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Abstract

We consider an infinite series of independent and identical ·/GI/oo queues fed by an
arbitrary stationary and ergodic arrival process, A 1. Let Ai be the arrival process to the
ith node and let Vi be the law of Ai. Denote by T(·) the input-output map of the ·/GI/oo
node; that is, vi+ 1 = T(v i

). It is known that the Poisson process is a fixed point for T.
In this paper, we are interested in the asymptotic distribution of the departure process
from the nth node, vn +1 = P(vl

), as n~oo. Using couplings for random walks, this
limiting distribution is shown to be either a Poisson process or a stationary v-Poisson
process (defined below) depending on the joint distribution of Al and the service process.
This generalizes a result of Vere-Jones [11] and is similar in flavour to [10] where Poisson
convergence is established for departures from a series of exponential server queues using
coupling methods.

1 Introduction

Infinite server queues which dispense i.i.d. but otherwise arbitrarily distributed service times
(symbolically, ·/GI/oo queues) are well-known examples of quasi-reversible nodes. Their
behaviour under Poisson process inputs is well-understood; in particular, they are known to
possess the Poisson-in-Poisson-out property (see, for example, [8]). In this paper couplings
for random walks are used to study the asymptotic behaviour of departure processes in large
tandem networks of -/GI/oo queues under non-Poisson process inputs. Vere-Jones [l1J used
the method of probability generating functionals to study this model. He showed that as a
stationary, ergodic and weakly mixing point process passes through a series of independent
and identical -/GI/oo nodes, it converges to the Poisson process in distribution (we assume
throughout that the service times of the -/GI/oo nodes are not equal to a constant almost
surely; if this is the case, the ·/GI/oo queue is a pure delay system).

Simple counterexamples show that this result can be false if the weak mixing condition
is dropped, Le. the successive departure processes can converge to a non-Poisson process
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limit. For example, consider the deterministic arrival process with inter-arrival times exactly
equal to one unit passing through a series of independent and identical -jGI/oo queues with
integer-valued service times. Since the points of all the successive departure processes will
be separated by integer distances, Poisson convergence is impossible. However, as we shall
see, the departure processes do converge in this case also (albeit to a non-Poisson limit). The
coupling methods used in this paper allow one to obtain a complete characterization of this
limiting process in a natural way. The details of how this is done are given in Section 2.2.

In addition to (11), other studies of queueing tandems may be found in (2), (3), [6J and
[10J. In [2J Bambos and Prabhakar derive the asymptotic completion times of a finite number
of jobs flowing through a long series of queues where the service time of each job at different
queues forms a stationary and ergodic sequence. A similar model is considered by Glynn and
Whitt [6] with the service times of individual jobs at the various nodes being distributed in
an i.i.d. fashion. Bambos and Walrand [3] consider the G/G/l queue as an operator that
maps interarrival time sequences into interdeparture time sequences and study the limiting
behaviour of flows in a series of -jG /1 nodes. Mountford and Prabhakar [10] show that the
limit from passing a stationary and ergodic process of rate Q through an infinite series of
independent -jM/l queues of service rate 1 is a Poisson process. [lOJ is similar in flavour to
the present work in that both establish Poisson convergence results using coupling methods.
We conclude the introduction by providing the following brief summary of the rest of the
paper.

Random walk couplings are used to show that when any stationary and ergodic arrival
process is passed through a sequence of -jGI/oo queues, the successive departure processes
converge in distribution either to a Poisson process or to a stationary v-Poisson process
(defined later) depending on the type of service distribution. In particular, our result includes
Vere-Jones' result as a special case. Our methods also allow easy extensions to the case of
departures from a series of non-identically distributed queues.

2 Convergence of Departures in -/GI/oo Queueing Tandems

In this section we study departures from an infinite series of independent and identical· /GI/00

nodes. Suppose customers arrive at the first node in this series according to a process A l

given by

(1)
n=-oo

where· .. :st~I :s tg :s a< t'i :s ... :s t~ :s t~+l :s ... pathwise and 6x denotes the point mass
at x. The random variable t~ specifies the arrival time of the nth customer of AI. Note that we
allow non-simple point process (Le. batch process) inputs. We will suppose throughout that
arrival processes are stationary and ergodic with respect to the transformations {0 t, tEn},
where 0 t 0 A l = L~=-oo 6t~ -to Suppose that Q = E(NA1 (0,1]) is the rate of AI, where

n=-oo

is the number of points of A 1 in (0, IJ.

