
Matching Output Queueing with a Combined Input Output Queued Switch

Shang-Tse Chuang *
Ashish Goel

Nick McKeown
Balaji Prabhakar

Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, CA 94305
*Abrizio Inc., 501B Ellis Street, Mountain View, CA 94043

Abstract - The Internet is facing two problems simultaneously:
there is a need for a faster switchinglrouting infrastructure, and
a need to introduce guaranteed qualities of service (QoS). Each
problem can be solved independently: switches and routers can
be made faster by using input-queued crossbars, instead of
shared memory systems; and QoS can be provided using WFQ-
based packet scheduling. However, until now, the two solutions
have been mutually exclusive - all of the work on WFQ-based
scheduling algorithms has required that switchedrouters use
output-queueing, or centralized shared memory. This paper
demonstrates that a Combined Input Output Queueing (CIOQ)
switch running twice as fast as an input-queued switch can
provide precise emulation of a broad class of packet scheduling
algorithms, including WFQ and strict priorities. More precisely,
we show that a “speedup” of 2 is sufficient, and a speedup of
2 - 1/N is necessary, for this exact emulation. We introduce a
variety of algorithms that configure the crossbar so that
emulation is achieved with a speedup of two, and consider their
running time and implementation complexity. An interesting
feature of our work is that the exact emulation holds for all input
traffic patterns. We believe that, in the future, these results will
make possible the support of QoS in very high bandwidth
routers.

I. INTRODUCTION

Many commercial switches and routers today employ out-
put-queueing.’ When a packet arrives at an output-queued
(OQ) switch, it is immediately placed in a queue that is dedi-
cated to its outgoing line, where it waits until departing from
the switch. This approach is known to maximize the through-
put of the switch: so long as no input or output is oversub-
scribed, the switch is able to support the traffic and the
occupancies of queues remain bounded. Furthermore, by care-
fully scheduling the time a packet is placed onto the outgoing
line, a switch or router can control the packet’s latency, and
hence provide quality-of-service (QoS) guarantees. But output
queueing is impractical for switches with high line rates and/

or with a large number of ports, since the fabric and memory
of an N x N switch must run N times as fast as the line rate.
Unfortunately, at high line rates, memories with sufficient
bandwidth are simply not available.

On the other hand, the fabric and the memory of an input
queued (IQ) switch need only run as fast as the line rate. This
makes input queueing very appealing for switches with fast
line rates, or with a large number of ports. For this reason, the
highest performance switches and routers use input-queued
crossbar switches [3][4]. But IQ switches can suffer from
head-of-line (HOL) blocking, which can have a severe effect
on throughput. It is well-known that if each input maintains a
single FIFO, then HOL blocking can limit the throughput to
just 58.6% [5].

One method that has been proposed to reduce HOL block-
ing is to increase the “speedup” of a switch. A switch with a
speedup of S can remove up to S packets from each input and
deliver up to S packets to each output within a time slot,
where a time slot is the time between packet arrivals at input
ports. Hence, an OQ switch has a speedup of N while an IQ
switch has a speedup of one. For values of S between 1 and
N packets need to be buffered at the inputs before switching
as well as at the outputs after switching. We call this architec-
ture a combined input and output queued (CIOQ) switch.

Both analytical and simulation studies of a CIOQ switch
which maintains a single FIFO at each input have been con-
ducted for various values of speedup [6][7][8][9]. A common
conclusion of these studies is that with S = 4 or 5 one can
achieve about 99% throughput when arrivals are independent
and identically distributed at each input, and the distribution
of packet destinations is uniform across the outputs. Whereas
these studies consider average delay (and simplistic input traf-
fic patterns), they make no guarantees about the delay of indi-
vidual packets. This is particularly important if a switch or
router is to offer QoS guarantees.

1. When we refer to output-queueing in this paper, we include designs that
employ centralized shared memory.

0-7803-5417-6/99/$10.00 01999 IEEE. 1169

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

We believe that a well-designed network switch should per-
form predictably in the face of all types of arrival process’ and
allow the delay of individual packets to be controlled. Hence
our approach is quite different: Rather than find values of
speedup that work well on average, or with simplistic and
unrealistic traffic models, we find the minimum speedup such
that a CIOQ switch behaves identically to an OQ switch for
all types of traffic. (Here, “behave identically” means that
when the same inputs are applied to both the OQ switch and to
the CIOQ switch, the corresponding output processes from the
two switches are completely indistinguishable). This approach
was first formulated in the recent work of Prabhakar and
McKeown [12]. They show that a CIOQ switch with a
speedup of 4 can behave identically to a FIFO OQ switch for
arbitrary input traffic patterns and switch sizes. In this sense,
this paper builds upon and extends the results in [12], as
described in the next paragraph. A number of researchers have
recently considered various aspects of the speedup problem,
most notably [181 which obtains packet delay bounds and
[191 which finds sufficient conditions for maximizing
throughput through work conservation and mimicking of out-
put queueing.2

We show that a CIOQ switch with a speedup of 2 can
behave identically to an OQ switch which employs a broad
class of packet scheduling algorithms (including WFQ, strict
priorities, and FIFO), for arbitrary switch sizes, and for arbi-
trary input traffic patterns. This is done by introducing a vari-
ety of packet scheduling algorithms for the CIOQ switch. We

also show that a speedup of 2 - - is necessary and sufficient

for a CIOQ switch to behave identically as a FIFO OQ switch.
Finally, we conclude by discussing the running time and
implementation complexity

A. Background

1
N

1. Consider the single stage, N x N switch shown in Fig. 1.
Throughout the paper we assume that packets begin to
arrive at the switch from time t = 1 , the switch having
been empty before that time. Although packets arriving to
the switch or router may have variable length, we will
assume that they are treated internally as fixed length
“cells”. This is common practice in high performance

1. The need for a switch that can deliver a certain grade of service, irrespec-
rive ofrhe applied traffic is particularly important given the number of
recent studies that show how little we understand network traffic pro-
cesses [I 11. Indeed, a sobering conclusion of these studies is that it is not
yet possible to accurately model or simulate a trace of actual network traf-
tic. Furthermore, new applications, protocols or data-coding mechanisms
may bring new traffic types in future years.

