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Abstract—The current Internet architecture relies on congestion awid-
ance mechanisms implemented in the transport layer protods, like TCP,
to provide good service under heavy load. If routers distrilute bandwidth M
fairly, the Internet would be more robust and could accommodite more di-
versity of end hosts. Most of the mechanisms proposed to agoplish this
can be grouped into two general categories. The first categgr which in-
cludes Fair Queueing (FQ [4]) and its many variants, uses p&et schedul-
ing algorithms that are more difficult to implement compared to FIFO
queueing. The algorithms in the second category, active que manage-
ment schemes with enhancements for fairnese.@, FRED [8], SFB [5]), are
based on FIFO queueing. They are easy to implement and are mhdairer
than the original RED [6] design, but they don't provide max-min fairness
among a large population of flows. Recently, a router mechasim, AFD
[14] (Approximate Fair Dropping), has been proposed to achéve approxi- U
mately max-min fair bandwidth allocations with relatively low complexity. RED FRED AFD
In this paper, we propose an implementation of AFD which can nmic the
performance of the original design with much less state. Fig. 3. Background: Mixed Traffic - drop probability
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|. BACKGROUND

Approximate Fair Dropping (AFD) [14] is an active queuéraﬁ'c would largely consist of bytes from faster flows ang-t

management scheme which uses a FIFO queue and drops p|cally these are the flows that send at rates equal to or above

ets probabilistically upon arrival. However, the decisiamether §1nedf?gnslg]:rieﬁol\:le?;;\ilov\:/vaﬂosvivrfcév?ﬁet Svr\]/(c)’;\{tfv)a |3r(t)he :glm,A?ILeD
to drop a packet (say from flow) or not is based not only 9 yway y bped.

on the queue size but also on an estimate of the flow’s ctarl—kes advantage of this property of traffic samples to eséma

. : . . ow rates. Therefore, it only needs to keep state propaation
rent sending rate;. To achieve max-min faimess, the drop; "'\ her of fast flows, which is much less than per-flow
ping function is defined to bg; = (1 — “22~),. As a re- ! b

sult, the throughput of each flow is boundgd by the fair Shar%té?ctiétssﬁﬁlfﬁill{ﬁgzzrrgﬁm)amssua S:g:%\gr?;rﬁ?bgr:gsls
ri(1 — d;) = min(r;,74r). Hence, drops do not occur evenl)}) P Y)- bp Y

across flows but are applied differentially to flows with dif " packets in the shadow buffer. Then its arrival rate can be ap-

: o roximated byr; = R7%, whereR is the aggregate arrival rate.
ent rates. The key design aspects of AFD lie in the methods %Ys clear thaty:ée dropb function can be re%grittgen as

whichr; andr,;, are estimated.
To estimate;, AFD uses the observation that, like the distri- Mfair

bution of flow sizes, the distribution of flow rates is alsodgen di =(1- Ti)

tailed, i.e. most bytes are sent fastflows and a vast majority

of flows areslow. For example, Figure 1 shows the cumulawherem s, = b=,

tive distributions of the 1-second flow rates for three difat In AFD, my,;, is obtained implicitly. Note that ifn ¢4, iS

traces; in these data sets, 10% of the flows represent 60% - 9@ied intentionally, . r;(1 — d;) would change accordingly.

of the total bytes transmitted. Therefore, a sample of tbent As a result, the queue length fluctuates. It will stabilizeewh

+ (1)



>, ri(1 — d;) equals the outgoing link capacity, at which point shadow buffer I
Mfair = b”%“. To enforce the queue length stabilizing around b=12
a target value, AFD updates ,;, periodically as follows,

Fowl ] | 2
mfair(t) = Myair t-—1)+alglt—1)— qtar_qet) flow table Flow 2 ;: 6
_B(Q(t) - Qtarget) (2) Flow 3 4
wheregq(t) is the queue length at theth sampleg(t — 1) is
the queue length at the previous sample, @nd,.; is the target when a | packet arrives, and a {
gueue size. Constantsandg are configurable parameters. The packet is selected to be replaced

detailed discussion regarding how to set these parameders c
be found in [14]. Using the above method, we can infgf,;,
dynamically with no additional state.

