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Abstract - The Internet is facing two problems simultaneously: 
there is a need for a faster switchinglrouting infrastructure, and 
a need to introduce guaranteed qualities of service (QoS). Each 
problem can be solved independently: switches and routers can 
be made faster by using input-queued crossbars, instead of 
shared memory systems; and QoS can be provided using WFQ- 
based packet scheduling. However, until now, the two solutions 
have been mutually exclusive - all of the work on WFQ-based 
scheduling algorithms has required that switchedrouters use 
output-queueing, or centralized shared memory. This paper 
demonstrates that a Combined Input Output Queueing (CIOQ) 
switch running twice as fast as an input-queued switch can 
provide precise emulation of a broad class of packet scheduling 
algorithms, including WFQ and strict priorities. More precisely, 
we show that a “speedup” of 2 is sufficient, and a speedup of 
2 - 1/N is necessary, for this exact emulation. We introduce a 
variety of algorithms that configure the crossbar so that 
emulation is achieved with a speedup of two, and consider their 
running time and implementation complexity. An interesting 
feature of our work is that the exact emulation holds for all input 
traffic patterns. We believe that, in the future, these results will 
make possible the support of QoS in very high bandwidth 
routers. 

I. INTRODUCTION 

Many commercial switches and routers today employ out- 
put-queueing.’ When a packet arrives at an output-queued 
(OQ) switch, it is immediately placed in a queue that is dedi- 
cated to its outgoing line, where it waits until departing from 
the switch. This approach is known to maximize the through- 
put of the switch: so long as no input or output is oversub- 
scribed, the switch is able to support the traffic and the 
occupancies of queues remain bounded. Furthermore, by care- 
fully scheduling the time a packet is placed onto the outgoing 
line, a switch or router can control the packet’s latency, and 
hence provide quality-of-service (QoS) guarantees. But output 
queueing is impractical for switches with high line rates and/ 

or with a large number of ports, since the fabric and memory 
of an N x N switch must run N times as fast as the line rate. 
Unfortunately, at high line rates, memories with sufficient 
bandwidth are simply not available. 

On the other hand, the fabric and the memory of an input 
queued (IQ) switch need only run as fast as the line rate. This 
makes input queueing very appealing for switches with fast 
line rates, or with a large number of ports. For this reason, the 
highest performance switches and routers use input-queued 
crossbar switches [3][4]. But IQ switches can suffer from 
head-of-line (HOL) blocking, which can have a severe effect 
on throughput. It is well-known that if each input maintains a 
single FIFO, then HOL blocking can limit the throughput to 
just 58.6% [5]. 

One method that has been proposed to reduce HOL block- 
ing is to increase the “speedup” of a switch. A switch with a 
speedup of S can remove up to S packets from each input and 
deliver up to S packets to each output within a time slot, 
where a time slot is the time between packet arrivals at input 
ports. Hence, an OQ switch has a speedup of N while an IQ 
switch has a speedup of one. For values of S between 1 and 
N packets need to be buffered at the inputs before switching 
as well as at the outputs after switching. We call this architec- 
ture a combined input and output queued (CIOQ) switch. 

Both analytical and simulation studies of a CIOQ switch 
which maintains a single FIFO at each input have been con- 
ducted for various values of speedup [6][7][8][9]. A common 
conclusion of these studies is that with S = 4 or 5 one can 
achieve about 99% throughput when arrivals are independent 
and identically distributed at each input, and the distribution 
of packet destinations is uniform across the outputs. Whereas 
these studies consider average delay (and simplistic input traf- 
fic patterns), they make no guarantees about the delay of indi- 
vidual packets. This is particularly important if a switch or 
router is to offer QoS guarantees. 

1. When we refer to output-queueing in this paper, we include designs that 
employ centralized shared memory. 
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We believe that a well-designed network switch should per- 
form predictably in the face of all types of arrival process’ and 
allow the delay of individual packets to be controlled. Hence 
our approach is quite different: Rather than find values of 
speedup that work well on average, or with simplistic and 
unrealistic traffic models, we find the minimum speedup such 
that a CIOQ switch behaves identically to an OQ switch for 
all types of traffic. (Here, “behave identically” means that 
when the same inputs are applied to both the OQ switch and to 
the CIOQ switch, the corresponding output processes from the 
two switches are completely indistinguishable). This approach 
was first formulated in the recent work of Prabhakar and 
McKeown [12]. They show that a CIOQ switch with a 
speedup of 4 can behave identically to a FIFO OQ switch for 
arbitrary input traffic patterns and switch sizes. In this sense, 
this paper builds upon and extends the results in [12], as 
described in the next paragraph. A number of researchers have 
recently considered various aspects of the speedup problem, 
most notably [ 181 which obtains packet delay bounds and 
[ 191 which finds sufficient conditions for maximizing 
throughput through work conservation and mimicking of out- 
put queueing.2 