2. [20] aimed to extend the results of [12], but the algorithms and proofs pre-
sented there are incorrect. See http:Nwww.cs.cmu.edu/-istoicd
IWQoS98-fix.htm1 for a detailed discussion of the errors.

Input 1

-7
e

e

--+k Input N

output 1

+rIIIl-,
0

e
e

+zlIrl+
Output N

Fig. 1 A General Combined Input and Output Queued (CIOQ) switch.

LAN switches and routers; variable length packets are
segmented into cells as they arrive, carried across the
switch as cells, and reassembled back into packets again
before they depart [3][4]. We take the arrival time
between cells as the basic time unit and refer to it as a
time slot. The switch is said to have a speedup of S , for
S E { 1, 2, ..., N } if it can remove up to S cells from
each input and transfer at most S cells to each output in a
time slot. A speedup of S requires the switch fabric to
run S times as fast as the input or output line rate. For
1 < S < N buffering is required both at the inputs and at
the outputs, and leads to a combined input and output
queued (CIOQ) architecture. The following is the prob-
lem we wish to solve.

The speedup problem: Determine the smallest value of S
and an appropriate cell scheduling algorithm 7[; that

2. allows a CIOQ switch to exactly mimic the performance
of an output-queued switch (in a sense that will be made
precise),

3. achieves this for any arbitrary input traffic pattern,

4. is independent of switch size In an OQ switch, arriving
cells are immediately forwarded to their corresponding
outputs. This (a) ensures that the switch is work-conserv-
ing, i.e. an output never idles so long as there is a cell des-
tined for it in the system, and (b) allows the departure of
cells to be scheduled to meet latency constraint^.^ We
will require that any solution of the speedup problem pos-
sess these two desirable features; that is, a CIOQ switch
must behave identically as an OQ switch in the following
sense:

3. For ease of exposition, we will at times assume that the output uses a
FIFO queueing discipline, i.e. cells depart from the output in the same
order that they arrived to the inputs of the switch. However, we are inter-
ested in a broader class of queueing disciplines: ones that allow cells to
depart in time to meet particular bandwidth and delay guarantees.

1170

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

Identical Behavior: A CIOQ switch is said to behave
identically as an OQ switch if, under identical inputs, the
departure time of every cell from both switches is identical.

As a benchmark with which to compare our CIOQ switch,
we will assume there exists a shadow N x N OQ switch that is
fed the same input traffic pattern as the CIOQ switch. The
key to solving the speedup problem is to design scheduling
algorithms which decide the order in which cells at the input
of the CIOQ switch are transferred to the desired outputs so
that “identical behavior” with respect to the shadow OQ
switch may be achieved. Each time cells are to be transferred,
the scheduling algorithm matches each non-empty input with
at most one output and, conversely, each output is matched
with at most one input. The matching is used to configure the
crossbar fabric before cells are transferred from the input side
to the output side. A CIOQ switch with a speedup of S is able
to make S such transfers during each time slot.

B. Push-in Queues

Throughout this paper, we will make repeated use of what
we will call a push-in queue. Similar to a discrete-event
queue, a push-in queue is one in which an arriving cell is
inserted at an arbitrary location in the queue based on some
criterion. For example, each cell may carry with it a departure
time, and is placed in the queue ahead of all cells with a later
departure time, yet behind cells with an earlier departure time.
The only property that defines a push-in queue is that once
placed in the queue, cells may not switch places with other
cells. In other words, their relative ordering remains
unchanged. In general, we distinguish two types of push-in
queues: (1) “Push-In First-Out” (PIFO) queues, in which
arriving cells are placed at an arbitrary location, and the cell at
the head of the queue is always the next to depart. PIFO
queues are quite general - for example, a WFQ scheduling
discipline operating at an output queued switch is a special
case of a PIFO queue. (2) “Push-In Arbitrary-Out” (PIAO)
queues, in which cells are removed from the queue in an arbi-
trary order. i.e. it is not necessarily the case that the next cell
to depart is the one currently at the head of the queue.

It is assumed that each input of the CIOQ switch maintains
a queue, which can be thought of as an ordered set of cells
waiting at the input port. In general, the CIOQ switches that
we consider, can all be described using PIAO input queues.
Many orderings of the cells are possible --- each ordering
leading to an interesting switch scheduling algorithm, as we
shall soon see.

Each output maintains a queue for the cells waiting to
depart from the switch. In addition, each output also maintains

1. In practice, we need not necessarily use a PIAO queue to implement these
techniques. But we will use the PIAO queue as a general way of describ-
ing the input queueing mechanism.

an output priority list: an ordered list of cells at the inputs
waiting to be transferred to this particular output. The output
priority list is drawn in the order in which the cells would
depart from the OQ switch we wish to emulate (i.e. the
shadow OQ switch). This priority list will depend on the
queueing policy followed by the OQ switch (FIFO, WFQ,
strict priorities etc.).

