
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 5, JUNE 1997 855

Multicast Scheduling for Input-Queued Switches
Balaji Prabhakar, Nick McKeown, and Ritesh Ahuja

Abstract—This paper presents the design of a scheduler for
an input-queued multicast switch. It is assumed that: 1)
each input maintains a single queue for arriving multicast cells
and 2) only the cell at the head of line (HOL) can be observed and
scheduled at one time. The scheduler is required to be: 1) work-
conserving, which means that no output port may be idle as long
as there is an input cell destined to it and 2) fair, which means that
no input cell may be held at HOL for more than a fixed number of
cell times. The aim of our work is to find a work-conserving, fair
policy that delivers maximum throughput and minimizes input
queue latency, and yet is simple to implement in hardware. When
a scheduling policy decides which cells to schedule, contention
may require that it leave a residue of cells to be scheduled in the
next cell time. The selection of where to place the residue uniquely
defines the scheduling policy. Subject to a fairness constraint, we
argue that a policy which always concentrates the residue on as
few inputs as possible generally outperforms all other policies. We
find that there is a tradeoff among concentration of residue (for
high throughput), strictness of fairness (to prevent starvation),
and implementational simplicity (for the design of high-speed
switches). By mapping the general multicast switching problem
onto a variation of the popular block-packing game Tetris, we are
able to analyze, in an intuitive and geometric fashion, various
scheduling policies which possess these attributes in different
proportions. We present a novel scheduling policy, called TATRA,
which performs extremely well and is strict in fairness. We also
present a simple weight-based algorithm, called WBA, that is
simple to implement in hardware, fair, and performs well when
compared to a concentrating algorithm.

Index Terms—ATM, high-speed routing, high-speed switching,
input-queued switches, multicast, scheduling.

I. INTRODUCTION

DUE TO an exponential growth in the number of users
of the Internet, the demand for network bandwidth has

been growing at an enormous rate. As a result, recent years
have witnessed an increasing interest in high-speed, switched
networks. In order to build such networks, a high-performance
switch is required to quickly deliver cells arriving on input
links to the desired output links. A switch consists of three
parts: 1) input queues to buffer cells arriving on input links;
2) output queues to buffer the cells going out on output links;
and 3) a switch fabric to transfer cells from the inputs to the
desired outputs. The switch fabric operates under a scheduling
algorithm which arbitrates among cells from different inputs
destined to the same output. A number of approaches have

Manuscript received May 1, 1996; revised December 1, 1996.
B. Prabhakar is with BRIMS, Hewlett-Packard Laboratories, Bristol, U.K.
N. McKeown is with the Department of Electrical Engineering and Com-

puter Science, Stanford University, Stanford, CA 94305-9030 USA.
R. Ahuja is with Torrent Network Technologies, Beltsville, MD 20705

USA, on leave from the Department of Electrical Engineering and Computer
Science, Stanford University, Stanford, CA 94305-9030 USA.
Publisher Item Identifier S 0733-8716(97)03377-5.

been taken in designing these three parts of a switch [9], [20],
[19], [17], [14], [16], each with its own set of advantages and
disadvantages.
It is well known that when FIFO queues are used, the

throughput of an input-queued switch with unicast traffic can
be limited due to (head of line) HOL blocking [4], [5]. So the
standard approach has been to abandon input queueing and
instead to use output queueing—by increasing the bandwidth
of the fabric, multiple cells can be forwarded at the same
time to the same output, and queued there for transmission
on the output link. However, this approach requires that the
output queues and the internal interconnect have a bandwidth
equal to times (for an switch) the line rate.
Since memory bandwidth is not increasing as fast as the
demand for network bandwidth, this architecture becomes
impractical for very high-speed switches. Moreover, numerous
papers have indicated that by using non-FIFO input queues
and good scheduling policies, much higher throughputs are
possible [9]–[14], [16], [17]. Therefore, input-queued switches
are finding a growing interest in the research and development
community.
An increasing proportion of traffic on the Internet is multi-