We show that a CIOQ switch with a speedup of 2 can 
behave identically to an OQ switch which employs a broad 
class of packet scheduling algorithms (including WFQ, strict 
priorities, and FIFO), for arbitrary switch sizes, and for arbi- 
trary input traffic patterns. This is done by introducing a vari- 
ety of packet scheduling algorithms for the CIOQ switch. We 

also show that a speedup of 2 - - is necessary and sufficient 

for a CIOQ switch to behave identically as a FIFO OQ switch. 
Finally, we conclude by discussing the running time and 
implementation complexity 

A. Background 

1 
N 

1. Consider the single stage, N x N switch shown in Fig. 1. 
Throughout the paper we assume that packets begin to 
arrive at the switch from time t = 1 ,  the switch having 
been empty before that time. Although packets arriving to 
the switch or router may have variable length, we will 
assume that they are treated internally as fixed length 
“cells”. This is common practice in high performance 

1. The need for a switch that can deliver a certain grade of service, irrespec- 
rive ofrhe applied traffic is particularly important given the number of 
recent studies that show how little we understand network traffic pro- 
cesses [ I  11. Indeed, a sobering conclusion of these studies is that it is not 
yet possible to accurately model or simulate a trace of actual network traf- 
tic. Furthermore, new applications, protocols or data-coding mechanisms 
may bring new traffic types in future years. 

2. [20] aimed to extend the results of [12], but the algorithms and proofs pre- 
sented there are incorrect. See http:Nwww.cs.cmu.edu/-istoicd 
IWQoS98-fix.htm1 for a detailed discussion of the errors. 
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Fig. 1 A General Combined Input and Output Queued (CIOQ) switch. 

LAN switches and routers; variable length packets are 
segmented into cells as they arrive, carried across the 
switch as cells, and reassembled back into packets again 
before they depart [3][4]. We take the arrival time 
between cells as the basic time unit and refer to it as a 
time slot. The switch is said to have a speedup of S , for 
S E { 1, 2, ..., N }  if it can remove up to S cells from 
each input and transfer at most S cells to each output in a 
time slot. A speedup of S requires the switch fabric to 
run S times as fast as the input or output line rate. For 
1 < S < N buffering is required both at the inputs and at 
the outputs, and leads to a combined input and output 
queued (CIOQ) architecture. The following is the prob- 
lem we wish to solve. 

The speedup problem: Determine the smallest value of S 
and an appropriate cell scheduling algorithm 7[; that 

2. allows a CIOQ switch to exactly mimic the performance 
of an output-queued switch (in a sense that will be made 
precise), 

3. achieves this for any arbitrary input traffic pattern, 

4. is independent of switch size In an OQ switch, arriving 
cells are immediately forwarded to their corresponding 
outputs. This (a) ensures that the switch is work-conserv- 
ing, i.e. an output never idles so long as there is a cell des- 
tined for it in the system, and (b) allows the departure of 
cells to be scheduled to meet latency  constraint^.^ We 
will require that any solution of the speedup problem pos- 
sess these two desirable features; that is, a CIOQ switch 
must behave identically as an OQ switch in the following 
sense: 

3. For ease of exposition, we will at times assume that the output uses a 
FIFO queueing discipline, i.e. cells depart from the output in the same 
order that they arrived to the inputs of the switch. However, we are inter- 
ested in a broader class of queueing disciplines: ones that allow cells to 
depart in time to meet particular bandwidth and delay guarantees. 
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Identical Behavior: A CIOQ switch is said to behave 
identically as an OQ switch if, under identical inputs, the 
departure time of every cell from both switches is identical. 

As a benchmark with which to compare our CIOQ switch, 
we will assume there exists a shadow N x N OQ switch that is 
fed the same input traffic pattern as the CIOQ switch. The 
key to solving the speedup problem is to design scheduling 
algorithms which decide the order in which cells at the input 
of the CIOQ switch are transferred to the desired outputs so 
that “identical behavior” with respect to the shadow OQ 
switch may be achieved. Each time cells are to be transferred, 
the scheduling algorithm matches each non-empty input with 
at most one output and, conversely, each output is matched 
with at most one input. The matching is used to configure the 
crossbar fabric before cells are transferred from the input side 
to the output side. A CIOQ switch with a speedup of S is able 
to make S such transfers during each time slot. 

B. Push-in Queues 

Throughout this paper, we will make repeated use of what 
we will call a push-in queue. Similar to a discrete-event 
queue, a push-in queue is one in which an arriving cell is 
inserted at an arbitrary location in the queue based on some 
criterion. For example, each cell may carry with it a departure 
time, and is placed in the queue ahead of all cells with a later 
departure time, yet behind cells with an earlier departure time. 
The only property that defines a push-in queue is that once 
placed in the queue, cells may not switch places with other 
cells. In other words, their relative ordering remains 
unchanged. In general, we distinguish two types of push-in 
queues: (1) “Push-In First-Out” (PIFO) queues, in which 
arriving cells are placed at an arbitrary location, and the cell at 
the head of the queue is always the next to depart. PIFO 
queues are quite general - for example, a WFQ scheduling 
discipline operating at an output queued switch is a special 
case of a PIFO queue. (2) “Push-In Arbitrary-Out” (PIAO) 
queues, in which cells are removed from the queue in an arbi- 
trary order. i.e. it is not necessarily the case that the next cell 
to depart is the one currently at the head of the queue. 