C. Definitions

The following definitions are crucial to the rest of the
paper.

Definition 1: Time to Leave - The “time to leave” for cell
c, TL(c), is the time slot at which c will leave the shadow OQ
switch. Note that it is possible for T U C) to increase. This hap-
pens ifnew cells arrive to the switch, destined for c ’s output,
and have a higher priority than c. (Of course, TL(c) is also
the time slot in which c must leave from our CIOQ switch for
the identical behavior to be achieved.)

Definition 2: Output Cushion - At any time, the “output
cushion of a cell c”, OC(c), is the number of cells waiting in
the output bufSer at cell c’s output port with a smaller time to
leave value than cell c.

Notice that if a cell has a small (or zero) output cushion and
is still on the input side, then the scheduling algorithm must
urgently deliver the cell to its output so that it may depart
when its time to leave is reached. Since the switch is work-
conserving, a cell’s output cushion decreases by one during
every time slot, and can only be increased by newly arriving
cells that are destined to the same output and have a more
urgent time to leave.

Definition 3: Input Thread -At any time, the “input thread
of cell c” , IT(c), is the number of cells ahead of cell c in its
input priority list.

In other words, IT(c) represents the number of cells cur-
rently at the input that need to be transferred to their outputs
more urgently than cell c. A cell’s input thread is decremented
only when a cell ahead of it is transferred from the input, and
is possibly incremented by newly arriving cells. Notice that it
would be undesirable for a cell to simultaneously have a large
input thread and a small output cushion -the cells ahead of it
at the input may prevent it from reaching its output before its
time to leave. This motivates our definition of slackness.

Definition 4: Slackness - At any time, the “slackness of cell
e ” , L(c), equals the output cushion of cell c minus its input
threadi.e. L(C) = O C (C) - I T (C) .

Slackness is a measure of how large a cell’s output cushion
is with respect to its input thread. If a cell’s slackness is small,
then it urgently needs to be transferred to its output. Con-

1171

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

Input Queues Output Queues

Fig. 2 A snapshot of a CIOQ switch

versely, if a cell has a large slackness, then it may languish at
the input without fear of missing its time to leave.

Fig. 2 shows a snapshot of a CIOQ switch with a number
of cells waiting at its inputs and outputs. For convenience we
assume the time the snapshot was taken to be 1. Let (P , t)
denote a cell that, in the shadow switch, will depart from out-
put port P at time t . Consider, for example, the cell c denoted
in the figure by (A, 3) . For the CIOQ switch to mimic the
shadow OQ switch, the cell must depart from port A at time 3.
Its input thread is I T (c) = 1 , since (B , 1)is the only cell
ahead of c in the input priority list. Its output cushion is
O C (C) = 2 , since out of the three cells queued at A’s output
buffer, only two cells (A, 1) and (A, 2) will depart before it.
F u r t h e r , t h e s l ackness of ce l l c i s g iven by
L(C) = O C (C) - I T (C) = 1 .

D.
algorithms:

The general structure of our CIOQ scheduling

For most of this paper we are going to concern ourselves
with CIOQ switches that have a speedup of two. Hence, we
will break each time slot into four phases:

The Arrival Phase
All arrivals of new cells to the input ports take place dur-
ing this phase.

The First Scheduling Phase
The scheduling algorithm selects cells to transfer from
inputs to outputs, and then transfers them across the
crossbar.

The Departure Phase
All departures of cells from the output ports take place
during this phase.

The Second Scheduling Phase
Again, the scheduling algorithm selects cells to transfer
from inputs to outputs and transfers them across the
crossbar.

The order in which the four phases occur is not crucial to
our algorithms. However we shall stick to the above ordering
as it makes our proofs simpler.

A matching of input ports to output ports is a (not necessar-
ily maximal) set of cells waiting on the input side such that all
these cells can be sent across the crossbar in a single transfer
(i.e. are free of input and output contention). During each
scheduling phase the scheduler finds a stable matching
between the input ports and the output ports.

Definition 5: Stable Matching - A matching of input ports
to output ports is said to be stable iffor each cell c waiting in
an input queue, one of the following holds:

1. Cell c is part of the matching, i.e. c will be transferred
from the input side to the output side during this phase.

2 . A cell that is ahead of c in its input priority list is part of
the matching.

3. A cell that is ahead of c in its output priority list is part of

Notice that conditions 2 and 3 above may be simulta-
neously satisfied, but condition 1 excludes the other two. The
conditions for a stable matching can be achieved using the so-
called stable marriage problem. Solutions to the stable mar-
riage problem are called stable matchings and were first stud-
ied by Gale and Shapely [131- they gave an algorithm that
finds a stable matching in at most M iterations, where M is
the sum of the lengths of all the input priority lists.

the matching.

Our specification of the scheduling algorithm for a CIOQ
switch is almost complete: the only thing that remains is to
specify how the input queues are maintained. Different ways
of maintaining the input queues result in different scheduling
algorithms. In fact, the various scheduling algorithms pre-
sented later differ only in the ordering of their input queues.
For reasons that will become apparent, we will restrict our-
selves to a particular class of orderings, which is defined as
follows.