The performance of AFD has been evaluated in a variety o
scenarios using simulation. One typical simulation resailt
shown in Figures 2 and 3. The simulation set up consists of -
TCP flow groups (5 flows each) with different congestion con-
trol mechanisms and RTTsThe congested link bandwidth is Fow! ] | 2
10Mbps, thereforeR,;, equals 286Kbps. The performance
of AFD is compared against RED and FRED. Figure 2 shows
the average throughput received by each flow group. The col Flow 3 5
responding drop probability of each flow group is depicted in
Figure 3. The results demonstrate that AFD provides a goed af
proximation to fair bandwidth allocation by differentialiirop-
ping packets. Fig. 4. AFD-SB Design

In Section I, we discuss ways to implement AFD and intro-
duce an improved mechanism, AFD-NFT. Analysis in Section

Il shows that by the law of large numbers AFD-NFT behaves Figure 4 shows a simple example of the above process. The
like AFD on average. We evaluate the performance of thesgadow buffer of size 12 hold packets from three differemts$io
schemes and present the results in Section V. Flnally we CE)ow 1,2 and3. These flows have 2,6 and 4 packets present in
clude in Section VI. the shadow buffer respectively. Wheifrw 3's packet arrives,
a randomly choseflow 2's packet is replaced by this newly
Il. IMPLEMENTATION arrived packet. As a resulElow 2's packet count in the flow
Although theoretically AFD requires only one data struetur {@Pl€ is decreased by one whiéow 3s packet count is incre-
the shadow buffer, to function, it is infeasible to recount mented by one. These operations maintain the dgta strsct_ure
on each packet arrival. Hence, a direct implementation ef tfhe shadow buffer and the flow table) used to guide dropping
AFD algorithm, which we refer to as the AFD-SB design, relqlems;lons. Note that these data stru_ctureg occupy memachwh
quires two data structures: a shadow buffer which stores a & Separate from the FIFO buffers in which actual packets are
cent sample of packet arrivals and a flow table which keeps tigeued. In the next two subsections, we discuss ways in which
packet count of each flow that appeared in the shadow buff&€ can simplify the implementation of AFD.
The flow table structure can be implemented using a hash Aa—
ble or a CAM, which has O(1) lookup time. The update of the"
shadow buffer occurs probabilistically. When a packetvasj  Aiming to reduce the memory requirement of AFD-SB, we
with probability L (s is the update interval), a random packepropose a randomized approximation of AFD, which keeps only
in the shadow buffer is chosen and replaced with the arriviigie data structure, the flow table. The shadow buffer is agy |
packet. Although we could remove packets in a FIFO way, raitally present in the sense th@f\; m; = b still holds. Incre-
dom replacement avoids synchronization problems. Aftex-a menting the flow table upon packet insertions is straightfod
placement, the packet count for the flow which the victim gickand is the same as before. The challenge is how to remove a
belongs to (say flow) is reduced by onen; = m; — 1. Con- packet from the logical shadow buffer, i.e. to decrementa'fio
versely, the packet count for the flow which the incoming dckpacket count by one, without linearly traversing the flow en-
belongs to (say flowj) is increased by onep; = m; + 1. tries. In the ideal case of mimicking AFD-SB’s performance,
Assume the shadow buffer size lispackets and there al®® we would like a flowi’s packet to be removed with a probability
flows which have packets present in the shadow buffer, then= m;b~!. Thereforeon averageall m; of flow i's packets
SN mi=b. are replaced aftdrupdates.
The initial AFD-FT desighworks as follows: When it is time

shadow buffer I
b=12

flow table Flow 2 % 5

Reducing Memory

I The topology and the simulation set up is the same as the dreediscussed
in subsection IV-B. 2To be consistent with [14], we refer to this design as AFD-Ribtighout this
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Fig. 7. Offered Load and Throughput for 50 CBR Flows under Ad&Bigns
to update the logical shadow buffer, a small set of flow Klsre
chosen uniformly. Let be the size of the s&t. Then each flow
has an equal probability fV ! to be present in the set. Given
that a flow: is chosen, with a probabilityr; (3, ¢ m;)~ 1 its
count is decremented by one. AFD-FT trles to approximateTo improve upon the performance of AFD-FT, we propose a
p; = m;b~! under AFD-SB withp; = sN— mz(z .om;)~'. new AFD flow table design, which we refer to as AFD-NFT
AFD-FT can approximate AFD-SB’s performance when the@®ew Flow Table). AFD-NFT achieves the performance of
are no large flows whose packet counts are much bigger theRD-SB with the state requirement of AFD-FT, and it works
that of other flows. However if such flows do exist, then AFDas follows: When it is time to decrement a flow’s packet count
FT tends to penalize them by limiting their throughput to bly one (i.e. removing a packet from the logical shadow biffer
below the fair share. The reason for this is that all flows reve draw a small set of flow ids uniformly from the flow entries
equal chance of being present in the Seeven though a flow if such a set does not exist. A floir(e S)’s packet count is re-