It is assumed that each input of the CIOQ switch maintains 
a queue, which can be thought of as an ordered set of cells 
waiting at the input port. In general, the CIOQ switches that 
we consider, can all be described using PIAO input queues. 
Many orderings of the cells are possible --- each ordering 
leading to an interesting switch scheduling algorithm, as we 
shall soon see. 

Each output maintains a queue for the cells waiting to 
depart from the switch. In addition, each output also maintains 

1. In practice, we need not necessarily use a PIAO queue to implement these 
techniques. But we will use the PIAO queue as a general way of describ- 
ing the input queueing mechanism. 

an output priority list: an ordered list of cells at the inputs 
waiting to be transferred to this particular output. The output 
priority list is drawn in the order in which the cells would 
depart from the OQ switch we wish to emulate (i.e. the 
shadow OQ switch). This priority list will depend on the 
queueing policy followed by the OQ switch (FIFO, WFQ, 
strict priorities etc.). 

C. Definitions 

The following definitions are crucial to the rest of the 
paper. 

Definition 1: Time to Leave - The “time to leave” for  cell 
c, TL(c), is the time slot at which c will leave the shadow OQ 
switch. Note that it is possible for  T U C )  to increase. This hap- 
pens ifnew cells arrive to the switch, destined for  c ’s  output, 
and have a higher priority than c.  (Of course, TL(c) is also 
the time slot in which c must leave from our CIOQ switch for  
the identical behavior to be achieved.) 

Definition 2: Output Cushion - At any time, the “output 
cushion of a cell c”,  OC(c), is the number of cells waiting in 
the output bufSer at cell c’s output port with a smaller time to 
leave value than cell c. 

Notice that if a cell has a small (or zero) output cushion and 
is still on the input side, then the scheduling algorithm must 
urgently deliver the cell to its output so that it may depart 
when its time to leave is reached. Since the switch is work- 
conserving, a cell’s output cushion decreases by one during 
every time slot, and can only be increased by newly arriving 
cells that are destined to the same output and have a more 
urgent time to leave. 

Definition 3: Input Thread -At  any time, the “input thread 
of cell c” ,  IT(c), is the number of cells ahead of cell c in its 
input priority list. 

In other words, IT(c) represents the number of cells cur- 
rently at the input that need to be transferred to their outputs 
more urgently than cell c. A cell’s input thread is decremented 
only when a cell ahead of it is transferred from the input, and 
is possibly incremented by newly arriving cells. Notice that it 
would be undesirable for a cell to simultaneously have a large 
input thread and a small output cushion -the cells ahead of it 
at the input may prevent it from reaching its output before its 
time to leave. This motivates our definition of slackness. 

Definition 4: Slackness - At any time, the “slackness of cell 
e ” ,  L(c), equals the output cushion of cell c minus its input 
threadi.e. L(C) = O C ( C ) - I T ( C ) .  

Slackness is a measure of how large a cell’s output cushion 
is with respect to its input thread. If a cell’s slackness is small, 
then it urgently needs to be transferred to its output. Con- 
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Input Queues Output Queues 

Fig. 2 A snapshot of a CIOQ switch 

versely, if a cell has a large slackness, then it may languish at 
the input without fear of missing its time to leave. 

Fig. 2 shows a snapshot of a CIOQ switch with a number 
of cells waiting at its inputs and outputs. For convenience we 
assume the time the snapshot was taken to be 1. Let ( P ,  t )  
denote a cell that, in the shadow switch, will depart from out- 
put port P at time t . Consider, for example, the cell c denoted 
in the figure by (A, 3 ) .  For the CIOQ switch to mimic the 
shadow OQ switch, the cell must depart from port A at time 3. 
Its input thread is I T ( c )  = 1 ,  since ( B ,  1)is  the only cell 
ahead of c in the input priority list. Its output cushion is 
O C ( C )  = 2 ,  since out of the three cells queued at A’s output 
buffer, only two cells (A, 1) and (A, 2 )  will depart before it. 
F u r t h e r ,  t h e  s l ackness  of  ce l l  c i s  g iven  by 
L(C)  = O C ( C ) - I T ( C )  = 1 .  

D. 
algorithms: 

The general structure of our CIOQ scheduling 

For most of this paper we are going to concern ourselves 
with CIOQ switches that have a speedup of two. Hence, we 
will break each time slot into four phases: 

The Arrival Phase 
All arrivals of new cells to the input ports take place dur- 
ing this phase. 

The First Scheduling Phase 
The scheduling algorithm selects cells to transfer from 
inputs to outputs, and then transfers them across the 
crossbar. 

The Departure Phase 
All departures of cells from the output ports take place 
during this phase. 

The Second Scheduling Phase 
Again, the scheduling algorithm selects cells to transfer 
from inputs to outputs and transfers them across the 
crossbar. 

The order in which the four phases occur is not crucial to 
our algorithms. However we shall stick to the above ordering 
as it makes our proofs simpler. 

