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Abstract

The classical random assignment problem has received a lot of interest in the
recent literature, mainly due to the following pleasing conjecture of Parisi: The
expected value of the minimum-cost permutation in an n X n» matrix with i.i.d.
exp(l) entries equals > 7" | %2 This crisp conjecture appears difficult to resolve
despite the recent proof of Aldous [Al 01] that in the limit as n — oo, the expected
minimum cost equals 72/6. Nevertheless, the simplicity of the finite conjecture and
of the asymptotic result suggest that there are interesting structural properties of
matchings worth exploring. In this paper, we present some such properties and
discuss their role in resolving Parisi’s conjecture. For example, our analysis has led
us to formulate a simpler conjecture which implies Parisi’s conjecture, and high-
lights the role played by the exp(1) costs. We provide various verifications of our
conjecture using analysis and simulation. Our approach also yields combinatorial
results regarding the structure of minimum-cost permutations of size min{m,n} in
rectangular matrices of dimensions m X n.

1 Introduction

The assignment problem is described as follows: Suppose there are n jobs and n machines
and it costs ¢;; to execute job ¢ on machine j. The problem consists of determining a
one-to-one assignment of the jobs to the machines so as to minimize the total cost of
performing all the jobs. More formally, given a cost matrix C' = [¢;;], the problem is to
determine the assignment 7 which solves

n
A, = min g Ci,r(i)-
i=1

In the random assignment problem the ¢;; are i.i.d. random variables drawn from some
distribution. An equivalent formulation of the random assignment problem in graph-
theoretic terms is this: Find the minimum-weight perfect matching in a complete n x
n bipartite graph with i.i.d. edges weights ¢;;. A quantity of interest in the random
assignment problem is the expected minimum cost, E(A,), and its asymptotic value.
Assuming, for now, that lim, F(A,) exists, let us denote it by A*.

There has been a lot of work on determining bounds for the expected minimum cost.
We survey some of the work; more details can be found in [St 97, CS 99]. Early work



uses feasible solutions to the dual linear programming (LP) formulation of the assignment
problem for obtaining the following lower bounds for A*: (1 + 1/e) by Lazarus [La 93],
1.441 by Goemans and Kodialam [GK 93], and 1.51 by Olin [Ol 92]. The first upper
bound of 3 was given by Walkup [Wa 79|, who thus demonstrated that limsup,, E(A,,)
is finite. Walkup’s argument was later made constructive by Karp et al [KKV 94]. Karp
[Ka 84, Ka 87] made a subtle use of LP duality to obtain a better upper bound of 2.
Coppersmith and Sorkin [CS 99] have further improved the bound to 1.94.

Meanwhile, it had been observed through simulations that for large n, E(A,) =~
1.642 [BKMP 86]. Mézard and Parisi [MP 87] used the replica method [MPV 87] of
statistical physics to argue that A* = %2. More interestingly, their method allowed them
to determine the density of the edge-weight distribution of the limiting optimal matching.
These sharp (but non-rigorous) asymptotic results, and others of a similar flavor that they
obtained in several combinatorial optimization problems, sparked interest in the replica
method and in the random assignment problem.

Aldous [Al 92| proved that A* exists by identifying the limit as the value of a minimum-
cost matching problem on a certain random weighted infinite tree. In the same work he
also established that the distribution of ¢;; affects A* only through the value of its den-
sity function at 0 (provided it exists and is strictly positive). Thus, as far as the value
of A* is concerned, the distributions U[0, 1] and exp(1l) are equivalent. More recently,
Aldous [Al 01] has established that A* = 7?/6, and obtained the same limiting optimal
edge-weight distribution as [MP 87]. He also obtains a number of other interesting re-
sults such as the asymptotic essential uniqueness (AEU) property - which roughly states
that almost-optimal matchings have almost all their edges equal to those of the optimal
matching.

The assignment problem with costs distributed as i.i.d. exp(l) continues to be of
particular interest due to the following beautiful conjecture of Parisi [Pa 98]:

n

1

=1

Note that this is an elegant restriction (seemingly true only for i.i.d. exp(1l) costs) of
the asymptotic result, in that F(A,) coincides with Euler’s expansion for 72/6 up to n
terms. Coppersmith and Sorkin [CS 99] have proposed a larger class of conjectures which
state that the expected cost of of the minimum k-assignment in an m X n matrix of i.i.d.
exp(1) is:

F(m,n, k) = Z ( !

