the network while the data rate of TP sources are
responsive to congestion, and hence to packet drops. The fluid model developed in the pre-
vious section applies to UDP sources and we consider TCP sources in steady state, in which
case their {congestion-sensitive) data rates are assumed to be so as to fill up the capacity left
by unconsumed by the UDP sources.

1) One UDP source, multiple TCP sources: There are one UDP scurce and N, identical TCP
flows competing at a bottlenecked link of unit capacity, where N, is assumed to be large. First
suppose that CHOKe draws one one packet at tandom from the FIFQ butfer. The UDP source
being non-responsive offers traffic at rate A, regardless of the level of congestion. Since TCP
sources are congestion aware, they send traffic at a rate allowed by the router, and the rate is
indicated to themn by the dropping of packets. As a result, they incur much less packet drops
compared to the unresponsive UDP flow. This allows us to assurmme that the throughput of a
TCP flow is roughly equal to its arrival cate . In other words, if each TCP soutce offers traffic
at A; in steady state, then g, = A;. In such a network setup, we wish to study the performance
of the system under different UDP loads.

By Litle’s formula, the expected number of packets in the buffer that belong to a single
TCP flow is the product of the expected delay I? and its offered rate A;. Letting py to equal
the fraction of packets belonging to a TCP flow, and again assuming that there are a total of F
packets in the FIFO buffer, Little’s formula yields

Fp, = DX = Dy, (10)

where the second equation follows from our assumption that the arrival and departure rates for

TCP flows are oughly equal.
Let p, be the fraction of packets belonging to the UDP flow. Using equation (3] this may be

written as
Ay = fha

Py = Ty

Substituting for py and py in (6] gives

D Nygsy 0 Ay — fhy DNy Au+ pa

=1 11
E 22, = E 22, et
Now from (5] we get that Ny, = 1 — . Therefore, equation {11) becomes
D A =+ fhy
i it sl (12)
F 21— g}y
Substituting for 2/ F in {4), we obtain a relationship between Ay and gy
A+ fu) Au + fu
(2{1 — fhu) 2k

YT his statetnent is hed valid in gehetal, bot halds ih the scehados of ihlerest o us: i.e. when Ltheve ave UDP flows present ahd
acconnt from the largest fraction of dropped paclets.

U OP Thooughput Commpaceon
(21 TCPehocinga linkmkhn) UDP fliom, CHOKe wih | sampla

UDF Thronghpm
=
-

al
L~ s
— M8 Simulation
Qs = Fhid Madel Caknbtian Y
n T
0.l 1 10
Arrival Rate
Fig. 3. . v, (1 UDF with 1 sample)
L OP Theoughput Compas kon
(A1TCP ehxinga link mich) UI:IFfb'I'I..EHl:IH.ETIm'lmrI'FIIGI

[E Y

A

o
—— 1E Sk kcken
o -=- Fuld hlode| Calalalan
o i : : ; : : : ; ;
o a1 o o o= 1 11 L4 L L= 1

LUOP Achal Rxe

Fig 4. jiy vs Ay (1 UDP with 2 samples)

Figure 3 uses equation {13) to plot g, as a function of A,, and compares this against sim-
ulations obtained using ns. The ns simulations use 32 TCP sources, 1 UDP soucce sharing a
congested link of capacity equal to 1 Mbps {normalized here to 1). It demnonstrates that the
fluid model is in very close agreement with the ns simulation results. Using (13) one can deter-
mine the maximum throughput obtained by the UDP soucce to be u7* = (1 + &)~" == (.269
Mbps. Further, this is achieved when its sending cate equals A7 = (2e—1)}{1+&) 7! =2 1.185
Mkbps. Thus, when it is obtaining its highest possible share of the congesting link™s bandwidth,
the UDP soutces looses {1.183 — (1.268)/1.193 = 77.45% of its packets.

What happens when two packets are drawn at random from the queue? From flow conser-

U OP Thooughput Commpac ieon
(31TCP shacing a link with 1 UDP flow, CHOR: mih 2 campls |

olE

[N]
o4 M
- '/ ‘_hqt":-:__‘___

U OP Thecughput

ol —4-_._&__\“—\-“
/ [
R .."
[-]
ol —— 15 Sk ackon
am —=— Fluldhlode | Ca b lalony
a T T T T T T T T
Lu} nl o4 X} ek 1 1.1 1.4 iR} 1=

U0 P Acchal Rae:

Fig. 5. i v8 Ay (2 UDP with ? samples)

vation, we know that

Al = 2 Y = phe = 20 = pu=2—1;‘3+%. (14)

We also assumne gy 52 A and use the fact that p, = A/ F. Using these at Equations (5] and
(6) yields D/F = (1 — p,}{1 — p,} . And the relationship between g, and A, is:

— 3 2 :
.u'ﬂ:}'ﬂ(1|||3+%—) Fmp(—l_}';u(3+%—1)) (15)

Figure 4 plots the above relationship in comparison with an ns simulation. The plot demon-
strates the accuracy of the theory and also points out the fact that by using an extra sample
from the queue, CHOKe is able to further limit the maximum throughput obtained by the UDP
source.

