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Abstract - T h i s  paper character izes  the large devi- 
a t ions behaviour  of the fixed po in t  of a ./GI1 queue.  
Given  a general  service t i m e  dis t r ibut ion w i t h  m e a n  
1 and a n y  cy < 1, the large deviat ion rate function, I,, 
of t h e  fixed point  w i t h  mean arr ival  rate cy is derived. 
I, is shown t o  be identical  t o  the rate funct ion of an 
exponential tilting of the service dis t r ibut ion.  A n  im- 
plication of th i s  result is that the fixed point  has  min- 
imum relative entropy w i t h  respect t o  the service pro- 
cess over  all processes satisfying the constraint  that 
the mean arr ival  rate is a. 

I. INTRODUCTION 
Burke’s theorem says that if the arrival process to a . /A l l1  
queue is Poisson with rate less than the service rate, then the 
departure process in equilibrium is also Poisson of the same 
rate. In other words, a Poisson process of rate a is a fixed point 
of the - / A f / l  queue with service rate 1, for every cy < 1. It 
has recently been shown that a similar result holds for single- 
server queues with a general service time distribution [7, 101. 
hlore precisely, given a service time distribution with mean 
1, and any cy < 1, there is a stationary and ergodic arrival 
process with law pa and mean arrival rate cy such that the 
equilibrium departure process also has law pa. Moreover, pa 
is unique for each a < 1. However, an explicit description of 
the laws { p a ,  0 < a < 1) is not known. 

In this paper, given a general service time distribution with 
mean 1, and any Q < 1, we derive the large deviation rate 
function, I,, of the fixed point with mean arrival rate a. I, 
has a simple description in terms of the rate function of the 
service time distribution; in fact, I ,  is identical to the rate 
function of an exponential tilting of the service distribution. 
An implication of this result is that  the fixed point has mini- 
mum relative entropy with respect t o  the service process over 
all processes satisfying the constraint that  the mean arrival 
rate is a. 

Consider a queue with arrivals having rate function Ia1 and 
service times having rate function I a z r  where cy1 < 0 2 .  Then, 
our results imply that the departure process in equilibrium 
has the same rate function, I=, , as the arrivals. The analogue 
of this property in the . / h l / l  context is that  a Poisson process 
of rate a1 is a fixed point of the queue with Exp(cy2) service 
times, for every cy1 < ~ 2 .  

11. MODEL AND PRELIMINARIES 

The results in this paper are derived in the context of a dis- 
crete time queueing model which we now describe. The queue 
has arrival process denoted { A ,  , n E E}, and service process 
{Sn,n E E}, assumed stationary and ergodic. A,  denotes the 
amount of work arriving in the nth time slot and S, denotes 
the masimum amount of work that can be completed in the 
nth time slot. The queue is assumed to be work-conserving, 
so the evolution of the workload process, {W,}, is described 
by Lindley’s recursion: Wn+l = max{Ilm + An - S n  , 0). The 

amount of u7ox-k departing in time slot n is given by 

Dn = An + IVn - IVn+1 = min{W,, + A,,  Sn}. (1) 

If A, and S, are integer-valued for all n, then the workload 
can be thought of as the number of customers in the queue. 
The fixed point problem can now be posed as follows: given 
the law of the service process, {S,}, can we find a law p such 
that, if the arrival process {A,} is stationary with law p, then 
so is the departure process, {D,}? In this paper, we address 
the somewhat simpler question of finding a large deviation rate 
function such that both the arrival and departure process obey 
a large deviation principle (LDP) with this same rate function. 

We shall say that a real-valued stationary process {X,, n E 
Z }  satisfies an LDP with good rate function I if I is a non- 
negative lover semicontinuous function with compact level 
sets, and for all “nice” sets B Et, we have 

A set B is nice if it is Borel-measurable and if I has the same 
infimum on the interior as on the closure of B. The Gartner- 
Ellis theorem [3] provides sufficient conditions for a process 
to satisfy an LDP; these conditions are quite mild and are 
satisfied by most processes commonly encountered in queueing 
applications. 

Suppose that the arrival process { A , }  and the service pro- 
cess {S,} satisfy the assumptions of the Gartner-Ellis theo- 
rem, with limiting logarithmic moment generating functions . 
denoted AA and AS respectively. Then { A , }  and {S,} satisfy 
LDPs with con’uez, good rate functions I A  and I s  that are the 
convex duals of AA and AS respectively. In other words, 

and a similar relation holds with the roles of I A  and AA or IS 
and AS reversed. 

In the usual large deviations scaling, processes such as 
arrivals, services and departures are modeled as fluids with 
stochastic flow rate; the large deviations rate function of the 
process describes (the negative logarithm of) the probability 
that the flow rate has a specified value. If an event of inter- 
est can be described as a “continuous” function of the sample 
paths of the arrival and service processes, then the contrac- 
tion principle says that its probability is approximately equal 
to the probability of the most likely way that this event can 
happen. 