(e S) with higher packet count has a higher probability of beduced by one with a probability @zf;,,;(zjfg m;)~'. Notice that

ing decremented. Therefore, a fléwvith a higher packet count the above operations are exactly the same for both AFD-FT and
has a lower chance than;b~! to be decremented for each upAFD-NFT. The next step, however, represents the cruciéddif
date. As a resultpn averageits total count deduction is lessence between the two. Under AFD-FT, a new$ét chosen for
thanm; after b updates, leading to a higher drop probabilityeach update. Under AFD-NFT, on the other hand, once & set
Using the same example in Figure 4, Figure 5 illustrates haosen, it is used for the next = a * (ijs m;) updates. The
AFD-FT would behave whenr equals one. By choosing oneconstant: is a parameteg 1. After m updates, a new set is cho-
flow at random, Flow 1, 2 and 3 have an equal chanc§ tf sen again and the same operations are repeated. Figure § show
be decremented by one. Under AFD-SB, however, the chanbesv AFD-NFT would work witha = 0.5 ands = 1. Each flow

for these three flows ar, 1, ands respectively. Thus, while it has a chance of of being drawn. Whelow 1is selectedsn,
needs 6 updates on average to reduce the Flow 1 count by @needuced to one. Singe = 1, a new flow will be drawn for

in AFD-SB, it takes only 3 updates to do so in AFD-FT. Smathe next table update. Suppdslew 2 is chosen instead, with
flows are favored, and there is a bias against fast flows. As aur= 3, Flow 2 will be the victim flow for the following two
later simulations show, this bias against larger flows cad te table updates before a new flow is selected. Similarlyafv 3

B. New Flow Table Design

a very significant throughput penalty. is drawn, the flow will be used for the next update. In the next
two sections, we will demonstrate that AFD-NFT performs as
well as AFD-SB.

paper.



Mixed Traffic with 1 UDP Source
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. ANALYSIS Fig. 10. Mixed TCP Traffic

Recall that our goal in designing AFD-NFT is to match the
performance of AFD-SB so that, afteupdates, a flow has on
averagen; of its packets replaced. By the law of large numbers, 4) Combine the above three arguments, afteipdates, the
we can prove that the performance of AFD-NFT is the same @agerage number of flowpackets replaced is equal to
that of AFD-SB on average. An outline of the proof follows: s N
NP; = — x — xam; = m,;.

1) We know from the above that each flow has the same N as
chance of being chosen in the s&t and the probabilityP;, which matches the desired behavior of matching AFD-SB.
issN~L.

2) The average packet count of a flow equals IV. SIMULATION RESULTS
, We evaluate the performance of AFD-NFT in a variety of sce-
Z;jv m; b narios and compare it against AFD-SB and AFD-FT. Our simu-
N N lation topology is depicted in Figure 6. Unless otherwisgesl,

the latencies at the access links are 2ms and the latenceg at th
Therefore, assume << N, the average total packet counts izongested link is 20ms. In all the experiments chosen to be
a chosen se§ is sbN~'. As a result, the total of packets thak 00, is set to 0.06 and equals 5. We present five simulation
are replaced equaldaN . So, to replacé packets, we need regylts in this section, which are separated into two sttses
to draw, in subsection IV-A, we demonstrate that AFD-NFT can perform
as well as AFD-SB in the cases where AFD-FT behaves poorly;
= — second, we show that all three algorithms perform similaxly
other cases.

number of sets.
A. Performance Improvement

3) Given a sefS and a flowi (¢ S), there areon average CBR Traffic Figure 7 shows a simulation run in which five
CBR flow groups (10 flows each) compete for the congested
link bandwidth of 10Mbps. The sending rates for each groep ar

NPS, = — o= ij — am; 50Kbps, 100Kbps, 200Kbps, 400Kbps and 600Kbps. The per-
Z_jeS 1 Z_jeS mp S formance comparison among different AFD designs is presknt
in Figure 7. The result shows that AFD-NFT can mimic AFD-
number of flow; packets to be replaced. SB’s performance by providing each flow its fair share. AFD-F

penalizes the aggressive flows by limiting their throughpuge
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9 P ( 9 ters compete against each other. The results in Figure 10 sho
that AFD-NFT performs equally well in the cases where AFD-

L i FT excels. All three AFD designs allocate bandwidth in a fair
under their fair share. Although the performance penaltyild manner.

in this scenario, we will show below that AFD-FT can severely _.