Definition 6: PIA0 Input Queue Ordering - When a cell
arrives, it is given a priority number which dictates its posi-
tion in the queue. i.e. a cell with priority number X is placed at
location (X+I) from the head of the list. A cell is placed in an
input priority list according to the following rules:

1. Arriving cells are placed at (or, “pushed-in” to) an arbi-
trary location in the queue,

2. The relative ordering of cells in the queue does not
change once cells are in the queue, i.e. cells in the queue
cannot switch places, and

3. Cells may be selected to depart from the queue from any
location.

1172

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

Thus, to complete our description of the scheduling algo-
rithms, we need only specify an insertion policy which deter-
mines where an arriving cell gets placed in its input queue.

On the output side, the CIOQ switch keeps track of the time
to leave of each waiting cell. During each time slot the cell
that departs from an output and is placed onto the outgoing
line is the one with the smallest time to leave. For the CIOQ
switch to successfully mimic the shadow OQ switch, we must
ensure that each cell crosses over to the output side before it is
time for the cell to leave.

11. NECESSITY AND SUFFICIENCY OF A
SPEEDUP OF 2- 1/N

Having defined speedup, we now address the next natural
question: what is the minimum possible speedup, S , of a
CIOQ switch that emulates an OQ switch. The following the-
orem answers this question.

Theorem 1: (Necessity). An N x N CIOQ switch needs a

speedup of at least 2 - - to exactly emulate an N x N FIFO

OQ switch.

1
N

Proof: The proof is by example and is presented in
Appendix A.

Remark: Since FIFO is a special case of a variety of out-
put queueing disciplines (Weighted Fair Queueing, Strict Pri-
orities etc.), the lower bound applies to these queueing
disciplines as well.

Theorem 2: (Suflciency). An N x N CIOQ switch with a

speedup of 2 - - can exactly emulate an N x N FIFO OQ 1
N

switch.

Proof: The proof is based on the insertion policy Last In
Highest Priority (LIHP) and can be found in Appendix B.

111. A SIMPLE INPUT QUEUE INSERTION POLICY
FOR A SPEEDUP OF 2

The proof of Theorem 2 uses a simple input queue insertion
policy (LIHP), but unfortunately the proof is complex and, in
our opinion, somewhat counterintuitive. Further, LIHP is
quite inefficient. In an attempt to provide a more intuitive
understanding of the speedup problem, we present a simple
and more efficient insertion policy that mimics an OQ switch
with a FIFO queueing discipline with a speedup of two. We
call this insertion policy Critical Cells First (CCF).

Recall that to specify a scheduling algorithm for a CIOQ
switch, we just need to give an insertion policy for the input

queues. “Critical Cells First” (CCF) inserts an arriving cell as
far from the head of its input queue as possible, such that the
input thread of the cell is not larger than its output cushion.
Since this decision is crucial, we restate CCF more formally.

The CCF Insertion Policy: Suppose cell c arrives at input
port P. Let X be the output cushion of c. Insert cell c into the
(X + 1) th position from the front of the input queue at P.
Hence, upon arrival cell c has a slackness of zero. If the size
of this list is less than X cells, then place c at the end of the
input priority list at P. Hence, in this case, c has a positive
slackness.

One consequence of the above policy is that a cell’s slack-
ness must be non-negative right after it arrives. The intuition
behind this insertion policy is that a cell with a small output
cushion is approaching its time to leave (i.e. it becomes “more
critical”), and needs to be delivered to its output sooner than a
cell with a larger output cushion. In other words, a cell with a
large output cushion need not be so close to the head of its
input queue. Informally, our proof will proceed as follows.
We first show an important property of the CCF algorithm:
that a cell never has a negative slackness, i.e. a cell’s input
thread never exceeds its output cushion. We then proceed to
show how this ensures that a cell always reaches the output
side in time.

Lemma 1: The slackness, L , of a cell c is non-decreasing
from time slot to time slot.

Proof: Let the slackness of c be L at the beginning of a
time slot. During the arrival phase, the input thread of c can
increase by at most one because an arriving cell might be
inserted ahead of c in its input priority list. During the depar-
ture phase, the output cushion of c decreases by one. If c is
scheduled in any one of the scheduling phases, then it is deliv-
ered to its output and we need no longer concern ourselves
with c. Otherwise, during each of the two scheduling phases,
either the input thread of c decreases by one, or the output
cushion of c increases by one (by the property of stable
matchings - see Definition 5) . Therefore the slackness of c
increases by at least one during each scheduling phase. Count-
ing the changes in each of the four phases (arrival, departure,
and two scheduling phases), we conclude that the slackness of
cell c can not decrease from time slot to time slot.

Remark: Because the slackness of an arriving cell is
non-negative, it follows from Lemma 1 that the slackness of a
cell is always non-negative.

Theorem 3:Regardless of the incoming traffic pattern, a
CIOQ switch that uses CCF with a speedup of 2 exactly mim-
ics a FIFO OQ switch.

Proof: Suppose that the CIOQ switch has successfully
mimicked the OQ switch up until time slot t - 1 , and consider

1173

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

the beginning (first phase) of time slot t . We must show that
any cell reaching its time to leave is either: (1) already at the
output side of the switch, or (2) will be transferred to the out-
put during time slot t . From Lemma 1, we know that a cell
always has a non-negative slackness. Therefore, when a cell
reaches its time to leave (i.e. its output cushion has reached
zero), the cell’s input thread must also equal zero. This means
either: (1) that the cell is a already at its output, and may
depart on time, or (2) that the cell is simultaneously at the
head of its input priority list (because its input thread is zero),
and at the head of its output priority list (because it has
reached its time to leave). In this case, the stable matching
algorithm is guaranteed to transfer it to its output during the
time slot, and therefore the cell departs on time.

