
ThM02 15:20 Proceedings of the 38"
Conference on Decision & Control
Phoenix, Arizona USA December 1999

Stochastic Analysis of Stable Marriages in Combined Input
Output Queued Switches

ASHISH GOEL

Abstract

Traditionally, Output Queued switch architectures
have been proposed to implement Quality of Service
schemes such as Weighted Fair Queueing. Output
Queued switches with N input and output ports re-
quire up to N serial memory operations per time slot
(taken to be the time between packet arrivals at an in-
put). Given the high and increasing processor/memory
gap, it is important to shift the bottleneck from mem-
ory t o processor in order t o obtain scalable architec-
tures. It has recently been demonstrated that most
Output Queued switches can be emulated using Com-
bined Input Output Queued Switches which require
O (N) processor operations and a small, constant num-
ber of memory operations, thus moving the perfor-
mance bottleneck from memory to processor. These
bounds hold against all, even adversarial, traffic pat-
terns. In this paper we analyze the scheduling algo-
rithms used in [2, 101 t o obtain the above results when
the input traffic is stochastic. We prove that if the
queue size at each output port in the Output Queued
switch being emulated has an exponential tail, then the
above algorithms need just O(1og N) processor opera-
tions with high probability.

1 Introduction

A number of studies point out the need for us-
ing scheduling schemes like Weighted Fair Queueing
(WFQ) and Generalized Processor Sharing (GPS) for
providing Quality of Service (QoS) guarantees to flows
in a packet switched network [l, 3,491. These schemes
assume an Output Queued (OQ) switch architecture,
where incoming packets to a switch/router are imme-
diately forwarded to their respective outputs. But the
OQ architecture requires upto N serial memory opera-
tions per time slot (taken to be the time between packet

Department of Computer Science, Stanford University. R e
search supported by ARO Grants DAAG55-98-1-0170 and AS-
SERT award DAAG5597-1-0221 and by ONR Grant N00014-98-
1-0589. Email: agoel@cs.stanford.edu

2Departments of Electrical Engineering and Computer Sci-
ence, Stanford University. Email: balaji@isl.stanford.edu

BALAJI PRABHAKAR

arrivals at an input) for an N x N switch. That is the
"speedup" of the memory needs to be atleast N . This
makes the OQ switch architecture prohibitively expen-
sive for high-speed implementations and for large sized
switches.

On the other hand, Input Queued (IQ) switch architec-
tures require memories to only run as fast as the line,
i.e. IQ switches have a speedup of just one. This makes
input queueing very appealing for switches with high
line rates, or with a large number of ports. But IQ
switches do not allow a fine grained control of the la-
tency of packets, and hence cannot be used to provide
strong QoS guarantees.

It has recently been shown that Combined Input and
Output Queued (CIOQ) switches, along with novel
scheduling algorithms, can achieve exact emulation of
OQ switches at low speedups'. By exhibiting different
switch scheduling algorithms, Prabhakar and McKe-
own [lo] and Chuang et al showed that a CIOQ switch
can emulate a large class of output scheduling poli-
cies at a speedup of four and two, respectively. This
class includes the FIFO, strict priority, and weighted
fair queueing scheduling policies. Thus, CIOQ switches
can combine the advantages of OQ switches (good QoS
guarantees) and of IQ switched (low speedup). The
algorithms proposed in [2, 101 require at most O (N)
iterations' during each time slot.

The above results hold in the worst case - given any
input (even adversarial) traffic pattern, the above al-
gorithms exactly emulate an OQ switch without ex-
ceeding O (N) processor usage. In this paper we do
not propose any new algorithms; we merely analyze
the above algorithms and show that their running time
on stochastic input traffic is better than the worst case
running time with high probability. Specifically, we
show that under some weak assumptions on the in-

'We do not give a detailed history of the problem but mention
only the results directly relevant to this paper; a detailed history
can be found in [2].