Let the service time of the nth customer at the mth queue be given by u;:'. Then, the
departure process from the (m - l)th queue, Am, is completely specified by the sequence of
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departure times

{ t~ + 'I: u~;n E z}.
k=l

We are interested in the asymptotic distribution of Am as m-too.

Definition 1: The service time of a customer is said to be lattice with span c if the possible
values of the service times are integer multiples of c. Otherwise the service is said to be
non-lattice.

Suppose customers x and y arrive at a series of independent and identical -/GI/oo queues.
If their service times at queue k are u~ and u~ respectively, then 8m = 2::=1 u~ - u~ =
2::=1 Zk is the difference in their total service times in the first m queues. In the sequel we
will often say that the service of a customer is recurrent or transient, when we actually mean
to say that the random walk, 8m , induced by the service times is recurrent or transient.

Proposition 1, the main result of this section, introduces the key ideas for establishing
weak convergence of departures by first considering tandems of identical· /GI/00 queues whose
service is non-lattice and recurrent. We then show how the same ideas generalize to other
cases (lattice and/or transient service) with appropriate modifications.

Proposition 1: The limit from passing a stationary and ergodic arrival process of rate 0,

A l = 2::'=-00 <5t::, through an infinite series of independent, identical· / GI/oo queues whose
service is non-lattice and recurrent is a Poisson process of rate o.

Preliminary sketch of proof: We will couple A l with an independent rate 0 Poisson
process pI = 2::'=-00 <5t~ by matching up points (or customers) of Al and pl. Customers
belonging to A l are coloured blue and customers belonging to pI are coloured red. So long
as a red and a blue customer evolve independently of each other, they perform a random walk
as regards to their inter-arrival times at each queue in the series. By noting that this random
walk is non-lattice and recurrent we conclude that at some finite queue these two customers
will be within <5 of each other, where <5 is arbitrarily small. Once they are sufficiently close, we
say they are "coupled" (at which point they are coloured yellow) and let them evolve together
forever. Thus, eventually all the points of Anand pn are close to each other and we get the
required weak convergence, since the pn's are all Poisson. In matching up customers of A l

and pI for the purpose of coupling them, we cannot just match up the kth customers (who
arrive at times tkand t~) because as k becomes very large, the difference in their arrival times
(tk- tD will become very large - typically of the order of.;k. To ensure that we are coupling
customers that are not separated by more than a fixed distance, say R, we divide time into
large blocks of length R. The choice of R is dictated by our desire to ensure that there are
approximately the same number of blue and red customers in the interval (jR, (j + I)R], for
j E Z. The details are as follows.

Proof of Proposition 1: The desired weak convergence (see Daley and Vere-Jones [4],
Chapter 9 for details on the weak convergence of point processes) follows once we show that
for each non-negative continuous function f on n with compact support

where P is a Poisson process of rate o. Since for every n, pn is a rate 0 Poisson process, it
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will suffice to show that Jf dAn - Jf dP
n ~ O.

Without loss of generality, suppose [0, Nj contains the support of f.

(2)

Fix e > 0 arbitrarily small. We will show that the point processes Anand pn can be
coupled so that for n sufficiently large

(3)

is bounded by a multiple of e. Since f has compact support it is uniformly continuous. Hence
we can find 0 < e so that e > sup(lf(x) - f(y)1 : Ix - yl < 0).

By the ergodic theorem,

~ (N
AI

(0, N], N
PI

(0, Nj) ~ (a, a) as N -+ 00

where NAI(O, Nj (NPI(O, Nj) is the number of points of Al (PI) in (0, Nj. Hence there

is a sufficiently large R E n such that the chance that both NA\O, Rj and NP\O, R]
are between R (a - ~) and R (a + ~) is greater than 1 - e. Fix such an R. Let U be a
random variable chosen uniformly on [0, R], independently of the two point processes A l

and pI and of the service times. Divide up the time axis into disjoint intervals of length R,
(jR + U, (j + l)R + Ujj E Z. Say that an interval (jR + U, (j + l)R + Uj is "good" if both
A 1 and pI have at least R (a - ~) points in it. By the joint stationarity of A 1 and P l, the
chance that for any j E Z such an interval is good is greater than 1 - e. Now, we match up
customers as follows.

