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Fig. 1. Complementary Distribution of 1-Second Rates

Abstract—The current Internet architecture relies on congestion avoid-
ance mechanisms implemented in the transport layer protocols, like TCP,
to provide good service under heavy load. If routers distribute bandwidth
fairly, the Internet would be more robust and could accommodate more di-
versity of end hosts. Most of the mechanisms proposed to accomplish this
can be grouped into two general categories. The first category, which in-
cludes Fair Queueing (FQ [4]) and its many variants, uses packet schedul-
ing algorithms that are more difficult to implement compared to FIFO
queueing. The algorithms in the second category, active queue manage-
ment schemes with enhancements for fairness (e.g., FRED [8], SFB [5]), are
based on FIFO queueing. They are easy to implement and are much fairer
than the original RED [6] design, but they don’t provide max-min fairness
among a large population of flows. Recently, a router mechanism, AFD
[14] (Approximate Fair Dropping), has been proposed to achieve approxi-
mately max-min fair bandwidth allocations with relatively low complexity.
In this paper, we propose an implementation of AFD which can mimic the
performance of the original design with much less state.

I. BACKGROUND

Approximate Fair Dropping (AFD) [14] is an active queue
management scheme which uses a FIFO queue and drops pack-
ets probabilistically upon arrival. However, the decisionwhether
to drop a packet (say from flowi) or not is based not only
on the queue size but also on an estimate of the flow’s cur-
rent sending rateri. To achieve max-min fairness, the drop-
ping function is defined to bedi = (1 � rfairri )+. As a re-
sult, the throughput of each flow is bounded by the fair share:ri(1� di) = min(ri; rfair). Hence, drops do not occur evenly
across flows but are applied differentially to flows with differ-
ent rates. The key design aspects of AFD lie in the methods by
which ri andrfair are estimated.

To estimateri, AFD uses the observation that, like the distri-
bution of flow sizes, the distribution of flow rates is also long-
tailed, i.e. most bytes are sent byfastflows and a vast majority
of flows areslow. For example, Figure 1 shows the cumula-
tive distributions of the 1-second flow rates for three different
traces; in these data sets, 10% of the flows represent 60% - 90%
of the total bytes transmitted. Therefore, a sample of the recent
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traffic would largely consist of bytes from faster flows and, typ-
ically these are the flows that send at rates equal to or above
the fair share. Most slow flows won’t show up in the sample
and can be ignored anyway since they won’t be dropped. AFD
takes advantage of this property of traffic samples to estimate
flow rates. Therefore, it only needs to keep state proportional
to the number of fast flows, which is much less than per-flow
state. Specifically, AFD maintains a shadow buffer ofb arrival
packet samples (header only). Suppose currently a flowi hasmi packets in the shadow buffer. Then its arrival rate can be ap-
proximated byri = Rmib , whereR is the aggregate arrival rate.
It is clear that the drop function can be rewritten asdi = (1� mfairmi )+ (1)

wheremfair = b rfairR .
In AFD, mfair is obtained implicitly. Note that ifmfair is

varied intentionally,
Pi ri(1 � di) would change accordingly.

As a result, the queue length fluctuates. It will stabilize when



Pi ri(1� di) equals the outgoing link capacity, at which pointmfair = b rfairR . To enforce the queue length stabilizing around
a target value, AFD updatesmfair periodically as follows,mfair(t) = mfair(t� 1) + �(q(t � 1)� qtarget)��(q(t)� qtarget) (2)

whereq(t) is the queue length at thet-th sample,q(t � 1) is
the queue length at the previous sample, andqtarget is the target
queue size. Constants� and� are configurable parameters. The
detailed discussion regarding how to set these parameters can
be found in [14]. Using the above method, we can infermfair
dynamically with no additional state.

The performance of AFD has been evaluated in a variety of
scenarios using simulation. One typical simulation resultis
shown in Figures 2 and 3. The simulation set up consists of 7
TCP flow groups (5 flows each) with different congestion con-
trol mechanisms and RTTs.1 The congested link bandwidth is
10Mbps, thereforeRfair equals 286Kbps. The performance
of AFD is compared against RED and FRED. Figure 2 shows
the average throughput received by each flow group. The cor-
responding drop probability of each flow group is depicted in
Figure 3. The results demonstrate that AFD provides a good ap-
proximation to fair bandwidth allocation by differentially drop-
ping packets.

In Section II, we discuss ways to implement AFD and intro-
duce an improved mechanism, AFD-NFT. Analysis in Section
III shows that by the law of large numbers AFD-NFT behaves
like AFD on average. We evaluate the performance of these
schemes and present the results in Section IV. Finally we con-
clude in Section VI.