A matching of input ports to output ports is a (not necessar- 
ily maximal) set of cells waiting on the input side such that all 
these cells can be sent across the crossbar in a single transfer 
(i.e. are free of input and output contention). During each 
scheduling phase the scheduler finds a stable matching 
between the input ports and the output ports. 

Definition 5: Stable Matching - A matching of input ports 
to output ports is said to be stable iffor each cell c waiting in 
an input queue, one of the following holds: 

1. Cell c is part of the matching, i.e. c will be transferred 
from the input side to the output side during this phase. 

2 .  A cell that is ahead of c in its input priority list is part of 
the matching. 

3. A cell that is ahead of c in its output priority list is part of 

Notice that conditions 2 and 3 above may be simulta- 
neously satisfied, but condition 1 excludes the other two. The 
conditions for a stable matching can be achieved using the so- 
called stable marriage problem. Solutions to the stable mar- 
riage problem are called stable matchings and were first stud- 
ied by Gale and Shapely [ 131- they gave an algorithm that 
finds a stable matching in at most M iterations, where M is 
the sum of the lengths of all the input priority lists. 

the matching. 

Our specification of the scheduling algorithm for a CIOQ 
switch is almost complete: the only thing that remains is to 
specify how the input queues are maintained. Different ways 
of maintaining the input queues result in different scheduling 
algorithms. In fact, the various scheduling algorithms pre- 
sented later differ only in the ordering of their input queues. 
For reasons that will become apparent, we will restrict our- 
selves to a particular class of orderings, which is defined as 
follows. 

Definition 6: PIA0 Input Queue Ordering - When a cell 
arrives, it is given a priority number which dictates its posi- 
tion in the queue. i.e. a cell with priority number X is placed at 
location (X+I) from the head of the list. A cell is placed in an 
input priority list according to the following rules: 

1. Arriving cells are placed at (or, “pushed-in” to) an arbi- 
trary location in the queue, 

2.  The relative ordering of cells in the queue does not 
change once cells are in the queue, i.e. cells in the queue 
cannot switch places, and 

3. Cells may be selected to depart from the queue from any 
location. 
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Thus, to complete our description of the scheduling algo- 
rithms, we need only specify an insertion policy which deter- 
mines where an arriving cell gets placed in its input queue. 

On the output side, the CIOQ switch keeps track of the time 
to leave of each waiting cell. During each time slot the cell 
that departs from an output and is placed onto the outgoing 
line is the one with the smallest time to leave. For the CIOQ 
switch to successfully mimic the shadow OQ switch, we must 
ensure that each cell crosses over to the output side before it is 
time for the cell to leave. 

11. NECESSITY AND SUFFICIENCY OF A 
SPEEDUP OF 2- 1/N 

Having defined speedup, we now address the next natural 
question: what is the minimum possible speedup, S ,  of a 
CIOQ switch that emulates an OQ switch. The following the- 
orem answers this question. 

Theorem 1: (Necessity). An N x N CIOQ switch needs a 

speedup of at least 2 - - to exactly emulate an N x N FIFO 

OQ switch. 

1 
N 

Proof: The proof is by example and is presented in 
Appendix A. 

Remark: Since FIFO is a special case of a variety of out- 
put queueing disciplines (Weighted Fair Queueing, Strict Pri- 
orities etc.), the lower bound applies to these queueing 
disciplines as well. 

Theorem 2: (Suflciency). An N x N CIOQ switch with a 

speedup of 2 - - can exactly emulate an N x N FIFO OQ 1 
N 

switch. 

Proof: The proof is based on the insertion policy Last In 
Highest Priority (LIHP) and can be found in Appendix B. 

111. A SIMPLE INPUT QUEUE INSERTION POLICY 
FOR A SPEEDUP OF 2 

The proof of Theorem 2 uses a simple input queue insertion 
policy (LIHP), but unfortunately the proof is complex and, in 
our opinion, somewhat counterintuitive. Further, LIHP is 
quite inefficient. In an attempt to provide a more intuitive 
understanding of the speedup problem, we present a simple 
and more efficient insertion policy that mimics an OQ switch 
with a FIFO queueing discipline with a speedup of two. We 
call this insertion policy Critical Cells First (CCF). 

Recall that to specify a scheduling algorithm for a CIOQ 
switch, we just need to give an insertion policy for the input 

queues. “Critical Cells First” (CCF) inserts an arriving cell as 
far from the head of its input queue as possible, such that the 
input thread of the cell is not larger than its output cushion. 
Since this decision is crucial, we restate CCF more formally. 

The CCF Insertion Policy: Suppose cell c arrives at input 
port P. Let X be the output cushion of c. Insert cell c into the 
(X + 1) th position from the front of the input queue at P. 
Hence, upon arrival cell c has a slackness of zero. If the size 
of this list is less than X cells, then place c at the end of the 
input priority list at P. Hence, in this case, c has a positive 
slackness. 

One consequence of the above policy is that a cell’s slack- 
ness must be non-negative right after it arrives. The intuition 
behind this insertion policy is that a cell with a small output 
cushion is approaching its time to leave (i.e. it becomes “more 
critical”), and needs to be delivered to its output sooner than a 
cell with a larger output cushion. In other words, a cell with a 
large output cushion need not be so close to the head of its 
input queue. Informally, our proof will proceed as follows. 
We first show an important property of the CCF algorithm: 
that a cell never has a negative slackness, i.e. a cell’s input 
thread never exceeds its output cushion. We then proceed to 
show how this ensures that a cell always reaches the output 
side in time. 