111. THE RATE FUNCTION FOR FIXED POINTS 
It has been shown by several authors (see, e.g., [2, 41) that  the 
tail of the workload distribution in equilibrium is exponential 
with parameter SI i.e., 

1 
b - x v  lim - b log P(W > b)  = -6, (3) 
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where Kow, for I A  t o  be non-negative, its minimum should be 
achieved at a ,  since I A ( Q )  = 0. I t  follows from (8) that b = inf TIry(I/T) (4) 

T>O 

and, for w > 0, b = - Ik(a) ,  I A ( d )  = I s (d )  - IS(CU) - Ik(a)(d - a) ,  (9) 

(5) provided IS is differentiable a t  a (otherwise, we show in [6] 
that -6 is the infimum of the subdifferential of Is  a t  a) .  I t  
can be verified that  if I A  is defined by (9)’ then the value of b 
given by (6) is the same as that given in (9), and that I D  = I A .  

~ u , ( w )  = inf [ I A ( a )  + ~ s ( a  - w)]. 

6 h a  the following alternative characterization: 

a>w 

(6) 
Does this imply that  I A  is the rate function of the fixed point? 
Isie show in [ 6 ] ,  using results of Mairesse and Prabhakar [7], 6 = sup(e : h ~ ( 0 )  +AS(-e) 5 01. 

The above equations h a x  the following interpretation. In 
order for the 15-orkload to build up  a t  rate 20 Over a long period 
of time, arrivals over this period must occur at some rate a 
exceeding the service rate by w; the most likely way for this 
to  happen is found by minimizing the expression in (5) over 
all possible choices of a.  Large workloads occur by the queue 
building up at rate 1/T over a period of (scaled) length T ,  
chosen optimally according to  (4). 

The large deviations rate function of the equilibrium depar- 
ture process has been derived by the second author [8 ] ;  here, 
we describe and use his result intuitively. Assume without 
loss of generality that  the mean service rate is 1 and that the 
mean arrival rate is a < 1. IVhat is the most likely way that 
the departures over a long period of time have mean rate d,  
for some d 5 17 Intuitively] this would require the arrivals 
to have mean rate d over this period and the services to  have 
mean rate 1. Since d 5 1, all arrivals depart (recall that  
on the large deviations scale we use fluid models for all pro- 
cesses), so that the departure process has the desired mean 
rate d. Consequently, the large deviations rate function for 
departures evaluated at d must be given by 

that it does* 
BY taking duals in (9)’ we get 

AA(@ = As(6 + IL(a)) + I s (a)  - alk(a),  

i.e., the rate function of the fixed point corresponds to  an 
exponential tilting of the service process. This generalizes a 
well-known result for the ./itf/l queue. 

It was shown by Anantharam [l] that the most likely be- 
haviour leading to  the build-up of large delays in a G/G/1 
queue involves the arrival and service processes having em- 
pirical distributions equal to exponential tiltings of their true 
distributions, with tilting parameters 6 and -6 respectively, 
for d given by (6). When the arrival rate function is given 
by (9), this implies that the most likely path leading to large 
delays has the service process looking like the true arrivals 
process, and the arrival process looking like the true service 
process. This switching of roles between arrivals and services 
is exactly how large delays build up in an MIMI1 queue (see, 
for example, [9]). 

IV. CONCLUSIONS 
Our main result is that the fixed point of a ./GI1 queue has 
large deviations behaviour identical to  an  exponential tilting 
of the service process. In  this paper, we have confined our- 
selves to an intuitive sketch of the key ideas behind this result. 

I D ( d )  = I A ( ~ )  + Is(1)  = I A ( ~ ) .  

It was shown by the fist two authors [5] that  this intuition 
isn’t always correct. It is correct under a certain condition on 

that I A ( z )  5 for all 5 a* It is to  see that this 
condition is satisfied by the fixed point rate function defined 
below. 

Next, what is the most likely way to  obtain departures a t  
mean rate d > l? One possibility is that  both arrivals and 
departures occur at mean rate d. This lvould imply that the 
departure rate function is given by l D ( d )  = I A ( d )  + Is(d) .  
But then I A ( d )  # I D ( d )  since I S ( d )  > 0. Hence, such an 
arrival process can’t be a fixed point. The other possibility is 
that  we start, with a non-empty queue, have arrivals a t  rate 
a and services at rate d > a. Then departures will have rate 
d provided that the queue doesn’t empty during the period 
in consideration (which is scaled to  have length l), i.e., if the  
initial queue size is a t  least d - a. By (3), this has probability 
approximately equal to  exp -b(d - a ) ,  and SO we obtain for 
the departure rate function, the formula 

details can be found in [6]. 
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