2Both these solutions use a parallel matching algorithm that
works in phases. Each phase takes a constant time, and therefore,
the running time of these algorithms can be measured in terms
of the number of iterations. For details , see [2, 101.

0-7803-5250-5/99/$10.00 0 1999 IEEE 3096

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 19:07 from IEEE Xplore. Restrictions apply.

put traffic, the expected number of iterations is in fact
O(1og n), for the algorithm presented by Prabhakar and
McKeown as well as the one by Chuang e t a l . Further
the number of iterations has an exponential tail, and is
O(1og N) with high probability. The above results hold
even if arrivals for different output ports are correlated.

Our analysis makes the tradeoff more appealing:
Rather than use O (N) memory operations and a s-
mall number of processor operations in the OQ switch,
one can use O(1ogN) processor operations and a small
number of memory operations. This suggests that the
solutions proposed in [2, 101 are truly scalable to high
speeds and to large sized switches. Preliminary sim-
ulation work corroborates our analysis, and indicates
that the constant hidden by the Big-Oh notation in
O(1ogN) bound is small for realistic arrival rates [7].
It is important to observe that we do not change the
solutions proposed in [2, 101 in any way. Nor do we
inhibit the ability of these solutions to emulate OQ
switches under adversarial traffic. We merely study
the performance of these algorithms under stochastic
inputs.

Section 2 provides a brief summary of the algorithm-
s that will be analyzed. The algorithms use a stable
marriage algorithm as a subroutine. In Section 3 we
prove that both these algorithms take O(1ogn) itera-
tions with high probability, as long as the input traffics
are such as to give output queue sizes with an exponen-
tial tail.

2 Background: Exact mimicking of
output-queueing

The algorithms proposed in Chuang et al[2], and Prab-
hakar and McKeown [lo] assign an input priority and
an output priority to packets that are queued on the
input side of the CIOQ switch. Having assigned these
priorities, each input port ranks all the output ports
in order of its preference. The preference of an output
port X for an input port A is determined by the input
priority of packets queued at A for X. If there is more
than one such packet, then the packet with the highest
input priority is chosen as the representative. If there
are no such packets, the input port A does not include
X in its ranking. Similarly each output port ranks the
input ports.

Once these rankings are done, both algorithms com-
pute a stable marriage of input ports with output ports.
The corresponding packets are then transferred across
in one parallel memory operation (i.e. without any in-

put or output contention). In this section we first define
stable marriages and indicate how they are computed.
Then we briefly sketch the techniques used by [lo] and
[2] to assign input and output priorities to packets.

2.1 Stable marriages
Consider N men and N women, where each man spec-
ifies a (possibly incomplete) ranking of all the women
according to their preference as a partner, and similar-
ly, each woman specifies a (possibly incomplete) rank-
ing of all the men. Thus two different individuals may
specify completely different rankings.

A marriage is a pairing of men and women. A marriage
is said to be stable if for any woman Alice and any man
Bob, at least one of the following three conditions is
satisfied:

1. Alice and Bob are paired to each other, or

2. Alice prefers her partner to Bob, or

3. Bob prefers his partner to Alice.

Finding stable marriages is a well-studied combinatori-
al problem. Gale and Shapley proved that stable mar-
riages always exist [4]. They gave an algorithm to com-
pute these marriages; their algorithm can be thought of
as a parallel algorithm that runs in at most M - N + 1
iterations, where M is the sum of the sizes of the pref-
erence lists of all the men. Due to the special structure
of the preference lists constructed by [2, lo], the Gale
Shapley Algorithm converges in N iterations. Each it-
eration of this algorithm has the following two steps:

1. Each unengaged man proposes to the woman he
prefers most out of those who haven't rejected
him yet.

2. Each woman looks at all the proposals (if any)
she got in Step 1 of this iteration as well as the
man she is currently engaged to, if any. Out of all
these men she chooses the one she prefers most
and gets engaged to him, breaking off her prior
engagement, if any.

