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Abstract 

Traditionally, Output Queued switch architectures 
have been proposed to  implement Quality of Service 
schemes such as Weighted Fair Queueing. Output 
Queued switches with N input and output ports re- 
quire up to N serial memory operations per time slot 
(taken to be the time between packet arrivals at an in- 
put). Given the high and increasing processor/memory 
gap, it is important to shift the bottleneck from mem- 
ory t o  processor in order t o  obtain scalable architec- 
tures. It has recently been demonstrated that most 
Output Queued switches can be emulated using Com- 
bined Input Output Queued Switches which require 
O ( N )  processor operations and a small, constant num- 
ber of memory operations, thus moving the perfor- 
mance bottleneck from memory to  processor. These 
bounds hold against all, even adversarial, traffic pat- 
terns. In this paper we analyze the scheduling algo- 
rithms used in [2, 101 t o  obtain the above results when 
the input traffic is stochastic. We prove that if the 
queue size at each output port in the Output Queued 
switch being emulated has an exponential tail, then the 
above algorithms need just O(1og N )  processor opera- 
tions with high probability. 

1 Introduction 

A number of studies point out the need for us- 
ing scheduling schemes like Weighted Fair Queueing 
(WFQ) and Generalized Processor Sharing (GPS) for 
providing Quality of Service (QoS) guarantees to flows 
in a packet switched network [l, 3,491. These schemes 
assume an Output Queued (OQ) switch architecture, 
where incoming packets to a switch/router are imme- 
diately forwarded to their respective outputs. But the 
OQ architecture requires upto N serial memory opera- 
tions per time slot (taken to be the time between packet 
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arrivals at an input) for an N x N switch. That is the 
"speedup" of the memory needs to  be atleast N .  This 
makes the OQ switch architecture prohibitively expen- 
sive for high-speed implementations and for large sized 
switches. 

On the other hand, Input Queued (IQ) switch architec- 
tures require memories to  only run as fast as the line, 
i.e. IQ switches have a speedup of just one. This makes 
input queueing very appealing for switches with high 
line rates, or with a large number of ports. But IQ 
switches do not allow a fine grained control of the la- 
tency of packets, and hence cannot be used to provide 
strong QoS guarantees. 

It has recently been shown that Combined Input and 
Output Queued (CIOQ) switches, along with novel 
scheduling algorithms, can achieve exact emulation of 
OQ switches at low speedups'. By exhibiting different 
switch scheduling algorithms, Prabhakar and McKe- 
own [lo] and Chuang et al showed that a CIOQ switch 
can emulate a large class of output scheduling poli- 
cies at a speedup of four and two, respectively. This 
class includes the FIFO, strict priority, and weighted 
fair queueing scheduling policies. Thus, CIOQ switches 
can combine the advantages of OQ switches (good QoS 
guarantees) and of IQ switched (low speedup). The 
algorithms proposed in [2, 101 require at most O ( N )  
iterations' during each time slot. 

The above results hold in the worst case - given any 
input (even adversarial) traffic pattern, the above al- 
gorithms exactly emulate an OQ switch without ex- 
ceeding O ( N )  processor usage. In this paper we do 
not propose any new algorithms; we merely analyze 
the above algorithms and show that their running time 
on stochastic input traffic is better than the worst case 
running time with high probability. Specifically, we 
show that under some weak assumptions on the in- 

'We do not give a detailed history of the problem but mention 
only the results directly relevant to this paper; a detailed history 
can be found in [2]. 

2Both these solutions use a parallel matching algorithm that 
works in phases. Each phase takes a constant time, and therefore, 
the running time of these algorithms can be measured in terms 
of the number of iterations. For details , see [2, 101. 
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put traffic, the expected number of iterations is in fact 
O(1og n), for the algorithm presented by Prabhakar and 
McKeown as well as the one by Chuang e t  a l .  Further 
the number of iterations has an exponential tail, and is 
O(1og N )  with high probability. The above results hold 
even if arrivals for different output ports are correlated. 