2) Multiple UDP sources, multiple TCP sources: Now suppose that &, TCP flows and N,
UDP flows share a link of unit capacity. For ease of exposition we assume that all the UDP
flows send at equal cates and all TCP flows continue to respond identically to congestion.

{Consider the concrete case of N, = 2. Let both UDP flows have an accival cate A, and
let al] TCP flows have an arccival cate of A;. As before, assume that TCP sources incur srmall
drops, hence g4, =2 A, and use the fact that p, = AL/ F. From (5) and {6) we obtain D/F =
{1 — 2pu}{1 — 24} ~" and find the following relation between gy and Ay

" far : 22, oy

Figure 5 shows a plot of the above relationship as A, increases and, once again, we see that the
fluid model matches well with ns simulation.

Now, consider a more general system in which N, and N, are variables and suppose M
randotn samples are taken from from the queue. It is interesting to determine, for a given value

of Ny, how large M should be so as to limit the throughputs obtained by the UDP sources to
less than the service rate. It is clear that M should increase with IV, but what relationship
governs this increase?

Set # = MD/F and assume gy 52 Ay. Then from (%) we have
(1=p)" = Mp, > 0. (17)

Notice that the left hand side is 2 monotonically decreasing function of py in the tange {0,1).
It may be shown that we require M > N,(2 — ﬁ} in order for (17) to be valid. MNow, 1f
Ay = =, then BA, = 0. Since ze™™ = 0 as £ — oo, we deduce from () that p, — 0.
Thus, {2 — ﬁ}Nu randorn samples suffice to ensure that gy — {) as Ay — oo, This analysis
tells us that in order to limit the throughput obtained by multiple unresponsive or aggressive
flows in a network, one needs only to sample a number of packets of the order of unresponsive
flows. When the majority of the Internet traffic is TCP-friendly {i.e. congestion-responsive],
this simple analysis suggests that a content-based scheme can be much simpler to implement
than history-based schemes, which usually requice state of the order of the number of flows.

V., CONCLUSIONS

We have analyzed three types of packet dropping schemes: size-based, history-based and
content-based. A simple model revealed the role played by preferential dropping mechanisms
that use information from a history of past acrivals/drops or from the current contents of the
FIFO buffer in limiting the throughput cbtainable by sources that do not respond to conges-
tion. We also developed a quite accurate fluid model of a previously-proposed packet dropping
scherne: CHOKe. This model generalizes in several directions and informs that the number of
samples required to limit the throughput obtained by congestion unresponsive flows is on the
order of their number.

REFERENCES

[1]1 Demes, A, Keshav, 5. and Shenker, 5., “Analysis and simulation of a foe qoeseing algonthm®, foarmael of faremer-
wierk mg Research ond Experance, Ccl. 1980,

[2] Floyd, 5. and Jacobson, Y., “Random Barly Detection Cateways for Congestion Svoidance™, FEEE A CM Tromsec Hom on
Menwvorking, U4, pp 397413, Aog. 1993,

[3] Floypd, &, and Fall, K., "Rooter Mechahisios to Suppot BEhd-1o-End Cohgestioh Contol”, LEL Tachncad report, Febio-
ary 1997,

[+] Wahajan, B. and Floyd, 5., “*Contoll ng HighBandwidih Flows atl the Congested Bouted™ ro appeer SONWE 2000
[5] O, T., Lakshman, T. and Wong, L., "SRED: Stabilized RELC™, Froceedmgs of INFQOGM 59, bach 1999

[&] Pan,R., Prabhakar, B. and Bscunis, K, “CHOKe: 4 staleles active quene managemen scheme for approni mating faic
bahdwidth allocation™, Pracesdmgs of INFOOOM 2000,

[f/1 Pan,R.Breslao, L., Prabhakar, B. and Shenker, 5. "4 pproximate Faivhess T hrooghpot Diffevential Droppi ng”, sl i,
O STy wirs pre santed of Foster Sexsion of ACM SIGC QMM 2001

[B] ns- Nelwork Simolater Yemmon 2.0), Oclober 1994,