1) If interval (jR + U, (j + l)R + Uj is not good, then no customers in the interval
(belonging to either A 1 or PI) are matched.

2) If the interval (jR + U, (j + l)R + Uj is good, then let the customers of Al and
pI in this interval be matched up, on a one-to-one basis from the left end of the interval
to the right end of the interval, possibly with a few unmatched customers of A 1 or pI (not
both) remaining at the right end of the interval. That is, if the arrival times of the customers
of Al and pI in this interval are, respectively, x{ ~ x~ ~ .. , ~ x{R(a-!lJ ~ "', and

y1 ~ y~ ~ ... ~ Y{R(a-!lJ ~ "', then match up the customer of Al at x{ with the customer

of pI at y{ for i S LR(a - ~)J. Once the customers at x{ and y{ are matched up, we say
they are "partners".

(Remark: Note that without the random variable U, the distribution of unmatched cus­
tomers over (jR, (j + l)Rj will be uneven with more unmatched customers being found
at the end of the interval than at the beginning. The addition of U makes the matching
operation, and hence the process of unmatched customers, time stationary.)

Now consider two partners that arrive at times x{ and y{ for some j E Z. 7
1 = x{ - y{

is the difference between their arrival times to the first queue. If ak and a~ are their service
times at the kth queue, then the random variable

m-l m-I

7
m = 7

1 + L af - af = 7
1 + L Zi

i=1 i=1
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is the difference in the arrival times of these customers at the m th queue. Because the service
is recurrent and non-lattice, r m is a recurrent, non-lattice random walk on n with starting
value r 1 . Thus Irml < ~ for some m(w) a.s. where ~ was chosen at the start of the proof.
By the coupling scheme, Ir115 R a.s. and so the distribution of the first such m(w) is tight
over matched pairs of partners.

Once the two partners of A l and pI, situated initially at times x{ and y{ respectively
are within ~ of each other, they are said to be "coupled" and are coloured yellow. We then
let them receive identical service times at all subsequent queues. This ensures that they
will forever remain within ~ of each other once they are coupled. Similarly all the other
partners couple at some queue or the other a.s. and then evolve together. Let C~ and Cp
be, respectively, the set of points of Anand pn that are coupled.

Now

I f dAn = I f dC~ +I f d (An - C:'D and

I f dPn =I f dCp+I f d (pn - Cp).

Consider the random variable Jf d (An - C~). Now

E [II f d(An - C~)I] 5 fma:z;E(# of points of An - C~ in (O,N)). (5)

The points of An - C~ in [0, N) are either those that have partners but have not coupled
with (come within ~ of) them yet; or those that did not have partners in the first place, Le.
the unmatched points of A I.

The expected density of unmatched points of A l (and hence of An for each n) is less
than or equal to 0 minus the expected density of matched customers. This in turn is less
than or equal to 0 - (0 - e/2)(1 - e) 5 e(o + 1/2).

For each matched x E A I, the probability of not being coupled after the nth queue
depends only on n and the relative displacement of x from its partner at the first stage.
As this displacement is bounded by R, the probability of not being coupled is bounded by
some c(R, n) which tends to zero as n tends to infinity for fixed R. The events of matched
pairs becoming coupled are mutually independent, given their initial positions in A l and pl.
Therefore the density of matched but uncoupled points in An is bounded by oc(R, n).

Putting the two paragraphs together we find that the expected number of uncoupled
points of An in [0, N) is at most e(o + 1/2) + oc(R, n). A similar bound holds for the
uncoupled points of pn. Therefore, for n sufficiently large, the chance that there is an
uncoupled customer in [0, N) for either An or pn is bounded by 3e(1/2 + 0). Using this in
(5) we get that

E [IJ f d (An - C~)I] 5 fma:z; 3e(0 + 1/2).