Our analysis makes the tradeoff more appealing: 
Rather than use O ( N )  memory operations and a s- 
mall number of processor operations in the OQ switch, 
one can use O(1ogN) processor operations and a small 
number of memory operations. This suggests that the 
solutions proposed in [2, 101 are truly scalable to high 
speeds and to large sized switches. Preliminary sim- 
ulation work corroborates our analysis, and indicates 
that the constant hidden by the Big-Oh notation in 
O(1ogN) bound is small for realistic arrival rates [7]. 
It is important to observe that we do not change the 
solutions proposed in [2, 101 in any way. Nor do we 
inhibit the ability of these solutions to  emulate OQ 
switches under adversarial traffic. We merely study 
the performance of these algorithms under stochastic 
inputs. 

Section 2 provides a brief summary of the algorithm- 
s that will be analyzed. The algorithms use a stable 
marriage algorithm as a subroutine. In Section 3 we 
prove that both these algorithms take O(1ogn) itera- 
tions with high probability, as long as the input traffics 
are such as to  give output queue sizes with an exponen- 
tial tail. 

2 Background: Exact mimicking of 
output-queueing 

The algorithms proposed in Chuang et al[2], and Prab- 
hakar and McKeown [lo] assign an input priority and 
an output priority to  packets that are queued on the 
input side of the CIOQ switch. Having assigned these 
priorities, each input port ranks all the output ports 
in order of its preference. The preference of an output 
port X for an input port A is determined by the input 
priority of packets queued at A for X. If there is more 
than one such packet, then the packet with the highest 
input priority is chosen as the representative. If there 
are no such packets, the input port A does not include 
X in its ranking. Similarly each output port ranks the 
input ports. 

Once these rankings are done, both algorithms com- 
pute a stable marriage of input ports with output ports. 
The corresponding packets are then transferred across 
in one parallel memory operation (i.e. without any in- 

put or output contention). In this section we first define 
stable marriages and indicate how they are computed. 
Then we briefly sketch the techniques used by [lo] and 
[2] to assign input and output priorities to  packets. 

2.1 Stable marriages 
Consider N men and N women, where each man spec- 
ifies a (possibly incomplete) ranking of all the women 
according to  their preference as a partner, and similar- 
ly, each woman specifies a (possibly incomplete) rank- 
ing of all the men. Thus two different individuals may 
specify completely different rankings. 

A marriage is a pairing of men and women. A marriage 
is said to  be stable if for any woman Alice and any man 
Bob, at least one of the following three conditions is 
satisfied: 

1. Alice and Bob are paired to  each other, or 

2. Alice prefers her partner to  Bob, or 

3. Bob prefers his partner to  Alice. 

Finding stable marriages is a well-studied combinatori- 
al problem. Gale and Shapley proved that stable mar- 
riages always exist [4]. They gave an algorithm to com- 
pute these marriages; their algorithm can be thought of 
as a parallel algorithm that runs in at most M - N + 1 
iterations, where M is the sum of the sizes of the pref- 
erence lists of all the men. Due to  the special structure 
of the preference lists constructed by [2, lo], the Gale 
Shapley Algorithm converges in N iterations. Each it- 
eration of this algorithm has the following two steps: 

1. Each unengaged man proposes to  the woman he 
prefers most out of those who haven't rejected 
him yet. 

2. Each woman looks at all the proposals (if any) 
she got in Step 1 of this iteration as well as the 
man she is currently engaged to, if any. Out of all 
these men she chooses the one she prefers most 
and gets engaged to  him, breaking off her prior 
engagement, if any. 

The algorithm terminates when no new proposals get 
generated during Step 1. 

2.2 MUCFA: Emulating an OQ switch at a 
speedup of four 
Prabhakar and McKeown [lo] first considered the ques- 
tion of exactly mimicking an OQ switch with a CIOQ 

3097 

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 19:07 from IEEE Xplore.  Restrictions apply. 



switch employing a small speedup. Using a scheduling 
algorithm, called the Most Urgent Cell First Algorith- 
m (MUCFA), they showed that this exact emulation is 
possible at a speedup of just four, regardless of input 
traffic pattern and switch size. We now present a brief 
summary of MUCFA. 

Let TL(c) denote the time to leave for packet c; MUC- 
FA assumes that this time is known when c arrives at 
the switch. At time t ,  define the urgency of packet c to 
be TL(c) - t .  MUCFA computes four stable matchings 
between inputs and outputs during each time slot for 
transferring packets from the input side to the output 
side (hence the speedup of four). During each schedul- 
ing phase, MUCFA sets both the input and output pri: 
ority of each packet to be its urgency; the lower the 
urgency value of a packet, the more preferred it is by 
its input and output. For a detailed exposition of this 
algorithm, see [lo]. 