cast, with users distributing a wide variety of audio and video
material. This dramatic change in the use of the Internet has
been facilitated by the MBONE [1]–[3]. A number of different
architectures and implementations have been proposed for
multicast switches [6]–[8]. However, since we are interested
in the design of very high-speed networks switches, we restrict
our attention to input-queued architectures. This input-queued
switch should schedule multicast cells so as to maximize
throughput and minimize latency. It is important that it be
simple to implement in hardware. For example, a switch
running at a line rate of 2.4 Gbit/s (OC48c) must make 6
million scheduling decisions every second.
In this paper, we consider the performance of different

multicast scheduling policies for input-queued switches. Sev-
eral researchers have studied the random scheduling policy
[9], [18], [21], [22] in which each output selects an input
at random from among those subscribing to it. But, as may
be expected, we find that the random scheduling policy is
not the optimum policy. We introduce three new scheduling
algorithms: the Concentrate algorithm, TATRA, and WBA
(a weight-based algorithm). We show that the Concentrate
algorithm leads to high throughput and low delay. It achieves
this by concentrating the cells that it leaves behind on as
few inputs as possible. Unfortunately, Concentrate has two
drawbacks that make it unsuitable for use in a network switch;
it can starve input queues indefinitely, and it is difficult to
implement in hardware. But Concentrate serves as a useful

0733–8716/97$10.00 © 1997 IEEE

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

856 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 5, JUNE 1997

Fig. 1. 2 multicast crossbar switch with single FIFO queue at each
input.

upper bound on throughput performance against which we can
compare heuristic approximations. One such approximation,
TATRA, is motivated by Tetris, the popular block-packing
game. TATRA avoids starvation by using a strict definition
of fairness, while comparing well to the performance of
Concentrate. The second algorithm, WBA, is designed to be
very simple to implement in hardware, and allows the designer
to balance the tradeoff between fairness and throughput.

II. BACKGROUND

A. Assumed Architecture
It is assumed that the switch has input and output

ports, and that each input maintains a single FIFO queue for
arriving multicast cells. The input cells are assumed to contain
a vector indicating to which outputs the cell is to be sent. For
an switch, the destination vector of a multicast cell can
be any one of possible vectors. We assume that each
input has a single queue, and that the scheduler only observes
the first cell in the queue.
As a simple example of our architecture, consider the two-

input and -output switch shown in Fig. 1. Queue has
an input cell destined for outputs 1, 2, 3, 4 , and queue
has an input cell destined for outputs 3, 4, 5, 6 . The set
of outputs to which an input cell wishes to be copied will be
referred to as the fan-out of that input cell.1 For clarity, we
distinguish an arriving input cell from its corresponding output
cells. In the figure, the single-input cell at the head of queue

will generate four output cells.
We assume that an input cell must wait in line until all

of the cells ahead of it have departed. A simple way to
service the input queues is to replicate the input cell over
multiple cell times, generating one output cell per cell time.
However, this approach has two disadvantages. First, each
input must be copied multiple times, increasing the required
memory bandwidth. Second, input cells contend for access to
the switch multiple times, reducing the bandwidth available
to other traffic at the same input. Higher throughput can be
attained if we take advantage of the natural multicast properties
of a crossbar switch. So, instead, we assume that one input cell

1We use the term fan-out throughout this paper to denote both the
constitution and the cardinality of the input vector. For example, in Fig. 1,
the input cell at the head of each queue is said to have a fan-out of four.

can be copied to any number of outputs in a single cell time
for which there is no conflict.
There are two different service disciplines that can be

used. Following the description in [18], the first is no fan-out
splitting, in which all of the copies of a cell must be sent in the
same cell time. If any of the output cells loses contention for
an output port, none of the output cells is transmitted, and the
cell must try again in the next cell time. The second discipline
is fan-out splitting, in which output cells may be delivered to
output ports over any number of cell times. Only those output
cells that are unsuccessful in one cell time continue to contend
for output ports in the next cell time.2
Because fan-out splitting is work conserving, it enables a

higher switch throughput [21] for little increase in implemen-
tation complexity. For example, Fig. 2 compares the average
cell latency (via simulations) with and without fan-out splitting
of the random scheduling policy for an 8 8 switch under
uniform loading on all inputs and an average fan-out of four.
The figure demonstrates that fan-out splitting can lead to
approximately 40% higher throughput.