Iv . PROVIDING QOS GUARANTEES

As pointed out in the introduction, the goal of our work is to
control the delay of cells in a CIOQ switch in the same way
that is possible in an OQ switch. But until now, we have con-
sidered only the emulation of an OQ switch in which cells
depart in FIFO order. We now show that, with a speedup of
two, CCF can be used to emulate an OQ switch that uses the
broad class of PIFO (Push-In First-Out) queueing policies; a
class that includes widely-used queueing policies such as
WFQ and Strict Priority queueing.

Thus an OQ switch that follows a PIFO queueing policy
can insert a cell anywhere in its output queue but it can not
change the relative ordering of cells that are already waiting in
the queue. Notice that with an arbitrary PIFO policy, the TL
of a cell never decreases, but may increase as a result of
arrival of higher priority cells.

We can use CCF to mimic not just a FIFO OQ switch but
any OQ switch that follows a PIFO queueing policy. The
description of CCF remains unchanged; however the output
cushion and the output priority lists are calculated using the
OQ switch that we are trying to emulate.

Theorem 4: Regardless of the incoming trafic pattern, a
CIOQ switch that uses CCF with a speedup of 2 exactly mim-
ics an OQ switch that adheres to a PIFO queueing policy.

The proof of Theorem 4 is almost identical to that of Theo-
rem 3, and is omitted.

v . TOWARDS MAKING CCF PRACTICAL

CCF as presented above suffers from two main disadvan-
tages. First, the stable matching that we need to find in each
scheduling phase can take as many as N iterations.’ Further,
the stable matching algorithm must consider all of the cells
present in the input queue. We remove both disadvantages in
this section by showing how stable matchings can be per-

2

formed in N iterations, and how an algorithm can use VOQs
to consider a small number of cells in the input queues.

The Delay Till Critical (DTC) strategy reduces the number
of iterations needed to compute a stable matching to N (from
N2). The Group By Virtual Output Queue (GBVOQ) algo-
rithm ensures that the number of input cells considered by the
stable matching algorithm is equal to the number of active vir-
tual output queues rather than the total number of cells. These
two schemes, when combined, are designed to allow an
implementation of a CIOQ switch that mimics an OQ switch
with PIFO output scheduling.

A. The Delay Till Critical (DTC) strategy:

The “Delay Till Critical” strategy is simple: During each
scheduling phase, mark as active all cells with a slackness of
zero, and mark all other cells inactive. The stable matching
algorithm now considers only active cells. Intuitively cells
with zero slackness are the critical cells and a cell is not con-
sidered for a transfer across the crossbar till it becomes criti-
cal. Since the slackness of a cell can never become negative2,
CCF combined with DTC strategy can emulate any OQ
switch that follows a PIFO queueing policy.

It remains to show that this simple strategy reduces the
number of iterations required to compute a stable matching
from N2 to N . Before we prove this fact, let us examine the
efficiency bottleneck that we are trying to remove. At any
time instant, we define the dependency graph G to be a
directed graph with a vertex corresponding to each active cell
that is waiting on the input side of the CIOQ switch. Let A
and B be two cells waiting at the input side. There is a
directed edge from B to A if and only if cell A is ahead of B
either in an input queue or in an output priority list. Clearly
two cells have to share either the same input port or the same
output port if there is to be an edge between them. If we use
CCF as defined in Section 111, there may be cycles in this
dependency graph. These cycles are the main cause of ineffi-
ciency in finding stable matchings, and the DTC strategy is
aimed at getting rid of these cycles.

Lemma 2: If DTC is used in conjunction with CCF and
G is the resulting dependency graph on active cells, then G
is acyclic.

For a proof of Lemma 2 see Appendix C. Let us now con-
sider the implications of the lemma. Since there are no cycles,

2
1. It is not immediately obvious that N

this is that if two cells at the same input port are destined to the same out-
put port, the one with the lower TL occurs ahead of the other in the input
priority list.
As soon as the slackness becomes zero, the cell would be marked active

and the slackness would increase by one during the current scheduling
phase (see Lemma 1).

iterations suffice. The reason for

2.

1174

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

there has to be at least one sink (i.e. a vertex with no outgoing
edges) in G . Let X be the cell corresponding to the sink.
Since there are no active cells ahead of X in either its input
queue or its output priority list, cell X has to be part of any
stable matching of active cells. Having matched cell X , we
remove from the graph all cells which have the same input or
output port as X . The resulting graph is again acyclic, and we
can repeat the above procedure N - 1 more times to obtain a
stable matching. Notice that each iteration of the above N
iteration algorithm is quite straightforward.

cells must be considered by the stable matching algorithm.

B.
algorithm:

We now address the second disadvantage of CCF, i.e. many

The Group By Virtual Output Queue (GBVOQ)

With CCF, the stable matching algorithm may need to con-
sider as many cells as are contained in the input queues. How-
ever, we can simply group incoming cells into Virtual Output
Queues to obtain an upper bound of N on the number of cells
that need to be considered at any input port. The algorithm,
GBVOQ, which achieves this bound is described below.