To establish the theorem, it now suffices to bound If f dC~ - f f dC pI·

Divide the points of CA in the interval [0, N] into G~ and BA, where G~ consists of
those ("good") points of C~ whose partners also fall in the interval [O,N]. B~ then consists
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of those ("bad") points of C~ whose partners fall in the set [-<5,0) U (N,N + <5]. Likewise
define G7> and B7>. With this,

If f dC~ - f f dC7>1 s If f d(GA- G7»1 + If f dBAI + If f dB7>l·

The last two terms in the right-hand-side of the above expression are bounded by 2a<5 fmaz <
2af fmaz in expectation, since 2a<5 bounds the expected number of points of B Aand B7>.
Thus,

Elf f dCA- f f dC7>I
< E If f d (GA- G7»/ + 2affmaz

= E (~If f d (GA- G7»11{# of pts of G7> in [0, N]=k}) + 2affmaz

00

< 2: k f 1{# of pts of G7> in [0, N]=k} + 2affma%
k=O

S faN + 2affmaz,

where the last inequality is due to the fact that the expected number of points of G p is close
to (but below) aN.

Thus, E If f dAn - Jf dP nI is bounded by a multiple of fj and since f is arbitrarily
small, we obtain the desired weak convergence. •

2.1 Taking care of transience

Going back to equation (4), suppose now that the random walk Tm = T1+ I:~=-;l CT: - CT~ is
transient. We will use what is essentially Ornstein's Coupling ([9], [5] page 281) to modify the
assignment of service times to partners in such a way that T

m becomes recurrent again. We
assume here that service times are non-lattice. The service times CT: and CT~ are now chosen
according to the following rules.

• For each k, either CTk and CTr are both bigger than M (to be specified later), or they are
both smaller than or equal to M .

• If they are both bigger than M, then let CT: = CTZ. If not, choose CT: and CT: to be less than
or equal M independently of each other (and of the service times of other customers).

In other words, big jumps are taken together and small jumps are taken independently.
With this modification, the random walk Tm =T1+ I:~=-;l CT: - CT~ then becomes recurrent
because CTk - CT~ is symmetric and bounded in absolute value by M.

We are now left with having to specify M. Even though the service times CTk are non­
lattice, when restricted to be less than some number M, they may be lattice. For example,
suppose the possible values of CT: are {i - 2.:1, i E Z+}. Then the possible values of CT:
restricted to be less than or equal to any number K are lattice with span ~. However, by
choosing K large enough we can make the span as small as we wish. Thus, in general when
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given Uk' choose M to be large enough that the span of uk restricted to be less than M is
smaller than f. Now the methods of Proposition 1 can be applied directly and we obtain the
desired weak convergence. We have thus proved the following theorem.

Theorem 1: The limit from passing a stationary and ergodic arrival process of rate Q,

A I = 2::'=-00 cSt::, through an infinite series of independent, identical -/ GI/oo queues whose
service is non-lattice is a Poisson process of rate Q.

2.2 Taking care of lattice-type service times

As mentioned in the introduction, passing an arbitrary stationary and ergodic process A I

through a series of independent, identical ·/GI/oo queues with lattice service times can result
in non-Poisson process limits depending on whether the arrival process is also "lattice" with
the same span or not.

If the arrival process A I is "not lattice" with respect to the service process then again a
Poisson limit occurs, as we shall presently show. However, the following example shows the
difficulty involved in a direct implementation of the coupling scheme outlined in Proposition
1 to pair points of A I with points of a Poisson process pl. Consider two "partners" a and p
belonging to A I and pi respectively. Suppose their arrival times are x and x + 3.6. Suppose
also that the service is lattice with span 1. As a and p progress through the series of queues,
it is clear that although the random walk, r m , associated with their inter-arrival times at the
m th node may be recurrent, since the service is of lattice-type Irml will never ever be less
than 0.4. Hence the partners will never couple. Thus, we need to modify the coupling and
pair only those customers that can come within cS of each other, where cS > °is arbitrarily
small. In order to proceed, we need the following definitions.

Definition 2: Given c > 0, x (mod c) is the element of [0, c), which taken away from x,
leaves an integer multiple of c.

Given a stationary point process A = 2::'=-00 6t ", consider

where cS", is the point mass situated at x. For each n, pn(w) can be considered as a prob­
ability measure on the compact space [0, c] with the two end points, 0 and c, identified.
To obtain pn(w) we "wrap around" the points of A(w) in [0, nc) about the interval [0, c].
The elementary lemma below shows that, for almost all w, pn(w) converges (in the sense of
weak convergence of distributions) to a random limit pA(w) whenever A is a stationary point
process of finite intensity.