punish aggressive flows. The flow table access statistidsisn ti d D'ﬁferii ntthRTTs Al\jv[; bref;la\\/;sv\r/iﬁs;?fa?hr/] tvl\;?l'u'l,' th?ugh nrot

simulation are collected and tabulated in Table |. Sincevéire ?aky’14 _?Casﬁ.sb.t tﬁ ?AI(ZDSNFT q ere i fS are sfta

ance among individual flows is very small, as seen in Figureal ink [14]. 0 exhibit tha -1 JOES Not periorm worse,
weé perform this experiment. In this simulation, flows areasep

the statistical data is averaged within the ten flows in eachmy . .
so that it can be more easily presented. It is clear that thee d{rfted into 4 groups, 10 flows in each group. The RTTs (propaga-

obtained from the simulation is in very close agreement wi Ph de'?‘y only) are 37.5ms, 75ms, 11’2.5ms and 150'ms're'spec-
what the analysis predicts. Ively. Figure 11 shows that AFD-NFT’s performance is samil

Bursty On-Off SourcesWe next evaluate the performancé0 that of AFD-SB and AFD-FT. although there are some dis-
of AFD designs in the presence of an on-off source. In th epancies among flows with different RTTSs, the differerares

setup, an on-off source is sharing the congested link with ggtagmflcant.
TCP flows, whereR,;. equals 278Kbps. The bursty source
sends at the speed of the access link (100Mbps) for a very shor V. MEMORY REQUIREMENT

period,t,,, and then goes idle for timg ;. Its average sending h . . h h h
rate is 100MbpSE, . (£, +toff)’]- Only the throughput of the In the previous session, we have shown that AFD-NFT pro-

bursty source is plotted in Figure 8 since it shows the biggeddes reasonably fair bandwidth allocation. All the operas
discrepancies among different AFD algorithms. The TCP floW) the forwarding path are O(1). So the main question reggrdi
utilize the rest of the link bandwidth and the differenceam whether.AFD-NFT' Is practical ornot lies in its memory requir
those flows are small. Note that the left-most bars in therdiag ment. Smce_the size of the _séns small(u§ually Igss than .10)'
represent the throughput that the on-off source gets wiavit the flow ids inS can be easily stored using reg|sters. It is the
erage sending rate is only half &;,;,, in which case all three f1OW table that requires some memory buffering.
algorithms allocate the bandwidth fairly, i.e. provide timwv The size of the flow table is directly related to the number of
its request bandwidth. However, as the plot shows, when th@ws, N, present in the shadow buffer. In the various traces
on-off flow gets more bursty and sends abavey,;,, AFD-FT We have seen [14]V is typically less than one fourth f the
starts penalizing it. The more bursty a flow is, the more sevepumber of packets in the logical shadow buffer. We also fiiad th
the penalty. Conversely, AFD-SB and AFD-NFT allocate bangin order to achieve a good performanéeshould be roughly
width fairly; flows are not penalized for their burstiness. 10~ Hence,N equals2.5."—. Itis hard to estimate the
Mixed TCP Traffic with one UDP sourcEigure 9 represents value ofr;,;,. on a typical Internet link. To make a conservative
a simulation case where the traffic mix is one UDP source sh&stimate, we assumg,;, equals 56Kbps, the slow telephone
ing the link with 7 groups (5 flows per group) of TCP flowgnodem speed. Then for a link capacity of 1Gbps, it is simple
with different congestion control methods. For generaliaén- to obtain thatV is on the order of a few thousand. Therefore,
dow control mechanisms, the window increase has a form bk flow table can be easily implemented using a standard hash
w + aw™*, and the decrease of a form— bw'. The 7 groups table or CAM. The memory overhead is very limited.
in the simulation have different values of (a,b,k,l) and RTT
which is tabulated in Table Il. Note that the normal TCP has th VI. CONCLUSION
form of (1.0, 0.5, 1.0, 1.0). The right-most bars represéet t
throughput of the UDP flow under the different algorithmseTh We have proposed a new flow table based AFD design, AFD-
result shows once again that the AFD-NFT design can minfWFT. AFD-NFT reduces drastically the state requirement of
the performance of AFD-SB while AFD-FT fails to do so. AFD algorithm, and yet has virtually identical performance
This and other data suggests that in a wide range of scenarios
AFD provides a good approximation to fair bandwidth alloca-
Mixed TCP Traffic We remove the UDP flow from the abovetion, typically providing bandwidth allocations within -£5%
simulation. Only TCP flows with various congestion paramef the fair share.

B. Comparable Performance
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