We explain here how GBVOQ can be used to emulate a
FIFO OQ switch. This technique can, in general, be extended
to a system with PIFO departure order. GBVOQ maintains a
VOQ for each input-output port pair. When a new cell arrives
at an input port, GBVOQ checks to see if the corresponding
VOQ is empty. If it is, then the incoming cell is also placed at
the head of the input queue. If, on the other hand, the VOQ
corresponding to the new arrival is non-empty, the new cell is
placed at the tail of its VOQ: i.e. it is inserted in the input pri-
ority list just behind the last cell which belongs to the same
VOQ. It is easy to see that all cells that are in the same VOQ
occupy contiguous positions in the input queue. Therefore it is
sufficient to just keep track of the relative priority ordering of
VOQs. Since there are at most N VOQs in a FIFO switch, we
get the requisite bound on the size of the input priority list.
Since GBVOQ does not assign a negative slackness to an
incoming cell, a CIOQ switch that uses GBVOQ with a
speedup of two successfully emulates a FIFO OQ switch.

Apart from small priority lists, GBVOQ also has several
other desirable properties. First, the decision of where an
incoming cell needs to be inserted is much simpler for
GBVOQ than CCF. Like CCF, GBVOQ too can be used in
conjunction with the DTC strategy to reduce the number of
iterations needed to compute a stable matching. In fact, DTC
is made much simpler when used in conjunction with
GBVOQ because of the following property: if the cell at the
head of a VOQ is marked inactive during a scheduling phase,
the entire VOQ can be marked inactive, reducing the number
of cells that need to be marked activehnactive.

VI. CONCLUSIONS
With the continued demand for faster and faster switches, it

is increasingly difficult to implement switches that use output
queueing or centralized shared memory. Before long, it may
become impractical to build the highest performance switches
and routers using these techniques. It has been argued for
some time that most of the advantages of output-queuing
(OQ) can be achieved using combined input and output
queueing (CIOQ). While this has been argued for very spe-
cific, benign traffic patterns there has always been a suspicion
that the advantages would diminish in a more realistic operat-
ing environment.

This paper shows that a CIOQ switch with a speedup ofjust
two can behave identically to an OQ switch which employs a
wide variety of packet scheduling algorithms, such as WFQ,
strict priorities, etc. Perhaps more importantly, we show this
is true for any traffic arrival pattern and for arbitrary switches
sizes. The complexity of implementing various packet sched-
uling algorithms introduced in the paper was also discussed.
We believe that these results will make it possible to support
QoS in very high bandwidth switches and routers.

ACKNOWLEDGMENTS

Balaji Prabhakar thanks Anna Charny for discussions on
the speedup problem, the subject of her PhD thesis [211,
where it was pointed out that speedup could be used to pro-
vide delay guarantees for QoS-constrained flows.

REFERENCES

[l] A. Demers, S. Keshav; S . Shenker, “Analysis and Simulation of a
Fair Queueing Algorithm,” J . of Internetworking: Research and
Experience, pp.3-26, 1990.

[2] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for
Packet Switching Networks,” ACM Transactions on Computer
Systems, vo1.9 no.2, pp.101-124, 1990.

[3] Partridge, C., et al. “A fifty gigabit per second IP router,” To
appear in IEEE/ACM Transuctions on Networking.

[4] McKeown, N.; Izzard, M.; Mekkittikul, A.; Ellersick, W . ; and
Horowitz, M.; “The Tiny Tera: A Packet Switch Core” Hot
Interconnects V , Stanford University, August 1996.

[5] M. Karol; M. Hluchyj; S. Morgan, “Input versus output queueing
on a space-division switch,” IEEE Transactions on Communica-
tions, vol. 35, pp. 1347-1356, Dec 1987.

[6] I . Iliadis and W.E. Denzel, “Performance of packet switches with
input and output queueing,” in Proc. ICC ‘90, Atlanta, GA, Apr.

[7] A.L. Gupta and N.D. Georganas, “Analysis of a packet switch
with input and output buffers and speed constraints,” in Proc.
InfoCom ‘91, Bal Harbour, FL, Apr. 1991, p.694-700.

[8] Y. Oie, M. Murata, K. Kubota, and H. Miyahara, “Effect of
speedup in nonblocking packet switch,” in Proc. ICC ‘89, Bos-
ton, MA, Jun. 1989, p. 410-14.

[9] J.S.-C. Chen and T.E. Stern, “Throughput analysis, optimal buffer
allocation, and traffic imbalance study of a generic nonblocking

1990. p.747-53.

1175

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

packet switch,” IEEE J . Select. Areas Commun., Apr. 1991, vol.
9, no. 3, p. 439-49.

[IO] N. McKeown; V. Anantharam; J. Walrand, “Achieving 100%
Throughput in an input-queued switch,” Infocom ‘96.

[l l] W.E. Leland, W. Willinger, M. Taqqu, and D. Wilson, “On the
self-similar nature of Ethernet traffic”, Proc. of Sigcomm, San
Francisco, pp.183-193. Sept 1993.

[12] B. Prabhakar and N. McKeown, “On the Speedup Required for
Combined Input and Output Queued Switching.” Stanford Uni-
versity Technical Report, STAN-CSL-TR-97-738. November
1997.

[I31 D. Gale, and L.S. Shapley, “College Admissions and the stabil-
ity of marriage”, American Mathematical Monthly, vo1.69, pp.9-
15, 1962.

[I41 M.Andrews, B.Awerbuch, A. Fernandez, J. Kleinberg, T. Leigh-
ton, and Z. Liu. “Universal stability results for greedy conten-
tion-resolution protocols.” 37th IEEE symposium on
Foundations of Computer Science, pp. 380-389 (1996).

[15] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Will-
iamson. “Adversarial queueing theory.” 28th ACM Symposium
on Theory of Computing, p. 376-385 (1996).