II. I MPLEMENTATION

Although theoretically AFD requires only one data structure,
the shadow buffer, to function, it is infeasible to recountmi
on each packet arrival. Hence, a direct implementation of the
AFD algorithm, which we refer to as the AFD-SB design, re-
quires two data structures: a shadow buffer which stores a re-
cent sample of packet arrivals and a flow table which keeps the
packet count of each flow that appeared in the shadow buffer.
The flow table structure can be implemented using a hash ta-
ble or a CAM, which has O(1) lookup time. The update of the
shadow buffer occurs probabilistically. When a packet arrives,
with probability 1s (s is the update interval), a random packet
in the shadow buffer is chosen and replaced with the arriving
packet. Although we could remove packets in a FIFO way, ran-
dom replacement avoids synchronization problems. After a re-
placement, the packet count for the flow which the victim packet
belongs to (say flowi) is reduced by one,mi = mi � 1. Con-
versely, the packet count for the flow which the incoming packet
belongs to (say flowj) is increased by one,mj = mj + 1.
Assume the shadow buffer size isb packets and there areN
flows which have packets present in the shadow buffer, thenPNi=1mi = b.1The topology and the simulation set up is the same as the one tobe discussed
in subsection IV-B.
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Fig. 4. AFD-SB Design

Figure 4 shows a simple example of the above process. The
shadow buffer of size 12 hold packets from three different flows:
Flow 1, 2 and3. These flows have 2, 6 and 4 packets present in
the shadow buffer respectively. When aFlow 3’s packet arrives,
a randomly chosenFlow 2’s packet is replaced by this newly
arrived packet. As a result,Flow 2’s packet count in the flow
table is decreased by one whileFlow 3’s packet count is incre-
mented by one. These operations maintain the data structures
(the shadow buffer and the flow table) used to guide dropping
decisions. Note that these data structures occupy memory which
is separate from the FIFO buffers in which actual packets are
queued. In the next two subsections, we discuss ways in which
we can simplify the implementation of AFD.

A. Reducing Memory

Aiming to reduce the memory requirement of AFD-SB, we
propose a randomized approximation of AFD, which keeps only
one data structure, the flow table. The shadow buffer is only log-
ically present in the sense that

PNi=1mi = b still holds. Incre-
menting the flow table upon packet insertions is straightforward
and is the same as before. The challenge is how to remove a
packet from the logical shadow buffer, i.e. to decrement a flow’s
packet count by one, without linearly traversing the flow en-
tries. In the ideal case of mimicking AFD-SB’s performance,
we would like a flowi’s packet to be removed with a probabilitypi = mib�1. Thereforeon average, all mi of flow i’s packets
are replaced afterb updates.

The initial AFD-FT design2 works as follows: When it is time2To be consistent with [14], we refer to this design as AFD-FT throughout this
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to update the logical shadow buffer, a small set of flow ids,S, are
chosen uniformly. Lets be the size of the setS. Then each flow
has an equal probability ofsN�1 to be present in the set. Given
that a flowi is chosen, with a probabilitymi(Pj�S mj)�1, its
count is decremented by one. AFD-FT tries to approximatepi = mib�1 under AFD-SB withpi = sN�1mi(Pj�S mj)�1.
AFD-FT can approximate AFD-SB’s performance when there
are no large flows whose packet counts are much bigger than
that of other flows. However if such flows do exist, then AFD-
FT tends to penalize them by limiting their throughput to be
below the fair share. The reason for this is that all flows havean
equal chance of being present in the setS, even though a flow
( � S) with higher packet count has a higher probability of be-
ing decremented. Therefore, a flowi with a higher packet count
has a lower chance thanmib�1 to be decremented for each up-
date. As a result,on average, its total count deduction is less
thanmi after b updates, leading to a higher drop probability.
Using the same example in Figure 4, Figure 5 illustrates how
AFD-FT would behave whens equals one. By choosing one
flow at random, Flow 1, 2 and 3 have an equal chance of13 to
be decremented by one. Under AFD-SB, however, the chances
for these three flows are16 , 12 , and13 respectively. Thus, while it
needs 6 updates on average to reduce the Flow 1 count by one
in AFD-SB, it takes only 3 updates to do so in AFD-FT. Small
flows are favored, and there is a bias against fast flows. As our
later simulations show, this bias against larger flows can lead to
a very significant throughput penalty.
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Fig. 7. Offered Load and Throughput for 50 CBR Flows under AFDdesigns