2.3 CCF: Emulating most OQ switches with a 
speedup of two 
Chuang et a1 presented a scheduling algorithm which 
they called CCF (Critical Cells First). Unlike MUCFA, 
CCF needs to compute and schedule only two stable 
marriages per switch cycle and hence has a speedup of 
two. The CCF algorithm, like MUCFA, exactly emu- 
lates most OQ switches3. Each input port maintains a 
priority queue of input packets; an arriving packet may 
get inserted any where into this priority queue, but it 
cannot alter the relative order of packets already in the 
queue. The input priority of a packet is determined by 
its position in the priority queue; a packet is more pre- 
ferred than all packets behind it in the input priority 
queue. The output priority of a packet is determined 
by its time to leave; the earlier the time to  leave of a 
packet, the higher the preference assigned to it by its 
output port. To complete the description of CCF, we 
must describe how packets are inserted into the priority 
queue upon arrival. 

Define the Input Thread IT(c) of packet c to be the 
number of packets ahead of it in its input priority 
queue. Define its Output Cushion OC(c) to be the 
number of packets buffered at its output port which 
have an earlier time to leave than c. A newly arrived 
packet c gets inserted as far back into the input priority 

3Define a push-in queue to be a queue where an arriving pack- 
et can get inserted anywhere into the queue, but an arrival can- 
not alter the relative position on any packet already in the queue. 
Departures have to be from the front of the queue. CCF can em- 
ulate any OQ switch that implements a push-in queueing policy. 
FIFO and Weighted Fair Queueing are push-in policies. In fact, 
all natural queueing policies known to the authors are push-in 
policies. 

queue as possible while ensuring that IT(c) 5 OC(c). 
We will concentrate on a variant of CCF described in [2] 
where a packet c is marked active if at the current 
time instant IT(c) = OC(c), and inactive otherwise. A 
detailed exposition of CCF and the variant described 
above is presented in [2]. When we mention CCF in 
the rest of this paper, we mean the above variant. 

3 Number of iterations for the stable marriage 
algorithm 

In this section we analyze the number of iterations 
needed for the Gale Shapley Algorithm if the input 
traffic pattern is stochastic, and the scheduling algo- 
rithm used is either MUCFA or CCF. 

At any time instant, define the dependency graph G 
to be a directed graph with a vertex corresponding to 
each active packet that is waiting on the input side of 
the CIOQ switch. Let a and b be two active packets 
waiting at the input side. The dependency graph G 
contains a directed edge from a to b if and only if packet 
b is ahead of a either in an input priority list or in an 
output priority list. Clearly, if two packets share either 
an input port or an output port, there must be an edge 
between them. An edge from a to  b is said to  be an 
output edge if b is ahead of a in an output priority list 
and an input edge otherwise4. 

Lemma 1 (Implicit in [lo]) The dependency gmph 
resulting fFom MUCFA i s  acyclic. 

Lemma 2 (Proved in [2]) The dependency gmph re- 
sulting from CCF is acyclic. 

It is proved in [2] that if the dependency graph is a- 
cyclic then the number of iterations needed by the Gale 
Shapley Algorithm is at most N .  We now show that 
the number of iterations is in fact O(1og N )  with high 
probability under some weak assumptions on the in- 
put traffic. Define the output depth of a node in the 
graph to be the maximum number of output edges on 
any directed path originating at that node; similarly 
define the input depth of a node to be the maximum 
number of input edges on any directed path originat- 
ing at that node. Define the input depth of the graph 
to be the maximum input depth of any node, and the 
output depth of the graph to be the maximum out- 
put depth of any node. At any time instant, let Qi be 

4Note that if 6 is ahead of a in both the input and output 
priority lists, then a is not considered during the stable marriage 
algorithm. 
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the occupancy of the queue at the i-th output port in 
the reference OQ switch being emulated, and let Qmaz 
denote the largest of the Qi's. Lemma 3 relates the 
output/input depths of the dependency graph to  the 
number of iterations needed by the Gale Shapley Al- 
gorithm to terminate. Lemma 4 relates Q,,, to these 
depths for both MUCFA and CCF. 