[16] A. Goel. “Stability of Networks and Protocols in the Adversarial
Queueing Model
for Packet Routing.” Stanford University Technical Note

T. Feder, N. Megiddo, and S. Plotkin. “A sublinear parallel
algorithm for stable matching.” Fifth ACM-SIAM Symposium on
Discrete Algorithms, p. 632-637 (1994).
A. Charny, P. Krishna, N. Patel, and R. Simcoe. “Algorithms for
Providing Bandwidth and Delay Guarantees in Input-Buffered
Crossbars with Speed Up.” Presented at 6th IEEELFIP IWQoS
‘98, Napa, California. May 1998.

[19] P. Krishna, N. Patel, A. Charney , and R. Simcoe. “On the
Speedup Required for Work-Conserving Crossbar Switches”
Presented at 6th IEEELFIP IWQoS ‘98, Napa. California. May
1998.

[20] I. Stoica, and H. Zhang. “Exact Emulation of an Output Queue-
ing Switch by a Combined Input Output Queueing Switch.” Pre-
sented at 6th IEEE/IFIP IWQoS ‘98, Napa, California. May
1998.

[21] A. Charny. “Providing QoS Guarantees in Input-Buffered Cross-
bar Switches with Speedup”, Ph.D. dissertation, August 1998,
MIT.

STAN-CS-97-59.

Arrival
Phase

Appendix A: The Necessity of a Speedup of 2-1/N
With a speedup of two, the above algorithms (CCF and

GBVOQ) exactly mimic an arbitrary size OQ switch. The
next natural question to ask is whether it is possible to emulate
output queueing using a CIOQ switch with a speedup less

than 2. In this section we show a lower bound of 2 - - on the

speedup of any CIOQ switch that emulates OQ switching,
even when the OQ switch uses FIFO. Hence the algorithms
that we have presented in this paper are almost optimal. In

fact, the difference of - can be ignored for all practical pur-

poses.

1
N

1
N

Scheduling Departure Scheduling
Phase 1 Phase Phase2

Since a speedup between 1 and 2 represents a non-integral
distribution of phases, we first describe how scheduling

phases are distributed. A speedup of 2 - - corresponds to

having a truncated time slot out of every N time slots; the
truncated time slot has just one scheduling phase, whereas the
other N - 1 time slots have two scheduling phases each. In
Fig. 3, we show the difference between one-phased and two-
phased time slots. For the purposes of our lower bound, we
need to assume that the scheduling algorithm does not know
in advance whether a time slot is truncated.

1
N

I Time Slot I

I Arrival I Scheduling I Departure
Phase Phase 1 Phase

One Scheduling Phase Time Slot

Recall from Section I11 that a cell is represented as P-TL,
where P represents which output port the cell is destined to,
and TL represents the time to leave for the cell. For example,
the cell C-7 must be scheduled for port C before the end of
time slot 7.

The input traffic pattern that provides the lower bound for a
N x N CIOQ switch is given below. The traffic pattern spans
N time slots, the last of which is truncated.

1. In the first time slot, all input ports receive cells destined
for the same output port, P, .

1. In the second time slot, the input port that had the lowest
time to leave in the previous time slot does not receive
any more cells. In addition, the rest of the input ports
receive cells destined for the same output port, P, .

1. In the i th time slot, the input ports that had the lowest
time to leave in each of the i - 1 previous time slots do
not receive any more cells. In addition, the rest of the
input ports must receive cells destined for the same out-
putport, P i .

We can repeat the above traffic pattern as many time as
required to create arbitrarily long traffic patterns. In Fig. 4,
we show the above sequence of cells for a 4 x 4 switch. The
departure events from the OQ switch are depicted on the right,
and the arrival events are on the left. For simplicity, we

1176

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

Fig. 4 Lower bound Input Traffic Pattem for a 4x4 switch.

present the proof of our lower bound on this 4 x 4 switch
instead of a general N x N switch.

Fig. 5 shows the only possible schedule for transferring

Fig. 5 Scheduling Order for the lower bound input traffic pattem in Fig.
4.

these cells across in seven phases. Of the four time slots, the
last one is truncated, giving a total of seven phases. Cell A-1
must leave the input side during the first phase, since the
CIOQ switch does not know whether the first time slot is trun-
cated. Similarly, cells B-2, C-3, and D-4 must leave during the
third, fifth, and seventh phases, respectively (see Fig. 5(a)).
Cell A-2 must leave the input side by the end of the third
phase. But it cannot leave during the first or the third phase
because of contention. Therefore, it must depart during the
second phase. Similarly, cells B-3 and C-4 must depart during
the fourth and sixth phases, respectively (see Fig. 5(b)). Con-

tinuing this elimination process (Fig. 5(c), (d)), there is only
one possible scheduling order. For this input traffic pattern,
the switch needs all seven phases in four time slots which cor-

responds to a minimum speedup of - (or 2 - -). 7 1
4 4

1
N Theorem 5:A minimum speedup of 2 - - is necessary

f o r a N x N CIOQ switch operating under any algorithm
which is not allowed to consider the number of scheduling
phases in a time slot.

The proof of Theorem 5 is a straight-forward extension of
the 4 x 4 CIOQ switch example.