Bi0iti<k V0T B)(n =)

By definition, F'(n,n,n) = E(A,) and their expression coincides with Parisi’s conjecture.

1.1 Outline of the paper

Parisi’s conjecture motivates the work in this paper, and we shall assume hereafter that
the ¢;; arei.i.d. exp(1). Our development allows us to arrive at a simpler conjecture whose
verification implies Parisi’s conjecture and highlights the role of the exponential-cost
distribution. We provide various verifications (proofs and simulations) of our conjecture.

While our conjecture and the development leading up to it are probabilistic in nature,
our approach also yields some interesting combinatorial results concerning minimum-
weight matchings in rectangular matrices. For instance, we show that in an n x (n +m)



matrix precisely (m+1)n elements participate in minimum-cost matchings of size n, and
they belong to a class of canonical templates which we identify and characterize. In the
special case when m = 1, we obtain a procedure for enumerating all such placements of
2n elements up to row and column permutations.

Section 2 contains the probabilistic analysis, Section 3 the combinatorial parts and
Section 4 concludes the paper. Throughout the writing of this paper, we have been
conscious of the constraint on space, and have therefore provided proofs only for results
that are essential to the exposition.

2 Probabilistic Analysis

2.1 Preliminaries

Denote by C' the sub-matrix obtained by removing the first row of C. For each i, i =
1,...,n, let S; be the cost of the minimum-cost permutation in the sub-matrix of C
obtained by deleting it’s i column. These quantities are illustrated taking C to be the
following 2 x 3 matrix.

~ 31611 6|11 3111 3|6
CimgaTl 20 T 2017 220 (o2
Denote the ordered sequence of S; by T;, ¢ = 1,...,n. That is, let o0 be the random
permutation of {1,...,n} such that S,y < ... < S(, (n) a.s. Then T; = S,;). In the
above example, T} =5, T, = 13 and T3 = 20.
Now consider E(A,), abbreviated to E,.

E, = / P(A, >z)dx = / P(A,(7) > z,V7) dz
0 0

:>53:5

= / P(c1j >z —5;,Vj)de = Eg </ P(c1j > x — s4,V)) dx|é’>
0 0

where Eg(.|C) denotes the conditional expectation with respect to the matrix C. Note
that conditioned on C, the S;’s are constant and are therefore denoted by s;. Next,
consider

I = / P(c1j > & —s4,Vj) dx —/ H P(c1j > —s;j) de  (independence of ¢y;)

tn [e’e]
— / dl‘+/ (z—t1) dl‘+ +/ 67((n71)x7t17...7tn_1) dx+/ ef(nm—tlf...,tn) dx
trh—1 tn

(where the t; are obtained by ordering the s;)

1 1 1
=t 1— - —(to—t1) _ — _—(23—ta—t2) _ ..~ _((n—l)tn—tl—---—tn,l).
1+ 26 66 o 1)6
Therefore,
- 1 .
E, = E(T; 1— —  FE —((—1)T; =Ty ——T}_1)
)+ ;i(i—l) (€ )
i—1
1 > —i(Ty-Ty)
= E(Tl) +1— _ " Ele™ j+1—1j (1)

(i 1)



To proceed further we make the following

Conjecture 1 For j=1,...,n—1, Tj41 —Tj ~ exp(j(n—j)) and these increments are
independent of each other.

We will comment on the validity of this conjecture later. For now, assuming that it is
true, we obtain

E(e7T+-T5)y — ni_]
(e )= )
Therefore,
5 =ity il Toon—j _n—i+l
E | e=t ! ! = E (e_j(THl_Ti)) — H J
, Ll 41 n
7=1 7=1
Substituting this in (1) gives
n—1
1 1
E, = FE — 4+ — - 2
b= B )

We are left with having to evaluate E(77). It turns out that Conjecture 1 proves
useful in doing this as well. That is, assuming that Conjecture 1 holds and by inductively
assuming that E, ; = Y77/ %, it is possible to eliminate E(T}) at (2) as follows.