The algorithm terminates when no new proposals get
generated during Step 1.

2.2 MUCFA: Emulating an OQ switch at a
speedup of four
Prabhakar and McKeown [lo] first considered the ques-
tion of exactly mimicking an OQ switch with a CIOQ

3097

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 19:07 from IEEE Xplore. Restrictions apply.

switch employing a small speedup. Using a scheduling
algorithm, called the Most Urgent Cell First Algorith-
m (MUCFA), they showed that this exact emulation is
possible at a speedup of just four, regardless of input
traffic pattern and switch size. We now present a brief
summary of MUCFA.

Let TL(c) denote the time to leave for packet c; MUC-
FA assumes that this time is known when c arrives at
the switch. At time t , define the urgency of packet c to
be TL(c) - t . MUCFA computes four stable matchings
between inputs and outputs during each time slot for
transferring packets from the input side to the output
side (hence the speedup of four). During each schedul-
ing phase, MUCFA sets both the input and output pri:
ority of each packet to be its urgency; the lower the
urgency value of a packet, the more preferred it is by
its input and output. For a detailed exposition of this
algorithm, see [lo].

2.3 CCF: Emulating most OQ switches with a
speedup of two
Chuang et a1 presented a scheduling algorithm which
they called CCF (Critical Cells First). Unlike MUCFA,
CCF needs to compute and schedule only two stable
marriages per switch cycle and hence has a speedup of
two. The CCF algorithm, like MUCFA, exactly emu-
lates most OQ switches3. Each input port maintains a
priority queue of input packets; an arriving packet may
get inserted any where into this priority queue, but it
cannot alter the relative order of packets already in the
queue. The input priority of a packet is determined by
its position in the priority queue; a packet is more pre-
ferred than all packets behind it in the input priority
queue. The output priority of a packet is determined
by its time to leave; the earlier the time to leave of a
packet, the higher the preference assigned to it by its
output port. To complete the description of CCF, we
must describe how packets are inserted into the priority
queue upon arrival.

Define the Input Thread IT(c) of packet c to be the
number of packets ahead of it in its input priority
queue. Define its Output Cushion OC(c) to be the
number of packets buffered at its output port which
have an earlier time to leave than c. A newly arrived
packet c gets inserted as far back into the input priority

3Define a push-in queue to be a queue where an arriving pack-
et can get inserted anywhere into the queue, but an arrival can-
not alter the relative position on any packet already in the queue.
Departures have to be from the front of the queue. CCF can em-
ulate any OQ switch that implements a push-in queueing policy.
FIFO and Weighted Fair Queueing are push-in policies. In fact,
all natural queueing policies known to the authors are push-in
policies.

queue as possible while ensuring that IT(c) 5 OC(c).
We will concentrate on a variant of CCF described in [2]
where a packet c is marked active if at the current
time instant IT(c) = OC(c), and inactive otherwise. A
detailed exposition of CCF and the variant described
above is presented in [2]. When we mention CCF in
the rest of this paper, we mean the above variant.

3 Number of iterations for the stable marriage
algorithm

In this section we analyze the number of iterations
needed for the Gale Shapley Algorithm if the input
traffic pattern is stochastic, and the scheduling algo-
rithm used is either MUCFA or CCF.

At any time instant, define the dependency graph G
to be a directed graph with a vertex corresponding to
each active packet that is waiting on the input side of
the CIOQ switch. Let a and b be two active packets
waiting at the input side. The dependency graph G
contains a directed edge from a to b if and only if packet
b is ahead of a either in an input priority list or in an
output priority list. Clearly, if two packets share either
an input port or an output port, there must be an edge
between them. An edge from a to b is said to be an
output edge if b is ahead of a in an output priority list
and an input edge otherwise4.

Lemma 1 (Implicit in [lo]) The dependency gmph
resulting fFom MUCFA i s acyclic.