Appendix B: The Sufficiency of a Speedup of 2-1/N to
Mimic a FIFO Output Queued Switch

We now show that it is possible to emulate a FIFO OQ
1 switch using a speedup of 2 - - . Specifically, we show that N

this emulation can be achieved by a CIOQ switch which fol-
lows the general framework described in Section I, using a
scheme that we call “Last In Highest Priority” (LIHP) to
determine input priorities for incoming cells. As the name
suggests, LIHP places a newly arriving cell right at the front
of the input priority list. The analysis in this section borrows
heavily from ideas described in Section 111.

In this section we use a slightly different time slot structure.
A “normal” time slot has an arrival phase followed by two
scheduling phases and then a departure phase, whereas a
“truncated” time slot has an arrival phase, a scheduling phase,

and then a departure phase. Since the speedup is 2 - - , we

assume that there are at least N - 1 normal phases between
two truncated phases. The CIOQ switch does not need to
know which phases are truncated.

1
N

At any time instant, and for any cell X , let N T S (X) denote
the number of truncated time slots between now and the time
when this cell leaves the OQ switch, inclusive. Recall from
Section I that L (X) = O C (X) - I T (X) is the slackness of cell
X , where OC(X) and I T (X) refer to the output cushion and
input thread of the cell, respectively.

Lemma 3: Ifthe OQ switch being emulated is FIFO, then
L (X) 2 N T S (X) after the f irs t scheduling phase and just
before the arrival phase, for all cells X waiting on the input
side of a CIOQ switch that uses L I H P and a speedup of 1 2 - - N ‘

The following theorem is a consequence of Lemma 3 - we
defer the proof of the lemma itself to the end of this section.

1177

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

1
N Theorem 6 : A speedup of 2 - - suffices for a CIOQ

switch that uses LIHP to emulate a FIFO OQ switch.

Proof: Suppose it is time for cell X to leave the OQ
switch, and suppose that the CIOQ switch has successfully
mimicked a FIFO OQ switch so far. Clearly, O C (X) must be
zero. If X has already crossed over to the output side then we
are done. So suppose X is still queued at its input port. If the
current time slot were truncated then L (X) would be at least
one (Lemma 3). But then the input thread would be negative,
which is not possible. Therefore, the current time slot has two
scheduling phases. Invoking Lemma 3 again, L (X) must be at
least zero after the first scheduling phase. Since O C (X) is
zero, the input thread of X must be zero too. Cell X , there-
fore, is at the front of both its input and its output priority lists,
and will cross the switch in the second scheduling phase, just
before the departure phase. This completes the proof of the
theorem. z

Proof of Lemma 3: Suppose the lemma has been true till
the beginning of time slot t - 1 . We prove that the lemma
holds at the end of the first scheduling phase and at the end of
the departure phase in time slot t .

We first consider the end of the first scheduling phase.
Cells which were already present on the input side at the
beginning of time t satisfy L 2 N T S , as NTS does not
change (a property of FIFO -- the departure time of a cell from
the OQ switch gets fixed upon arrival, and does not change),
and L can only go up (see Lemma 1 for an explanation of
why L can not decrease) during the arrival and the scheduling
phases. Now consider a cell X which arrives during time slot
t . Let k = N T S (X) . Since the slackness of a cell is at least
zero upon arrival (remember that the input thread of an arriv-
ing cell is zero in LIHP), the slackness at the end of the first
scheduling phase must be at least one. Therefore X trivially
satisfies the lemma if k I 1 . Suppose k > 1 . At most N cells
could have arrived during the current time slot, and therefore,
there must have been a cell Y in the system with a NTS of
k - 1 , and the same output port as X , at the beginning of time
t (this is where we use the fact that the truncated time slots
are spaced at least N apart). If Y is waiting on the input side,
then OC(Y) 2 L(Y) 2 k - 1 . Since the OQ switch is FIFO,
O C (X) 2 OC(Y) . But the input thread of the arriving cell X
must be zero. Hence, the slackness of X is at least k - 1 after
the arrival phase, and consequently, at least k after the first
scheduling phase. The case where Y is waiting at the output
side is similar, and we omit the details.

most one. But the NTS value goes down by one for all cells
in the system, and the lemma continues to hold.

Appendix C: Proof of Lemma 2.
The proof is by contradiction. Assume there does exist a

cycle in the dependency graph on active cells. Pick a smallest
cycle in this graph. If there is an edge from cell X to cell Y,
then Y must be ahead of X either in the input queue ordering
or in the output queue ordering. We call the edge an “input”
edge in the former case and an “output” edge in the latter;
ambiguities are resolved arbitrarily. The smallest cycle must
have alternating input and output edges, because two succes-
sive input or output edges could be collapsed into one result-
ing in a smaller cycle. If there is an output edge from X to Y,
then the output cushion of Y is at most as large as that of X.
But X and Y are both active, and the input thread of an active
cell must equal its output cushion. Therefore, the input thread
of Y is no larger than the input thread of X. Also, if there is an
input edge from X to Y then the input thread of Y must be
strictly smaller than that of X; that is, X appears in Y’s input
thread. The smallest cycle must have at least two edges, as
there can be no self loops in the dependency graph. Conse-
quently, the cycle must contain at least one input edge. But
this implies that there is a cell in this cycle which appears in
its own input thread! This is impossible. Hence our assump-
tion that there exists a cycle in the graph cannot be true, and
the lemma is proved.

Now concentrate on the end of time slot t . If this time slot
turns out to be normal, then the slackness of any cell does not
decrease during the second scheduling phase and the depar-
ture phase. Else, the slackness of any cell can go down by at

1178

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:37 from IEEE Xplore. Restrictions apply.