Lemma 3 If the dependency graph i s  acyclic, the 
number of (parallel) iterations of the Gale Shapley AI- 
gorithm is at most one more than the 

1. input depth of the gmph if the inputs do the 
proposing (i.e. the inputs act as men). 

2. output depth of the graph if the outputs do the 
proposing (i.e. the outputs act as men). - 

Proof: We will only prove the first statement as 
the proof of the second statement is symmetric. As- 
sume that the inputs do the proposing. The proof is 
by induction, where the inductive hypothesis is stat- 
ed below. We say that an input is terminally engaged 
t o  an output if they are currently engaged and if this 
engagement will eventually turn into marriage. 

Induction Hypothesis: Consider any node X in the 
graph at input depth k. Let I and 0 represent its input 
and output ports respectively. Within k + 1 iterations, 
either I has proposed to  0 and has been rejected, or 
the input port I is terminally engaged to  some output 
port. 

Base Step: k = 0. Suppose node X is at an input 
depth of 0. Clearly the packet at this node is the most 
preferred by its input port, and therefore I will propose 
to  0 during the very first iteration. Let Y be the packet 
most preferred by the output port 0. If X = Y then 
X is the most preferred by both input and output, and 
hence is a sink (has no outgoing edges). Therefore I will 
get terminally engaged to  0 and we have established 
the base case. If X # Y then there must be an output 
edge from X to  Y. This edge can be composed with any 
directed path originating from Y resulting in a directed 
path originating at X .  Since the input depth of X is 
zero (i.e. there are no input edges on any directed path 
originating at X ) ,  the input depth of Y must also be 
zero. Therefore the input port of Y must have also 
proposed to  0 during the very first iteration. Since Y 
is more preferred by 0 than X ,  0 must have rejected 
I during the first iteration. 

Inductive Step: Suppose the inductive hypothesis 
holds for all nodes with input depth less than k. We 

will now prove it for an arbitrary node X with input 
port I, output port 0, and input depth k. If I is al- 
ready terminally engaged then the inductive step holds 
trivially for X .  Therfore we concentrate on the case 
where I is not terminally engaged. 

We first establish the following claim. 

Claim 3.1 Suppose the inductive hypothesis holds for  
all packets with input depth less than k .  Let X' be 
any packet with input depth k ,  input port I' and output 
port 0'. If I' is not terminally engaged by the end of 
k iterations, then I' proposes to 0' by the end of k + 1 
iterations. 

Proof: Any packet Y which is queued at I' and is 
more preferred by I' than X' must have input depth 
less than k (since there is a path from X'  to  Y having 
one or more input edges). Since I' is not terminally en- 
gaged, I' must have been rejected by the output port of 
all such Y during the first k iterations (by the inductive 
hypothesis). This in turn implies that I' will propose 
to  0' sometime during the first k + 1 iterations. 

We now continue with our proof of the inductive step 
for Lemma 3. Since we have already assumed that 
I is not terminally engaged, we can conclude from 
Claim 3.1 that I proposes to  0 during the first k + 1 
iterations. Consider the set, S, of packets destined for 
output 0 that 0 prefers to  X .  Since there is a directed 
path from X to  any node 2 in S, the input depth of Z 
is at most k. Therefore, the input port of any node 2 
in S must either be terminally engaged by the end of k 
iterations or propose to  0 by the end of k+ 1 iterations 
(from Claim 3.1). First suppose that the input port of 
some node Z in S has proposed to  0 before the end of 
k + 1 iterations. Then 0 will reject I some time before 
the end of k+l iterations and the inductive claim holds 
for packet X .  But if no such 2 exists, then the input 
port of each node in S is terminally engaged (to some 
output port other than 0) by the end of k iterations, 
or has never proposed to  0 and will never propose to  
0 in the future. In other words, 0 will never receive 
a proposal that it prefers to  X. Therefore I will be 
terminally engaged to  0 by the end of k + 1 iterations. 
This completes the inductive proof. 