The random variables Si,..., S, are all distributed as A, ;. Therefore, E(S;) =
E,_1, Y 1. Further, since S is one of the T;’s chosen uniformly at random, it is straight-

forward to note that E(S;) = Z E(T;). But for j =2,...,n
=1

E(Ty) = B(T)+ ) (B(Ty) = E(Ti-1))

k=2
d 1
= E(Ty)+ (by Conjecture 1).
Ve k—-D)(n—k+1)
Thus,
B(S)) 1iE(T) N E(T)+i !
VT & 74 ! (k—1)(n—k+1)
j=1 j=1 k=2
n—1
1 1
= BE(T)+=-) - (3)
Jj=1
n—1
Assuming, by induction, that E > ]% E(S}), we obtain from (3)
i=1
n—1
1 1
=3 (5-) (@)

To conclude the induction step and establish Parisi’s conjecture, we substitute E(7})
obtained above at (4) in (2) to get

n

A T | 1 1 1



2.2 Discussion of Conjecture 1

In this section we provide various indications of the validity of Conjecture 1; some proofs
and some simulations.

2.2.1 Exhaustive analysis for n=3

Consider the 2 x 3 matrix below and assume that the elements of T},7T, and T3 are
chosen from the set {cy1, ¢19, ¢o0, co3}. (Theorem 2 shows that, up to row and column
permutations, there are exactly 6 such statistically equivalent choices which admit the

following common evaluation.)

A tabulation of the cases, and probabilities conditioned on each case:

C11

Ci2

C13

C21

C22

C23

Case T 15 15 P((C/‘Z) P(T2 Ty >t |51) P(T3 —T5>1 |51)
1 |centeyn | catoy|cnton| = e e !
£ |ciatca | cntem|cntes| = e e
Es |cutey|cnten|caten| in e Sle? — e_ﬁu)
Ey |eutey|cnten | caten| in e Sle? — 8_64t)
E |ciatep|cnten|cnten| i e Sle? — e
E |cntes|cotes|aniten| 17 e % Sle? — e*64t)

Therefore,

_ 2 5 —2t 2t

2 5 6 e~
PIs—Ty>t)=6 (e 4+4— —[e? - —)) =%
(L-T>1) 6(726 * 1445(6 6)) ‘

Moreover, we have verified that T, — T} is independent of T3 — T,. We have also
verified analytically that the conjecture holds for the case when n = 4.

2.2.2 The distribution of 175 — T}
Theorem 1 Tp — T} ~ exp(n — 1).

Proof For:=1,...,nlet ¢; be the column such that T; is the cost of the minimum-cost
matching on C' — ¢; = M;. Then we make the following

Claim 1 The elements of ¢1 are completely specified by the conditions:
le—l-A(le)ZTl,j:]_,...,n—l, (6)

where for an element of column ¢, say x, A(x) is defined as the smallest n —2 xn — 2
minor of x drawn from C — cy. Further, T) — A(c;1) >0, j=1,...,n—1.

Before establishing this claim, consider the following 4 x 5 matrix, and let c; be the first
column. Without loss of generality, let the dots represent the elements of 7}. Then the
crosses represent a possible minor for c;;.



C11 [ ]

C21 [

C31 X [

C41 X °

Proof of Claim: The conditions at (6) are necessary because T} is the smallest permu-
tation in the whole matrix. They are sufficient because if any other column satisfies
all the conditions, then the sub-matrix obtained by deleting it will contain 7} as its
minimume-cost permutation.

Now Ty — A(cj1) >0, j=1,...,n— 1 because T contains an n — 2 X n — 2 minor
that could have been chosen by cj; and hence A(cj;) could only be smaller than this
minor and hence smaller than 7. [ |

Fact 1 Suppose X and Y are independent, exp(1), and independent of Z > 0. Then on
the event {X > Z,Y > Z}, X —Z and Y — Z are independent, exp(1), and independent
of Z.