Lemma 1: Let A =2::'=-00 6tn be a stationary point process of finite intensity and let

pn(w) = NA([~, nc)) L cSt; (mod c)·
t;E[O, nc)

Then there exists a random probability measure pA(w) on [0, c] such that a.s. pn(w) W~lI
pA(w).
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Proof: Let j be a continuous function on [0, e] with j(O) = j(e). Define F : n ~ n by
F(w) = Lt.E[O, e} j(ti)' Then F(0je(w)) = Lt.E[je, (j+l}e) j(ti - je). Hence

J
1 n-l

j dPn(w) = NA([O, nc)) L j(ti (mod e)) = NA([~, nc)) ~ F(0je(w))
t.E[O, ne} )=0

Since A is 0 t-stationary, it is certainly stationary with respect to shifts {0ne , n E Z}. It
follows from the Ergodic Theorem and the finite intensity of A that

n-l

lim !:. " F(0 'e(w))
n-+oo n L.J )

j=O

exists a.s. and is finite. Therefore limn-+ oo I h dpn(w) exists a.s. and is finite for a countable
dense set of functions h on [0, c) with h(O) = h(c).

Since the sequence of probability measures pn(w) is defined on the compact space [0, c)
with 0 and e identified, they are tight. Hence there exist weak sub-sequential limits for the
sequence pn. By the above argument, all the weak sub-sequentiallirnits are identical. Let
this limit be pA. This concludes the proof. •

Discussion: It should be noted that the limit in the above lemma can be random even when
A is ergodic. This is because a function that is 0 ne-invariant need not be 0 t-invariant. For
example, if A is the ergodic deterministic process of period 1 and e = 1, then pA(w) =
6x (w}, where X(w) is uniformly distributed on [0, 1). However, for ergodic A, pA(0t (w)) =
0 t (mod e) 0 pA(w). To see this, simply note that

pA(0t (w))

= lim NA([ 1 )) L 6t ;-t (mod e)
n-+oo t, t + ne t; E[t,t+ne)

. NA([O, ne)) 1 "
= nl.:.~ NA([t, t + ne)) NA([O, nc)) L.J 0 t (mod e) o6t; (mod e)

t.E[t,t+ne)

= nli~ NA([~, ne)) 0 t (mod e) 0 L 6t• (mod e), where t = ke + t (mod e),
t.E[ke,(k+n)e)

= 0 t (mod e) 0 J!..~ N A ([~, nc)) L 8t ; (mod e)
t; E[ke,(k+n)e)

Of course, since pA(0t (w)) is a measure on [0, e] with the end points being identified,
0 t (mod e) 0 pA(w) is understood to be a translate mod e of pA(w). By ergodicity of A,
the orbit of {0 t (w)} as t ranges over n is n, making the limiting measure pA almost surely
equal to a uniform translation (mod e) of some measure von [0, e).

Definition 3: A point process A = E:=-oo 8tn is said to be uniform on [0, c) if

1
NA([O, ne)) L 6t; (mod e)

t;E[O, ne)
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converges almost surely to the uniform distribution on [0, c] as n --+ 00.

We now obtain the following strengthening of Theorem 1.

Theorem 2: Let Al be a stationary and ergodic arrival process of rate a and let An be
the departure process from the (n - l)th queue when A I is fed through an infinite series
of independent, identical -/GI/oo queues. Then An converges in distribution to a Poisson
process of rate a if and only if
(a) The service is non-lattice
or
(b) The process Al is uniform on [0, c], the span of the service times.

Proof: Theorem 1 takes care of the Poisson convergence when (a) is satisfied.

To prove (b), we use the same argument as in Theorem 1, except that we must change
the rules for matching customers. This time given a continuous function f with compact
support (support contained in [0, N], say), E (a measure of how close the matched customers
should be in order to be declared "coupled"), and c the span of the service time, we divide
time into large blocks of length Rc (R is an integer). We then divide (0, c] into l/E intervals
of length EC (without loss of generality l/E is an integer), and choose R so large that outside
a set of probability 1 - E, the number of points of A l and pI in (0, Rc] which are in

R-I

U [kc+ iEC, kc+ (i + l)Ec) for i = 0,1"", (l/E - 1)
k=O

are both between Rc(aE - ~) and Rc(aE + ~). That is, we take the realizations of Al and pI
over the interval (0, Rc] and "wrap" them around (0, c]. If R is big enough, because Al and
pI are both uniform over c, the distribution of points in (0, c] after wrapping around will
be close to uniform with a high probability and on the average there will be RcaE points in
the above union of intervals. Hence a suitably large choice of R gives the desired minimum
of Rc(aE - ~) points with probability greater than 1 - E.