B. New Flow Table Design

To improve upon the performance of AFD-FT, we propose a
new AFD flow table design, which we refer to as AFD-NFT
(New Flow Table). AFD-NFT achieves the performance of
AFD-SB with the state requirement of AFD-FT, and it works
as follows: When it is time to decrement a flow’s packet count
by one (i.e. removing a packet from the logical shadow buffer),
draw a small set ofS flow ids uniformly from the flow entries
if such a set does not exist. A flowi (� S)’s packet count is re-
duced by one with a probability ofmi(Pj�S mj)�1. Notice that
the above operations are exactly the same for both AFD-FT and
AFD-NFT. The next step, however, represents the crucial differ-
ence between the two. Under AFD-FT, a new setS is chosen for
each update. Under AFD-NFT, on the other hand, once a setS is
chosen, it is used for the nextm = a � (Pj�S mj) updates. The
constanta is a parameter< 1. Afterm updates, a new set is cho-
sen again and the same operations are repeated. Figure 5 shows
how AFD-NFT would work witha = 0:5 ands = 1. Each flow
has a chance of13 of being drawn. WhenFlow 1 is selected,m1
is reduced to one. Sincem = 1, a new flow will be drawn for
the next table update. SupposeFlow 2 is chosen instead, withm = 3, Flow 2 will be the victim flow for the following two
table updates before a new flow is selected. Similarly, ifFlow 3
is drawn, the flow will be used for the next update. In the next
two sections, we will demonstrate that AFD-NFT performs as
well as AFD-SB.



Ps NPSi NPi Ns
FlowGrp ID sN�1 statistics ami statistics mi statistics N(as)�1 statistics

0 0.1 0.098 0.222 0.207 3.70 3.63
1 0.1 0.100 0.444 0.411 7.41 7.42
2 0.1 0.100 0.888 0.808 14.81 14.82 180 167
3 0.1 0.100 1.778 1.646 29.63 29.66
4 0.1 0.100 2.667 2.453 44.44 44.53

TABLE I

FLOW TABLE ACCESSSTATISTICS
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Fig. 8. Bursty On-Off Source

III. A NALYSIS

Recall that our goal in designing AFD-NFT is to match the
performance of AFD-SB so that, afterb updates, a flowi has on
averagemi of its packets replaced. By the law of large numbers,
we can prove that the performance of AFD-NFT is the same as
that of AFD-SB on average. An outline of the proof follows:

1) We know from the above that each flow has the same
chance of being chosen in the setS, and the probability,Ps,
is sN�1.

2) The average packet count of a flow equalsPi=Ni=1 miN = bN :
Therefore, assumes << N , the average total packet counts in
a chosen setS is sbN�1. As a result, the total of packets that
are replaced equalssbaN�1. So, to replaceb packets, we need
to draw, Ns = bsbaN�1 = Nas
number of sets.

3) Given a setS and a flowi (� S), there areon averageNPSi = miPj�Smj �m = miPj�Smj a �Xj�S mj = ami
number of flowi packets to be replaced.

Mixed Traffic with 1 UDP Source
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Fig. 9. Mixed TCP Traffic with a UDP flow
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Fig. 10. Mixed TCP Traffic

4) Combine the above three arguments, afterb updates, the
average number of flowi packets replaced is equal toNPi = sN � Nas � ami = mi:
which matches the desired behavior of matching AFD-SB.

IV. SIMULATION RESULTS

We evaluate the performance of AFD-NFT in a variety of sce-
narios and compare it against AFD-SB and AFD-FT. Our simu-
lation topology is depicted in Figure 6. Unless otherwise stated,
the latencies at the access links are 2ms and the latency at the
congested link is 20ms. In all the experiments,b is chosen to be
1000,a is set to 0.06 ands equals 5. We present five simulation
results in this section, which are separated into two subsections:
in subsection IV-A, we demonstrate that AFD-NFT can perform
as well as AFD-SB in the cases where AFD-FT behaves poorly;
second, we show that all three algorithms perform similarlyin
other cases.

A. Performance Improvement

CBR Traffic: Figure 7 shows a simulation run in which five
CBR flow groups (10 flows each) compete for the congested
link bandwidth of 10Mbps. The sending rates for each group are
50Kbps, 100Kbps, 200Kbps, 400Kbps and 600Kbps. The per-
formance comparison among different AFD designs is presented
in Figure 7. The result shows that AFD-NFT can mimic AFD-
SB’s performance by providing each flow its fair share. AFD-FT
penalizes the aggressive flows by limiting their throughputto be
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Fig. 11. Four TCP Flow Groups with Different RTTs (max = 150ms)

under their fair share. Although the performance penalty ismild
in this scenario, we will show below that AFD-FT can severely
punish aggressive flows. The flow table access statistics in this
simulation are collected and tabulated in Table I. Since thevari-
ance among individual flows is very small, as seen in Figure 7,
the statistical data is averaged within the ten flows in each group
so that it can be more easily presented. It is clear that the data
obtained from the simulation is in very close agreement with
what the analysis predicts.