Lemma 1: The slackness, L , of a cell c is non-decreasing 
from time slot to time slot. 

Proof: Let the slackness of c be L at the beginning of a 
time slot. During the arrival phase, the input thread of c can 
increase by at most one because an arriving cell might be 
inserted ahead of c in its input priority list. During the depar- 
ture phase, the output cushion of c decreases by one. If c is 
scheduled in any one of the scheduling phases, then it is deliv- 
ered to its output and we need no longer concern ourselves 
with c. Otherwise, during each of the two scheduling phases, 
either the input thread of c decreases by one, or the output 
cushion of c increases by one (by the property of stable 
matchings - see Definition 5) .  Therefore the slackness of c 
increases by at least one during each scheduling phase. Count- 
ing the changes in each of the four phases (arrival, departure, 
and two scheduling phases), we conclude that the slackness of 
cell c can not decrease from time slot to time slot. 

Remark: Because the slackness of an arriving cell is 
non-negative, it follows from Lemma 1 that the slackness of a 
cell is always non-negative. 

Theorem 3:Regardless of the incoming traffic pattern, a 
CIOQ switch that uses CCF with a speedup of 2 exactly mim- 
ics a FIFO OQ switch. 

Proof: Suppose that the CIOQ switch has successfully 
mimicked the OQ switch up until time slot t - 1 , and consider 
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the beginning (first phase) of time slot t . We must show that 
any cell reaching its time to leave is either: (1) already at the 
output side of the switch, or (2) will be transferred to the out- 
put during time slot t .  From Lemma 1, we know that a cell 
always has a non-negative slackness. Therefore, when a cell 
reaches its time to leave (i.e. its output cushion has reached 
zero), the cell’s input thread must also equal zero. This means 
either: (1) that the cell is a already at its output, and may 
depart on time, or (2) that the cell is simultaneously at the 
head of its input priority list (because its input thread is zero), 
and at the head of its output priority list (because it has 
reached its time to leave). In this case, the stable matching 
algorithm is guaranteed to transfer it to its output during the 
time slot, and therefore the cell departs on time. 

Iv .  PROVIDING QOS GUARANTEES 

As pointed out in the introduction, the goal of our work is to 
control the delay of cells in a CIOQ switch in the same way 
that is possible in an OQ switch. But until now, we have con- 
sidered only the emulation of an OQ switch in which cells 
depart in FIFO order. We now show that, with a speedup of 
two, CCF can be used to emulate an OQ switch that uses the 
broad class of PIFO (Push-In First-Out) queueing policies; a 
class that includes widely-used queueing policies such as 
WFQ and Strict Priority queueing. 

Thus an OQ switch that follows a PIFO queueing policy 
can insert a cell anywhere in its output queue but it can not 
change the relative ordering of cells that are already waiting in 
the queue. Notice that with an arbitrary PIFO policy, the TL 
of a cell never decreases, but may increase as a result of 
arrival of higher priority cells. 

We can use CCF to mimic not just a FIFO OQ switch but 
any OQ switch that follows a PIFO queueing policy. The 
description of CCF remains unchanged; however the output 
cushion and the output priority lists are calculated using the 
OQ switch that we are trying to emulate. 

Theorem 4: Regardless of the incoming trafic pattern, a 
CIOQ switch that uses CCF with a speedup of 2 exactly mim- 
ics an OQ switch that adheres to a PIFO queueing policy. 

The proof of Theorem 4 is almost identical to that of Theo- 
rem 3, and is omitted. 

v .  TOWARDS MAKING CCF PRACTICAL 

CCF as presented above suffers from two main disadvan- 
tages. First, the stable matching that we need to find in each 
scheduling phase can take as many as N iterations.’ Further, 
the stable matching algorithm must consider all of the cells 
present in the input queue. We remove both disadvantages in 
this section by showing how stable matchings can be per- 

2 

formed in N iterations, and how an algorithm can use VOQs 
to consider a small number of cells in the input queues. 

The Delay Till Critical (DTC) strategy reduces the number 
of iterations needed to compute a stable matching to N (from 
N2). The Group By Virtual Output Queue (GBVOQ) algo- 
rithm ensures that the number of input cells considered by the 
stable matching algorithm is equal to the number of active vir- 
tual output queues rather than the total number of cells. These 
two schemes, when combined, are designed to allow an 
implementation of a CIOQ switch that mimics an OQ switch 
with PIFO output scheduling. 

A. The Delay Till Critical (DTC) strategy: 

The “Delay Till Critical” strategy is simple: During each 
scheduling phase, mark as active all cells with a slackness of 
zero, and mark all other cells inactive. The stable matching 
algorithm now considers only active cells. Intuitively cells 
with zero slackness are the critical cells and a cell is not con- 
sidered for a transfer across the crossbar till it becomes criti- 
cal. Since the slackness of a cell can never become negative2, 
CCF combined with DTC strategy can emulate any OQ 
switch that follows a PIFO queueing policy. 