Let K be the input depth of the graph. The preceeding 
argument allows us to conclude that for any packet X 
either its input gets terminally engaged or has been 
rejected by its output by the end of K + 1 iterations. 
Therefore there will be no more proposals after K + 1 
iterations and the algorithm terminates. w 
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It is worth noting that the inputs do the proposing in 
CCF [2], and the outputs do the proposing in MUC- 
FA [lo]. Hence the relevant quantity is input depth for 
CCF and output depth for MUCFA. 

Lemma 4 For CCF, the input depth of the resulting 
(acyclic) dependency graph is bounded by  &ma, - 1. 
For MUCFA, the output depth of the resulting (acyclic) 
dependency graph is bounded by  Qm,, - 1. 

Proof: For CCF, recall that the input thread (IT) of 
packet X is the number of packets queued at the same 
input port and more preferred by the input port than 
X .  Also recall that the output cushion (OC) of packet 
X is the number of packets queued at the output port 
where X wants to go, and more preferred by the output 
port than X (see [2] for a detailed explanation of these 
quantities). CCF only considers packets with IT = OC. 
Each time we follow an input edge, IT goes down by 
1. Each time we follow an output edge, the OC either 
goes down or remains the same, and hence the IT goes 
down by either one or remains the same. Since the 
IT of a packet cannot be negative, the input depth of 
a packet is no more than its IT (in fact input depth 
and IT are exactly equal, since the path resulting from 
following only input edges will result in input depth 
= IT). Therefore maximum input depth of a packet 
is equal to the maximum output cushion of a packet, 
which is bounded by Qmaz - 1. 

For MUCFA, recall that the urgency of a packet X 
is the number of packets destined to  the output port 
of X which are currently in the switch and need to 
leave the switch before X .  MUCFA orders packets in 
increasing order of urgency on the input side (so that a 
packet with a lower urgency value is more preferred by 
the input). This implies that as we traverse an input 
edge, the urgency of a packet cannot increase. As we 
traverse an output edge, the urgency of the packet must 
go down by at least one. Therefore, the output depth 
of the packet can be no larger than its urgency, which 
in turn is bounded by Q,,, - 1. 

Hence the number of iterations for both CCF and 
MUCFA are bounded by Qmaz. So now we have to 
only analyze the process Q,,,, which depends on the 
processes Qi in the following fashion. 

Lemma 5 If each of the Qi’s has an exponential 
tail, then the random variable Q,,, has expectation 
O(1og N), has an exponential tail, and is O(1og N)  with 
high probability. 

Proof Sketch: Since all Qi’s have an exponential 
tail, there exist constants k and a > 0 such that 
Pr[&i > k + x ]  5 e--nz, for all 1 5 i 5 N and for 
all z > 0. Therefore 

5 e-az (1) 

The expectation of Q,,, is now bounded by 

log N + l / a  e-QZ& = k + - 
a 

which is O(1ogN) if we ~IX k and a. It is clear from 
(1) that Q,,, has an exponential tail; the fact that 
Q,,, is O(1og N)  with high probability also follows in 
a straight forward fashion. 

The next theorem follows from Lemmas 1, 2, 3, 4, and 
5. Note that we do not require the Qi’s to be indepen- 
dent. Also, arrivals to the same output port at different 
time instants may be correlated as long as the Qi’s have 
an exponential tail. 

Theorem 1 The number of (parallel) iterations of the 
Gale Shapley Algorithm is O(logN), in expectation as 
well as Wnth high probability, for  both MUCFA and C- 
CF as long as the queue sizes at all output ports in 
the OQ switch being emulated have an exponential tail. 
Further, the number of iterations has an exponential 
tail. 

M/D/l queues have an exponential tail and a finite ex- 
pectation as long as the mean inter-arrival time is larg- 
er than the (deterministic) service time. Hence Theo- 
rem 1 applies when the arrivals for each output port 
are Bernoulli i.i.d.; arrivals at different output port- 
s may be correlated. Below we define a more general 
precondition that is sufficient for Theorem 1 to apply. 

Let Ai(t)  denote the number of packets that arrive at 
the switch during switch cycle t and are destined to  
output port i. From the theory of large deviations, 
it follows that one sufficient condition for each Qi to 
have an exponential tail is that for each i, the variables 
{Ai( t )}-B<t<B be i.i.d., have expectation bounded 
below one, and have an exponential tail. Again, Ai(t)  
and A j ( t )  need not be independent. 
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