Lemma 2 (Proved in [2]) The dependency gmph re-
sulting from CCF is acyclic.

It is proved in [2] that if the dependency graph is a-
cyclic then the number of iterations needed by the Gale
Shapley Algorithm is at most N . We now show that
the number of iterations is in fact O(1og N) with high
probability under some weak assumptions on the in-
put traffic. Define the output depth of a node in the
graph to be the maximum number of output edges on
any directed path originating at that node; similarly
define the input depth of a node to be the maximum
number of input edges on any directed path originat-
ing at that node. Define the input depth of the graph
to be the maximum input depth of any node, and the
output depth of the graph to be the maximum out-
put depth of any node. At any time instant, let Qi be

4Note that if 6 is ahead of a in both the input and output
priority lists, then a is not considered during the stable marriage
algorithm.

3098

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 19:07 from IEEE Xplore. Restrictions apply.

the occupancy of the queue at the i-th output port in
the reference OQ switch being emulated, and let Qmaz
denote the largest of the Qi's. Lemma 3 relates the
output/input depths of the dependency graph to the
number of iterations needed by the Gale Shapley Al-
gorithm to terminate. Lemma 4 relates Q,,, to these
depths for both MUCFA and CCF.

Lemma 3 If the dependency graph i s acyclic, the
number of (parallel) iterations of the Gale Shapley AI-
gorithm is at most one more than the

1. input depth of the gmph if the inputs do the
proposing (i.e. the inputs act as men).

2. output depth of the graph if the outputs do the
proposing (i.e. the outputs act as men). -

Proof: We will only prove the first statement as
the proof of the second statement is symmetric. As-
sume that the inputs do the proposing. The proof is
by induction, where the inductive hypothesis is stat-
ed below. We say that an input is terminally engaged
t o an output if they are currently engaged and if this
engagement will eventually turn into marriage.

Induction Hypothesis: Consider any node X in the
graph at input depth k. Let I and 0 represent its input
and output ports respectively. Within k + 1 iterations,
either I has proposed to 0 and has been rejected, or
the input port I is terminally engaged to some output
port.

Base Step: k = 0. Suppose node X is at an input
depth of 0. Clearly the packet at this node is the most
preferred by its input port, and therefore I will propose
to 0 during the very first iteration. Let Y be the packet
most preferred by the output port 0. If X = Y then
X is the most preferred by both input and output, and
hence is a sink (has no outgoing edges). Therefore I will
get terminally engaged to 0 and we have established
the base case. If X # Y then there must be an output
edge from X to Y. This edge can be composed with any
directed path originating from Y resulting in a directed
path originating at X . Since the input depth of X is
zero (i.e. there are no input edges on any directed path
originating at X) , the input depth of Y must also be
zero. Therefore the input port of Y must have also
proposed to 0 during the very first iteration. Since Y
is more preferred by 0 than X , 0 must have rejected
I during the first iteration.

Inductive Step: Suppose the inductive hypothesis
holds for all nodes with input depth less than k. We

will now prove it for an arbitrary node X with input
port I, output port 0, and input depth k. If I is al-
ready terminally engaged then the inductive step holds
trivially for X . Therfore we concentrate on the case
where I is not terminally engaged.

We first establish the following claim.

Claim 3.1 Suppose the inductive hypothesis holds for
all packets with input depth less than k . Let X' be
any packet with input depth k , input port I' and output
port 0'. If I' is not terminally engaged by the end of
k iterations, then I' proposes to 0' by the end of k + 1
iterations.

Proof: Any packet Y which is queued at I' and is
more preferred by I' than X' must have input depth
less than k (since there is a path from X' to Y having
one or more input edges). Since I' is not terminally en-
gaged, I' must have been rejected by the output port of
all such Y during the first k iterations (by the inductive
hypothesis). This in turn implies that I' will propose
to 0' sometime during the first k + 1 iterations.