It remains to show that this simple strategy reduces the 
number of iterations required to compute a stable matching 
from N2 to N .  Before we prove this fact, let us examine the 
efficiency bottleneck that we are trying to remove. At any 
time instant, we define the dependency graph G to be a 
directed graph with a vertex corresponding to each active cell 
that is waiting on the input side of the CIOQ switch. Let A 
and B be two cells waiting at the input side. There is a 
directed edge from B to A if and only if cell A is ahead of B 
either in an input queue or in an output priority list. Clearly 
two cells have to share either the same input port or the same 
output port if there is to be an edge between them. If we use 
CCF as defined in Section 111, there may be cycles in this 
dependency graph. These cycles are the main cause of ineffi- 
ciency in finding stable matchings, and the DTC strategy is 
aimed at getting rid of these cycles. 

Lemma 2: If DTC is used in conjunction with CCF and 
G is the resulting dependency graph on active cells, then G 
is acyclic. 

For a proof of Lemma 2 see Appendix C. Let us now con- 
sider the implications of the lemma. Since there are no cycles, 

2 
1. It is not immediately obvious that N 

this is that if two cells at the same input port are destined to the same out- 
put port, the one with the lower TL occurs ahead of the other in the input 
priority list. 
As soon as the slackness becomes zero, the cell would be marked active 

and the slackness would increase by one during the current scheduling 
phase (see Lemma 1). 

iterations suffice. The reason for 

2. 
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there has to be at least one sink (i.e. a vertex with no outgoing 
edges) in G . Let X be the cell corresponding to the sink. 
Since there are no active cells ahead of X in either its input 
queue or its output priority list, cell X has to be part of any 
stable matching of active cells. Having matched cell X ,  we 
remove from the graph all cells which have the same input or 
output port as X . The resulting graph is again acyclic, and we 
can repeat the above procedure N - 1 more times to obtain a 
stable matching. Notice that each iteration of the above N 
iteration algorithm is quite straightforward. 

cells must be considered by the stable matching algorithm. 

B. 
algorithm: 

We now address the second disadvantage of CCF, i.e. many 

The Group By Virtual Output Queue (GBVOQ) 

With CCF, the stable matching algorithm may need to con- 
sider as many cells as are contained in the input queues. How- 
ever, we can simply group incoming cells into Virtual Output 
Queues to obtain an upper bound of N on the number of cells 
that need to be considered at any input port. The algorithm, 
GBVOQ, which achieves this bound is described below. 

We explain here how GBVOQ can be used to emulate a 
FIFO OQ switch. This technique can, in general, be extended 
to a system with PIFO departure order. GBVOQ maintains a 
VOQ for each input-output port pair. When a new cell arrives 
at an input port, GBVOQ checks to see if the corresponding 
VOQ is empty. If it is, then the incoming cell is also placed at 
the head of the input queue. If, on the other hand, the VOQ 
corresponding to the new arrival is non-empty, the new cell is 
placed at the tail of its VOQ: i.e. it is inserted in the input pri- 
ority list just behind the last cell which belongs to the same 
VOQ. It is easy to see that all cells that are in the same VOQ 
occupy contiguous positions in the input queue. Therefore it is 
sufficient to just keep track of the relative priority ordering of 
VOQs. Since there are at most N VOQs in a FIFO switch, we 
get the requisite bound on the size of the input priority list. 
Since GBVOQ does not assign a negative slackness to an 
incoming cell, a CIOQ switch that uses GBVOQ with a 
speedup of two successfully emulates a FIFO OQ switch. 

Apart from small priority lists, GBVOQ also has several 
other desirable properties. First, the decision of where an 
incoming cell needs to be inserted is much simpler for 
GBVOQ than CCF. Like CCF, GBVOQ too can be used in 
conjunction with the DTC strategy to reduce the number of 
iterations needed to compute a stable matching. In fact, DTC 
is made much simpler when used in conjunction with 
GBVOQ because of the following property: if the cell at the 
head of a VOQ is marked inactive during a scheduling phase, 
the entire VOQ can be marked inactive, reducing the number 
of cells that need to be marked activehnactive. 

VI. CONCLUSIONS 
With the continued demand for faster and faster switches, it 

is increasingly difficult to implement switches that use output 
queueing or centralized shared memory. Before long, it may 
become impractical to build the highest performance switches 
and routers using these techniques. It has been argued for 
some time that most of the advantages of output-queuing 
(OQ) can be achieved using combined input and output 
queueing (CIOQ). While this has been argued for very spe- 
cific, benign traffic patterns there has always been a suspicion 
that the advantages would diminish in a more realistic operat- 
ing environment. 