As before we choose an independent uniform U on [0, Rc] and we call an interval (jRc+
U, U+1)Rc+U] "good" if the number of points of Al and pI in (jRc+U, (j+1)Rc+U]
which are in

R-I

U [jRc+U+kc+iec, jRc+U+kc+(i+1)Ec) for i=O,l,"',(1/E-1)
k=O

are both within Rc(aE - ~) and Rc(aE + ~). We match up points in A I and P I as follows:

1) If the interval (jRc+ U, (j + l)Rc+ U] is not good, then no customers of Al and pl
are matched.

2) If the interval (jRc+ U, (j + I)Rc+ U] is good, and the arrival times of the customers
of Al and pI in

R-I

U [jRe + U + kc + iEC, jRc + U + kc + (i + l)Ec)
k=O

for each i = 0,1,···, (l/E - 1) are, respectively, x~i < x1 < ... < xt~C(Qf-~)J < "', and
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y~i < y~i < ... < yt~e(QE-~)J < "', then we match up the customer at x;i with the customer

at y;i for 1~ LRc(o:e - ~)J.

The rest of the proof is the same as in part (a) with the recurrent and transient cases
being dealt with appropriately.

It remains to show that if both conditions (a) and (b) fail then An cannot tend to a
Poisson process of rate 0: in distribution. However, should (a) fail, then the service time has
a distribution with span c, say. If (b) fails, then Al is non-uniform on [0, c]. But Lemma
1 tells us that pA(w) = limn....oo NA((~, ne» 2:t,E[O, ne) 1St, (mod e) exists a.s. As noted in the
discussion following Lemma 1, pA(Gtw) = Gt (mod e) opA(w). Therefore the event that pA
is uniform is translation invariant. As A I is ergodic, this event must have probability 0 or
1. By similar reasoning if pA is not a.s. uniform then it must be a.s. equal to some distinct
distribution v on [0, c] or a translation (mod c) of v. But in this case Theorem 3 below shows
that An cannot tend to a Poisson point process in distribution. •

Given a probability measure v on n with support in [0, c), define the measures vn
, n E Z

with support in [nc, (n + l)c) as translates of v by nc units of time. That is vn(S) =
v(S (mod nc)) for Borel sets S in [nc, (n + l)c). Note that vO = v.

Definition 4: Given c > 0 and a measure v on [0, c), the process P II is said to be a v-Poisson
process of rate 0: if the following conditions hold.
i) The number of points of P II in [nc, (n + l)c) is an LLd. sequence, as n varies over Z, with
each marginal being distributed as a Poisson, parameter o:c, random variable.
ii) Each point of P II in [nc, (n + l)c) is distributed over the interval [nc, (n + l)c) according
to vn , independent of all other points.

Note that according to the above definition P II is the usual Poisson process with param­
eter 0: if v is the uniform distribution over [0, c), and it is a batch process of Li.d. Poisson
random variables if v is a point mass at x E [0, c). Hence P II is, in general, not a time
stationary process. However, by shifting the paths of P II uniformly over the interval [0, c),
we obtain a stationary v-Poisson process.

Theorem 3: Let A I = 2::=-00 1St" be a stationary and ergodic process of rate 0: and suppose

1· 1 ".r
n~ NAI ([0, nc)) L..J Uti (mod e)

t;E(O, ne)

converges a.s. to a translate (mod c) of some distribution v on [0, c). Let An be the departure
process from the (n - l)th stage of an i.i.d. series of ·/01/00 queues when Al is inputted to
the first queue. Suppose the service time of each customer is lattice with span c. Then An
converges in distribution to a stationary v-Poisson process of rate 0:.

Proof: Again we couple A I with a stationary v-Poisson process pl. (In Lemma 2 we show
that pI is an invariant distribution for a lattice-type -JGI/oo queue.) First we note that the
ergodicity of A I implies that there exists a unique probability distribution v on [0, c) such
that a.s.