Now (6) can be written as ¢j; > 77 — A(cj1) > 0, j =1,...,n — 1. This and Fact 1
imply that the variables

cii+A(ci) =Ty~ exp(l), j=1,...,n—1
and are mutually independent (since the ¢;; are all independent). But notice that

-1 = jfglniill {ejn + Alejn) — T}

Thus T — 17 ~ exp(n —1), being the minimum of n — 1 independent exp(1) variables. B
Incidentally, we can also conclude that 75 — 77 independent of all the elements of Mj.
Remark: An analogous procedure can be used to calculate the other increments
but, unfortunately, it does not give distributional statements . For example, define for
an element from column ¢;, say z, the quantity A(z,c;) to be the smallest n —2 xn —2

minor that is drawn from C' — ¢; but which contains an element from the column c;.
Then with ¢,j = 1,2, i #J

T3 — 1, = i i+ A(cpi, c) — 1o}
3 2 1511?512—2 {Ckz + (Ckz; C]) 2}
But even though we are minimizing over 2(n— 2) variables which might lead us to believe
that the result might be an exp(2(n—2)) r.v., unlike in the case of Ty — T}, the individual
r.v.s are neither exponential nor independent. So this approach does not extend for
determining the distribution of 75 — 15 or for the other increments.

2.2.3 13 — 15 is independent of 15 — T}

We will only give a sketch of the proof here: assume without loss of generality that
argmin; {cj; + A(c;1) —T1} = 1. Then, for j > 2, {cj1 + A(cj1) — T2} ~ exp(l); and
is independent of T, — T. But we show that T3 — T is a function of only the elements
of My and the r.v’s ¢j; + A(cj1) — 15 ,j > 2; all of which are independent of 7, — 77. R



2.2.4 An equivalence
We have obtained the expression for E(7}) at (4) using Conjecture 1:
n—1
5)
7=1
Coppersmith and Sorkin [CS 99] have separately conjectured that (see Section 1 for the
definition of F(m,n, k) )

E(h)=F(n—-1lnn-1)= Y L ~. (8)

1,§>0,i+j<n—1 (n —1- Z)(n - ])

A simple induction verifies the equivalence of (7) and (8).

2.2.5 Simulations

Figure 1 (a)-(d) display the distibutional fit of the increments 7. — 1j ~ exp(j(n —
7)), j=1,...,n—1 when n =>5. Subplots (e) and (f) show the agreement between the
distributions of the sums of increments 75 — T3 = (15 —1y) + (14, — T3) ~ exp(4) +exp(6),
Ty —T, = (Ty — T3) + (T — T3) ~ exp(6) + exp(6) where the sums on the right hand
side are those of independent exponentials of appropriate rates. In addition, we have
evaluated moments of various orders and have found agreement with Conjecture 1.

T,~T, ~ exp(4) T4 T, ~ exp(6) T, T3~ exp(6)
4 6 6
a b
@ ®]
3
4 4
2 3 3
2 2
1
1 1
0 0 0
0 1 2 3 0 1 2 0 1 2 3
T,-T, ~ exp(4) T~T_ ~ exp(4)+exp(6) T,~T, ~ exp(6)+exp(6)
4 2 25

(d) ©
2
3 15
15
2 1
1 o
1 0.5
0.5
0 0 0
0 1 2 3 0 2 4 0

Figure 1: Distribution of increments and their sums for n =5

4

3 Combinatorics

In the previous section we considered the n — 1 x n matrix C' and studied probabilistic
properties of the costs of the minimum-cost permutations in the square submatrices



obtained by deleting a column at a time. Besides their cost, an interesting aspect of
these minimum-cost permutations is the combinatorial structure they induce on C.

In this section we consider the following combinatorial problem: Consider an n x
(n + m) matrix. Repeatedly delete m columns at a time and mark the elements that
constitute the minimum?!-cost permutation on the remaining n x n matrix. Of interest
is the number of entries marked in each row and in each column. The special case of
matrices with the dimensions of C' corresponds to setting m = 1 and is considered first.

3.1 Notation and Results

Consider an n x n + 1 cost matrix M = [m;;]. Denote by M;,1 < k < n + 1, the
n x n matrix obtained by deleting the k* column of M, and let ox(.) : {1,...,n} —
{1,...,n+1}—{k} be the minimum-cost permutation? in Mj. Further, let N; := {0} (i) :
1 < k <n+1} be the number of entries of row ¢ that participate in some minimum-cost
permutation. A trivial observation is that |V;| > 2, Vi. But we state the following
somewhat surprising theorem:

Theorem 2 |N;| =2, Vi.
Proof Provided in complete version of the paper.