This paper shows that a CIOQ switch with a speedup ofjust 
two can behave identically to an OQ switch which employs a 
wide variety of packet scheduling algorithms, such as WFQ, 
strict priorities, etc. Perhaps more importantly, we show this 
is true for any traffic arrival pattern and for arbitrary switches 
sizes. The complexity of implementing various packet sched- 
uling algorithms introduced in the paper was also discussed. 
We believe that these results will make it possible to support 
QoS in very high bandwidth switches and routers. 
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Arrival 
Phase 

Appendix A: The Necessity of a Speedup of 2-1/N 
With a speedup of two, the above algorithms (CCF and 

GBVOQ) exactly mimic an arbitrary size OQ switch. The 
next natural question to ask is whether it is possible to emulate 
output queueing using a CIOQ switch with a speedup less 

than 2. In this section we show a lower bound of 2 - - on the 

speedup of any CIOQ switch that emulates OQ switching, 
even when the OQ switch uses FIFO. Hence the algorithms 
that we have presented in this paper are almost optimal. In 

fact, the difference of - can be ignored for all practical pur- 

poses. 

1 
N 

1 
N 

Scheduling Departure Scheduling 
Phase 1 Phase Phase2 

Since a speedup between 1 and 2 represents a non-integral 
distribution of phases, we first describe how scheduling 

phases are distributed. A speedup of 2 - - corresponds to 

having a truncated time slot out of every N time slots; the 
truncated time slot has just one scheduling phase, whereas the 
other N - 1 time slots have two scheduling phases each. In 
Fig. 3, we show the difference between one-phased and two- 
phased time slots. For the purposes of our lower bound, we 
need to assume that the scheduling algorithm does not know 
in advance whether a time slot is truncated. 

1 
N 

I Time Slot I 

I Arrival I Scheduling I Departure 
Phase Phase 1 Phase 

One Scheduling Phase Time Slot 

Recall from Section I11 that a cell is represented as P-TL, 
where P represents which output port the cell is destined to, 
and TL represents the time to leave for the cell. For example, 
the cell C-7 must be scheduled for port C before the end of 
time slot 7. 

The input traffic pattern that provides the lower bound for a 
N x N CIOQ switch is given below. The traffic pattern spans 
N time slots, the last of which is truncated. 

1. In the first time slot, all input ports receive cells destined 
for the same output port, P, . 

1. In the second time slot, the input port that had the lowest 
time to leave in the previous time slot does not receive 
any more cells. In addition, the rest of the input ports 
receive cells destined for the same output port, P,  . 

1. In the i th  time slot, the input ports that had the lowest 
time to leave in each of the i - 1 previous time slots do 
not receive any more cells. In addition, the rest of the 
input ports must receive cells destined for the same out- 
putport, P i .  

We can repeat the above traffic pattern as many time as 
required to create arbitrarily long traffic patterns. In Fig. 4, 
we show the above sequence of cells for a 4 x 4 switch. The 
departure events from the OQ switch are depicted on the right, 
and the arrival events are on the left. For simplicity, we 
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Fig. 4 Lower bound Input Traffic Pattem for a 4x4 switch. 

present the proof of our lower bound on this 4 x 4 switch 
instead of a general N x N switch. 

Fig. 5 shows the only possible schedule for transferring 

Fig. 5 Scheduling Order for the lower bound input traffic pattem in Fig. 
4. 

these cells across in seven phases. Of the four time slots, the 
last one is truncated, giving a total of seven phases. Cell A-1 
must leave the input side during the first phase, since the 
CIOQ switch does not know whether the first time slot is trun- 
cated. Similarly, cells B-2, C-3, and D-4 must leave during the 
third, fifth, and seventh phases, respectively (see Fig. 5(a)). 
Cell A-2 must leave the input side by the end of the third 
phase. But it cannot leave during the first or the third phase 
because of contention. Therefore, it must depart during the 
second phase. Similarly, cells B-3 and C-4 must depart during 
the fourth and sixth phases, respectively (see Fig. 5(b)). Con- 

tinuing this elimination process (Fig. 5(c), (d)), there is only 
one possible scheduling order. For this input traffic pattern, 
the switch needs all seven phases in four time slots which cor- 

responds to a minimum speedup of - (or 2 - - ). 7 1 
4 4 

1 
N Theorem 5:A minimum speedup of 2 - - is necessary 

f o r  a N x N CIOQ switch operating under any algorithm 
which is not allowed to consider the number of scheduling 
phases in a time slot. 

The proof of Theorem 5 is a straight-forward extension of 
the 4 x 4 CIOQ switch example. 

Appendix B: The Sufficiency of a Speedup of 2-1/N to 
Mimic a FIFO Output Queued Switch 

We now show that it is possible to emulate a FIFO OQ 
1 switch using a speedup of 2 - - . Specifically, we show that N 

this emulation can be achieved by a CIOQ switch which fol- 
lows the general framework described in Section I, using a 
scheme that we call “Last In Highest Priority” (LIHP) to 
determine input priorities for incoming cells. As the name 
suggests, LIHP places a newly arriving cell right at the front 
of the input priority list. The analysis in this section borrows 
heavily from ideas described in Section 111. 

In this section we use a slightly different time slot structure. 
A “normal” time slot has an arrival phase followed by two 
scheduling phases and then a departure phase, whereas a 
“truncated” time slot has an arrival phase, a scheduling phase, 

and then a departure phase. Since the speedup is 2 - - , we 

assume that there are at least N - 1 normal phases between 
two truncated phases. The CIOQ switch does not need to 
know which phases are truncated. 