We now continue with our proof of the inductive step
for Lemma 3. Since we have already assumed that
I is not terminally engaged, we can conclude from
Claim 3.1 that I proposes to 0 during the first k + 1
iterations. Consider the set, S, of packets destined for
output 0 that 0 prefers to X . Since there is a directed
path from X to any node 2 in S, the input depth of Z
is at most k. Therefore, the input port of any node 2
in S must either be terminally engaged by the end of k
iterations or propose to 0 by the end of k+ 1 iterations
(from Claim 3.1). First suppose that the input port of
some node Z in S has proposed to 0 before the end of
k + 1 iterations. Then 0 will reject I some time before
the end of k+l iterations and the inductive claim holds
for packet X . But if no such 2 exists, then the input
port of each node in S is terminally engaged (to some
output port other than 0) by the end of k iterations,
or has never proposed to 0 and will never propose to
0 in the future. In other words, 0 will never receive
a proposal that it prefers to X. Therefore I will be
terminally engaged to 0 by the end of k + 1 iterations.
This completes the inductive proof.

Let K be the input depth of the graph. The preceeding
argument allows us to conclude that for any packet X
either its input gets terminally engaged or has been
rejected by its output by the end of K + 1 iterations.
Therefore there will be no more proposals after K + 1
iterations and the algorithm terminates. w

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 19:07 from IEEE Xplore. Restrictions apply.

It is worth noting that the inputs do the proposing in
CCF [2], and the outputs do the proposing in MUC-
FA [lo]. Hence the relevant quantity is input depth for
CCF and output depth for MUCFA.

Lemma 4 For CCF, the input depth of the resulting
(acyclic) dependency graph is bounded by &ma, - 1.
For MUCFA, the output depth of the resulting (acyclic)
dependency graph is bounded by Qm,, - 1.

Proof: For CCF, recall that the input thread (IT) of
packet X is the number of packets queued at the same
input port and more preferred by the input port than
X . Also recall that the output cushion (OC) of packet
X is the number of packets queued at the output port
where X wants to go, and more preferred by the output
port than X (see [2] for a detailed explanation of these
quantities). CCF only considers packets with IT = OC.
Each time we follow an input edge, IT goes down by
1. Each time we follow an output edge, the OC either
goes down or remains the same, and hence the IT goes
down by either one or remains the same. Since the
IT of a packet cannot be negative, the input depth of
a packet is no more than its IT (in fact input depth
and IT are exactly equal, since the path resulting from
following only input edges will result in input depth
= IT). Therefore maximum input depth of a packet
is equal to the maximum output cushion of a packet,
which is bounded by Qmaz - 1.

For MUCFA, recall that the urgency of a packet X
is the number of packets destined to the output port
of X which are currently in the switch and need to
leave the switch before X . MUCFA orders packets in
increasing order of urgency on the input side (so that a
packet with a lower urgency value is more preferred by
the input). This implies that as we traverse an input
edge, the urgency of a packet cannot increase. As we
traverse an output edge, the urgency of the packet must
go down by at least one. Therefore, the output depth
of the packet can be no larger than its urgency, which
in turn is bounded by Q,,, - 1.

Hence the number of iterations for both CCF and
MUCFA are bounded by Qmaz. So now we have to
only analyze the process Q,,,, which depends on the
processes Qi in the following fashion.

Lemma 5 If each of the Qi’s has an exponential
tail, then the random variable Q,,, has expectation
O(1og N), has an exponential tail, and is O(1og N) with
high probability.

Proof Sketch: Since all Qi’s have an exponential
tail, there exist constants k and a > 0 such that
Pr[&i > k + x] 5 e--nz, for all 1 5 i 5 N and for
all z > 0. Therefore

5 e-az (1)

The expectation of Q,,, is now bounded by

log N + l / a e-QZ& = k + -
a

which is O(1ogN) if we ~IX k and a. It is clear from
(1) that Q,,, has an exponential tail; the fact that
Q,,, is O(1og N) with high probability also follows in
a straight forward fashion.