J~ NAI([~, nc)) L 1St , (mod e)
t,E[O, ne)

converges to a translate (mod c) of v. We construct our stationary v-Poisson process pI from
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A I (after possibly enlarging our probability space). This is different form previous couplings
where the two point processes Al and pI were chosen to be independent. Given Al let v(w)
be the limit of the random measures

nl~~ NA1([~, nc)) I: cSt. (mod c)
tiE[O, nc)

and let pI be a v-Poisson process, conditionally independent of Al given v. Then it is clear
that pI is a stationary v-Poisson process. Fix f arbitrarily small but positive. We pick integer
R to be sufficiently large that outside of probability 1 - f, the number of points of A l and
pI in [0, Rc) which are in

R-l

U [kc+ifC, kc+(i+l)fc) for i=O,I,·",(I/f-1)
k=O

are both between Rca (v(W)([if, (i + l)f)) -~) and Rca (v(W)([if, (i + l)f)) + ~). This R
can of course be chosen in a non-random way. The proof now proceeds exactly as in part (b)
of Theorem 2. •

Lemma 2: Consider a -/GI/oo queue whose service is lattice with span 1. If v is a probability
measure on [0, 1]' then a v-Poisson process of rate a, Pv, is an invariant distribution for
this queue.

Proof: The proof is based on the fact that any two· /GI/00 queues are interchangeable. (Two
queueing nodes in tandem are said to be interchangeable if, for arbitrary arrival processes, the
law of the overall departure process from the tandem is invariant with respect to the ordering
of the two nodes. It is obvious that any two -/GI/oo queues are interchangeable.) Let G1 and
G2 be two -/GI/oo queues and let a i denote the service time of a typical customer at node i,
i = 1,2. Suppose the laws of a i are given by

P(a2 E S) = v(S),

where S is a Borel subset of [0, 1]. We are required to show that G1(A) = A.

We first show that a batch arrival process B, of rate a, composed of i.Ld. Poisson random
variables living on the integers is invariant to the queue G1. To see this, suppose that B is
represented by the Li.d. sequence of Poisson random variables {Xn , n E Z} with E(Xn ) = a.
Split each X n into random variables {X~h>o by sampling X n in an Li.d. fashion according to
the probabilities Pk. The interpretation is that X~ is the number of customers arriving at time
n and requiring k units of service. Because X n is Poisson distributed each X~ is a Poisson
random variable with parameter apkj and, for distinct k and j X~ and X~ are independent.
Therefore the members of the doubly indexed family of random variables.{X~, n E Z, k ~ O}
are mutually independent. The departure process from the node D = {Yn } is given by
Yn = I:~o X~_k' The claim now follows since each Yn is a Poisson random variable of rate
a (being the sum of independent Poisson random variables of rate apk), and for distinct k
and j, Yk and Yj are independent. Therefore, G1(B) =B.

Notice that by definition, A = G2 (B). By interchangeability,

G1 (G2 (B)) = G2(G1 (B)).

But the left-hand side equals G1 (A) and the right-hand side equals G2(B) =
G1(A) =A and the lemma is proved.
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Corollary: Given v, a probability measure on [0, 1], a stationary v-Poisson process is an
invariant distribution for a -/ GI/oo queue whose service is lattice with span 1.

Remark The method we have advanced can also be easily extended to the case when the
queues in series are not Li.d. For instance, if the service times have the property that the
service time of every customer converges almost surely to zero, then the series of queues
has the property that all stationary erRodic inputs converge to a Poisson if and only if the
sums of symmetrized service times, I:k=l (ak - aD, do not converge. This follows from the
celebrated 3-series Theorem of Kolmogorov. To see how this applies to our case, note that if
the symmetrized service sums do not converge, then by elementary martingale arguments it
follows that the sums must have liminf equal to minus infinity and limsup equal to infinity.
This, together with the assumed property that service times tend to zero almost surely implies
that the coupling of matched customers must be successful.

Conversely if the symmetrized sums converge, then for each customer, x, there is a
random variable X(x) < 00 a.s. and a deterministic sequence of numbers, c(n), not depending
on x, so that for all n Iservice time of x at the first n queues - c(n)1 < X(x). Thus if the
initial arrival process is a sufficiently extreme mixture of long vacant periods alternating with
short dense batches of arrivals, then no Poisson convergence is possible.
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