1 
N 

At any time instant, and for any cell X , let N T S ( X )  denote 
the number of truncated time slots between now and the time 
when this cell leaves the OQ switch, inclusive. Recall from 
Section I that L ( X )  = O C ( X )  - I T ( X )  is the slackness of cell 
X ,  where OC(X)  and I T ( X )  refer to the output cushion and 
input thread of the cell, respectively. 

Lemma 3: Ifthe OQ switch being emulated is FIFO, then 
L ( X )  2 N T S ( X )  after the f irs t  scheduling phase and just  
before the arrival phase, for all cells X waiting on the input 
side of a CIOQ switch that uses L I H P  and a speedup of 1 2 - -  N ‘  

The following theorem is a consequence of Lemma 3 - we 
defer the proof of the lemma itself to the end of this section. 
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1 
N Theorem 6 : A  speedup of 2 - - suffices for a CIOQ 

switch that uses LIHP to emulate a FIFO OQ switch. 

Proof: Suppose it is time for cell X to leave the OQ 
switch, and suppose that the CIOQ switch has successfully 
mimicked a FIFO OQ switch so far. Clearly, O C ( X )  must be 
zero. If X has already crossed over to the output side then we 
are done. So suppose X is still queued at its input port. If the 
current time slot were truncated then L ( X )  would be at least 
one (Lemma 3). But then the input thread would be negative, 
which is not possible. Therefore, the current time slot has two 
scheduling phases. Invoking Lemma 3 again, L ( X )  must be at 
least zero after the first scheduling phase. Since O C ( X )  is 
zero, the input thread of X must be zero too. Cell X ,  there- 
fore, is at the front of both its input and its output priority lists, 
and will cross the switch in the second scheduling phase, just 
before the departure phase. This completes the proof of the 
theorem. z 

Proof of Lemma 3: Suppose the lemma has been true till 
the beginning of time slot t - 1 . We prove that the lemma 
holds at the end of the first scheduling phase and at the end of 
the departure phase in time slot t . 

We first consider the end of the first scheduling phase. 
Cells which were already present on the input side at the 
beginning of time t satisfy L 2 N T S ,  as NTS does not 
change (a property of FIFO -- the departure time of a cell from 
the OQ switch gets fixed upon arrival, and does not change), 
and L can only go up (see Lemma 1 for an explanation of 
why L can not decrease) during the arrival and the scheduling 
phases. Now consider a cell X which arrives during time slot 
t . Let k = N T S ( X )  . Since the slackness of a cell is at least 
zero upon arrival (remember that the input thread of an arriv- 
ing cell is zero in LIHP), the slackness at the end of the first 
scheduling phase must be at least one. Therefore X trivially 
satisfies the lemma if k I 1 . Suppose k > 1 . At most N cells 
could have arrived during the current time slot, and therefore, 
there must have been a cell Y in the system with a NTS of 
k - 1 , and the same output port as X , at the beginning of time 
t (this is where we use the fact that the truncated time slots 
are spaced at least N apart). If Y is waiting on the input side, 
then OC( Y) 2 L( Y )  2 k - 1 . Since the OQ switch is FIFO, 
O C ( X )  2 OC( Y) . But the input thread of the arriving cell X 
must be zero. Hence, the slackness of X is at least k - 1 after 
the arrival phase, and consequently, at least k after the first 
scheduling phase. The case where Y is waiting at the output 
side is similar, and we omit the details. 

most one. But the NTS value goes down by one for all cells 
in the system, and the lemma continues to hold. 

Appendix C: Proof of Lemma 2. 
The proof is by contradiction. Assume there does exist a 

cycle in the dependency graph on active cells. Pick a smallest 
cycle in this graph. If there is an edge from cell X to cell Y, 
then Y must be ahead of X either in the input queue ordering 
or in the output queue ordering. We call the edge an “input” 
edge in the former case and an “output” edge in the latter; 
ambiguities are resolved arbitrarily. The smallest cycle must 
have alternating input and output edges, because two succes- 
sive input or output edges could be collapsed into one result- 
ing in a smaller cycle. If there is an output edge from X to Y, 
then the output cushion of Y is at most as large as that of X. 
But X and Y are both active, and the input thread of an active 
cell must equal its output cushion. Therefore, the input thread 
of Y is no larger than the input thread of X. Also, if there is an 
input edge from X to Y then the input thread of Y must be 
strictly smaller than that of X; that is, X appears in Y’s input 
thread. The smallest cycle must have at least two edges, as 
there can be no self loops in the dependency graph. Conse- 
quently, the cycle must contain at least one input edge. But 
this implies that there is a cell in this cycle which appears in 
its own input thread! This is impossible. Hence our assump- 
tion that there exists a cycle in the graph cannot be true, and 
the lemma is proved. 

Now concentrate on the end of time slot t . If this time slot 
turns out to be normal, then the slackness of any cell does not 
decrease during the second scheduling phase and the depar- 
ture phase. Else, the slackness of any cell can go down by at 
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