The next theorem follows from Lemmas 1, 2, 3, 4, and
5. Note that we do not require the Qi’s to be indepen-
dent. Also, arrivals to the same output port at different
time instants may be correlated as long as the Qi’s have
an exponential tail.

Theorem 1 The number of (parallel) iterations of the
Gale Shapley Algorithm is O(logN), in expectation as
well as Wnth high probability, for both MUCFA and C-
CF as long as the queue sizes at all output ports in
the OQ switch being emulated have an exponential tail.
Further, the number of iterations has an exponential
tail.

M/D/l queues have an exponential tail and a finite ex-
pectation as long as the mean inter-arrival time is larg-
er than the (deterministic) service time. Hence Theo-
rem 1 applies when the arrivals for each output port
are Bernoulli i.i.d.; arrivals at different output port-
s may be correlated. Below we define a more general
precondition that is sufficient for Theorem 1 to apply.

Let Ai(t) denote the number of packets that arrive at
the switch during switch cycle t and are destined to
output port i. From the theory of large deviations,
it follows that one sufficient condition for each Qi to
have an exponential tail is that for each i, the variables
{Ai(t)}-B<t<B be i.i.d., have expectation bounded
below one, and have an exponential tail. Again, Ai(t)
and A j (t) need not be independent.

Acknowledgement: The authors thank Sriram
Mudulodu and Srinivasan Pichai for access to their re-
sults; their simulations were run on top of a simulator

31 00

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 19:07 from IEEE Xplore. Restrictions apply.

written by Nick McKeown. We also thank Nick McK-
eown for several helpful discussions.

References

[l] J. Bennett and H. Zhang, “Hierarchical Packet
Fair Queueing Algorithms”, IEEE/A CM l’kansactions
on Networking, 5(5):675-689, Oct 1997.

[2] S. Chuang, A. Goel, B. Prabhakar, and N. McK-
eown, “Matching Output Queueing with a Combined
Input Output Queued Switch,” To appear in IEEE In-
focom ’99 and Journal on Selected Areas in Communi-
cations.

[3] A. Demers, S. Keshav and S. Shenker, “Analysis
and simulation of a fair queueing algorithm”, Journal
of Internetworking Research and Experience, pp 3-26,
Oct. 1990. Also in Proceedings of ACM SIGCOMM’89,
pp 3-12.

[4] D. Gale, and L.S. Shapley, “College Admissions
and the stability of marriage”, American Mathematical
Monthly, vo1.69, pp.9-15, 1962.

[5] M. Karol, M. Hluchyj, and S. Morgan, “Input
Versus Output Queueing on a Space Division Switch”,
IEEE h n s . Comm, vo1.35, no.12, pp.1347-1356.

[6] N. McKeown, V. Anantharam, J. Walrand,
“Achieving 100% Throughput in an Input-Queued
Switch”, INFOCOM ’96, pp.296-302.

[7] S. Mudulodu and S. Pichai, “Parallel stable
matching algorithm for Combined Input and Output
Queueing,” Stanford University Technical Note STAN-

[8] A. Parekh and R. Gallager, “A generalized pro-
cessor sharing approach to flow control in integrated
services networks: The single node case”, IEEE/ACM
fiansactions on Networking, June 1993.

[9] A. Parekh and R. Gallager, “A generalized
processor sharing approach to flow control in inte-
grated services networks: The multiple node case”,
IEEE/ACM hnsac t ions on Networking, April 1994.

[lo] B. Prabhakar and N. McKeown, “On the
Speedup Required for Combined Input and Output
Queued Switching,” To appear in Automatica.

CS-TN-99-90, August 1999.

3101

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 19:07 from IEEE Xplore. Restrictions apply.