An example 4 x 5 matrix of exp(1) r.v’s is reproduced below in which the elements in
bold are those that participate in the minimum-permutationsin the five 4 x4 submatrices.
One can see that exactly two elements per row are marked. If with each marked element
we identify a dot then we shall call the templates thus produced two-dot patterns.

3.0691 | 0.3962 | 0.3240 | 0.1273 | 1.0787 oo

0.1875 | 0.7545 | 0.3688 | 3.3028 | 0.3609 | dot representation ° °

0.0433 | 0.0804 | 0.8464 | 0.2590 | 1.8943 oo

0.3182 | 0.4228 | 2.5666 | 2.1152 | 0.5195 ° °

This result generalizes to n x n+m, m = 0,1,... cost matrices M in the following
manner: Let My, . denote the matrix obtained by deleting the m columns ki, ..., ky,

from M, and let oy, k. () : {1,...,n} = {1,...,n+m}—{ky,..., ky} be the minimum-
cost permutation in My, . Write N; := {0k, 4, (1) : 1 <k < ... < kp, < n+m}.
Clearly, |V;| > m + 1, Vi. We state without proof the following:

Theorem 3 |N;|=m+1, for m=1,2,...; Vi.

Proof Provided in complete version of the paper.

3.2 Characterization of two-dot patterns

Consider an n—1xn matrix of real numbers. Calculate the minimum weight permutations
of the n submatrices obtained by deleting one column at a time (call this procedure
MinSubPerm). From Theorem 2 we know that if we mark all the elements involved in

!The same results apply if we consider the maximum-cost permutation
2Throughout we will break ties between equally-weighted permutations with common domain and
range in favor of one of them consistently.



the above permutations, then exactly 2 elements per row will be marked and we will get
a two-dot pattern (TDP).

The purpose of this section is to study certain properties of and thus characterize
TDPs obtainable by the application of MinSubPerm to a matrix. Call the class of
these patterns MinTDP(n — 1,n). Simply by using this definition it is not clear how to
enumerate the patterns that belong to MinTDP(n — 1,n). We wish therefore to propose
a constructive characterization of such patterns.

Procedure: Define SumTDP(n — 1,n) to be the class of patterns obtained by finding
an assignment of non-negative integers to an n — 1 x n matrix such that:

e There are exactly two non-zero entries per row.

e The entries of each row and column sum to n and n — 1 respectively.
Theorem 4 : MinTDP(n —1,n) = SumTDP(n — 1,n).

Proof We only prove MinTDP(n — 1,n) C SumTDP(n — 1,n) here. The proof of the
other direction is more involved and is provided in the complete version of the paper. To
show that every pattern in MinTDP(n — 1,n) also belongs to SumTDP(n — 1, n) assign
to each dot a value equal to the number of permutations produced by MinSubPerm, that
it is a part of. Then the pattern of numbers will satisfy the properties of an element of
SumTDP(n — 1,n), because there will be exactly two non-zero entries per row, atleast
one non-zero entry per column; further since each row is part of all n permutations and
each column a part of n — 1 permutations, all rows and columns sum to n and n — 1
respectively. Hence proved. [ |

As an example, the following figure depicts the three possible two-dot patterns for a
4 x 5 matrix (upto row and column permutations).

114 411 4 1
1 4 312 4 1
1 4 213 4 1
1 4 114 213

4 Conclusions

We have considered the average-case analysis of the random assignment problem, mo-
tivated by a conjecture of Parisi. The main contribution is a refined conjecture which,
we believe, is more tractable since it reduces Parisi’s conjecture to proving that certain
quantities are distributed as independent exponentials. Our analysis has also led to the
discovery that the elements which participate in minimum-weight matchings in rectan-
gular matrices belong to a class of canonical templates. A procedure for enumerating
these templates for n x (n + 1) matrices is provided. When edge-weights are random,
we believe that a small number of these canonical templates, which share a substantial
fraction of elements, become highly probable. This suggests the following connection to
Aldous’ AEU property: As n — oo, the minimum-weight matching utilizes one of these
highly probable templates; therefore, almost-optimal matchings share almost all of their
edges with the optimal matching.
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