Bursty On-Off Sources: We next evaluate the performance
of AFD designs in the presence of an on-off source. In this
setup, an on-off source is sharing the congested link with 35
TCP flows, whereRfair equals 278Kbps. The bursty source
sends at the speed of the access link (100Mbps) for a very short
period,ton, and then goes idle for timetoff . Its average sending
rate is 100Mbps*ton(ton + toff )�1. Only the throughput of the
bursty source is plotted in Figure 8 since it shows the biggest
discrepancies among different AFD algorithms. The TCP flows
utilize the rest of the link bandwidth and the differences among
those flows are small. Note that the left-most bars in the diagram
represent the throughput that the on-off source gets when its av-
erage sending rate is only half ofRfair, in which case all three
algorithms allocate the bandwidth fairly, i.e. provide theflow
its request bandwidth. However, as the plot shows, when the
on-off flow gets more bursty and sends above2Rfair, AFD-FT
starts penalizing it. The more bursty a flow is, the more severe
the penalty. Conversely, AFD-SB and AFD-NFT allocate band-
width fairly; flows are not penalized for their burstiness.

Mixed TCP Traffic with one UDP source: Figure 9 represents
a simulation case where the traffic mix is one UDP source shar-
ing the link with 7 groups (5 flows per group) of TCP flows
with different congestion control methods. For generalized win-
dow control mechanisms, the window increase has a form ofw + aw�k , and the decrease of a formw � bwl. The 7 groups
in the simulation have different values of (a,b,k,l) and RTTs,
which is tabulated in Table II. Note that the normal TCP has the
form of (1.0, 0.5, 1.0, 1.0). The right-most bars represent the
throughput of the UDP flow under the different algorithms. The
result shows once again that the AFD-NFT design can mimic
the performance of AFD-SB while AFD-FT fails to do so.

B. Comparable Performance

Mixed TCP Traffic: We remove the UDP flow from the above
simulation. Only TCP flows with various congestion parame-

FlowGrp ID a b k l RTT
0 1.0 0.9 1.0 1.0 25ms
1 0.75 0.31 1.0 1.0 25ms
2 2.0 0.5 1.0 1.0 25ms
3 1.5 1.0 2.0 0.0 25ms
4 1.0 0.5 0.0 1.0 25ms
5 1.0 0.5 1.0 1.0 25ms
6 1.0 0.5 1.0 1.0 100ms

TABLE II

M IXED TCP TRAFFIC CONFIGURATION

ters compete against each other. The results in Figure 10 show
that AFD-NFT performs equally well in the cases where AFD-
FT excels. All three AFD designs allocate bandwidth in a fair
manner.

Different RTTs: AFD behaves reasonably well, though not
ideally, in the cases where flows with different RTTs are sharing
a link [14]. To exhibit that AFD-NFT does not perform worse,
we perform this experiment. In this simulation, flows are sepa-
rated into 4 groups, 10 flows in each group. The RTTs (propaga-
tion delay only) are 37.5ms, 75ms, 112.5ms and 150ms respec-
tively. Figure 11 shows that AFD-NFT’s performance is similar
to that of AFD-SB and AFD-FT: although there are some dis-
crepancies among flows with different RTTs, the differencesare
not significant.

V. M EMORY REQUIREMENT

In the previous session, we have shown that AFD-NFT pro-
vides reasonably fair bandwidth allocation. All the operations
on the forwarding path are O(1). So the main question regarding
whether AFD-NFT is practical or not lies in its memory require-
ment. Since the size of the setS is small(usually less than 10),
the flow ids inS can be easily stored using registers. It is the
flow table that requires some memory buffering.

The size of the flow table is directly related to the number of
flows, N , present in the shadow buffer. In the various traces
we have seen [14],N is typically less than one fourth ofb, the
number of packets in the logical shadow buffer. We also find that
, in order to achieve a good performance,b should be roughly10 Rrfair . Hence,N equals2:5 Rrfair . It is hard to estimate the
value ofrfair on a typical Internet link. To make a conservative
estimate, we assumerfair equals 56Kbps, the slow telephone
modem speed. Then for a link capacity of 1Gbps, it is simple
to obtain thatN is on the order of a few thousand. Therefore,
the flow table can be easily implemented using a standard hash
table or CAM. The memory overhead is very limited.

VI. CONCLUSION

We have proposed a new flow table based AFD design, AFD-
NFT. AFD-NFT reduces drastically the state requirement of
AFD algorithm, and yet has virtually identical performance.
This and other data suggests that in a wide range of scenarios
AFD provides a good approximation to fair bandwidth alloca-
tion, typically providing bandwidth allocations within +/-15%
of the fair share.
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