B. Definition of Terms
Here, we make precise some of the terminology used

throughout the paper. Some terms have already been loosely
defined, but a few new ones are introduced.
Definition 1 (Residue): The residue is the set of all output

cells that lose contention for output ports and remain at the
HOL of the input queues at the end of each cell time.
It is important to note that, given a set of requests, every

work-conserving policy will leave the same residue. However,
it is up to the policy to determine how the residue is distributed
over the inputs.
Definition 2 (Concentrating Policy): A multicast schedul-

ing policy is said to be concentrating if, at the end of every cell
time, it leaves the residue on the smallest possible number of
input ports.
Definition 3 (Distributing Policy): A multicast scheduling

policy is said to be distributing if, at the end of every cell
time, it leaves the residue on the largest possible number of
input ports.
Definition 4 (A Nonconcentrating Policy): A multicast

scheduling policy is said to be nonconcentrating if it does
not always concentrate the residue.
Definition 5 (Fairness Constraint): A multicast scheduling

policy is said to be fair if each input cell is held at the HOL
for no more than a fixed number of cell times (this number
can be different for different inputs). This fairness constraint
can also be thought of as a starvation constraint.

C. Requirements of an Algorithm
Before describing the details of various scheduling algo-

rithms, we first look at some requirements.

2 It might appear that fan-out splitting is much more difficult to implement
than no fan-out splitting. However, this is not the case. In order to support
fan-out splitting, we need one extra signal from the scheduler to inform each
input port when a cell at its HOL is completely served.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

PRABHAKAR et al.: SCHEDULING FOR INPUT-QUEUED SWITCHES 857

Fig. 2. Graph of average cell latency (in number of cell times) as a function of offered load for an 8 8 switch (with uniform input traffic and average
fan-out of four). The graph compares random scheduling policy with and without fan-out splitting.

1) Work Conservation: The algorithm must be work-
conserving, which means that no output port may be
idle as long as it can serve some input cell destined
to it. This property is necessary for an algorithm to
provide maximum throughput.

2) Fairness: The algorithm must meet the fairness con-
straint defined above, i.e., it must not lead to the star-
vation of any input.

III. THE HEURISTIC OF RESIDUE CONCENTRATION
In this section, we describe two algorithms—the Concen-

trate algorithm and the Distribute algorithm—which represent
the two extremes of residue placement. We present an intutive
explanation for why it is best to concentrate residue in order
to achieve a high throughput.
Algorithm—(Concentrate): Concentrate always concen-

trates the residue onto as few inputs as possible. This is
achieved by performing the following steps at the beginning
of each cell time.
1) Determine the residue.
2) Find the input with the most in common with the residue.
If there is a choice of inputs, select the one with the input
cell that has been at the HOL for the shortest time. This
ensures some fairness, although not in the sense of the
definition in Section II-B (see remark below).

3) Concentrate as much residue onto this input as possible.
4) Remove the input from further consideration.
5) Repeat steps 2)–4) until no residue remains.
Remark: Since an input cell can remain at HOL indefi-

nitely, this algorithm does not meet the fairness constraint.
The purpose of this algorithm is to provide us with a basis
for comparing the performance of other algorithms since it

achieves the highest throughput. This is demonstrated by our
simulation results in Section VII.
Algorithm—(Distribute): Distribute always distributes the

residue onto as many inputs as possible.
1) Determine the residue.
2) Find the input with at least one cell, but otherwise, with
the least in common with the residue. If there is a choice
of inputs, select the one with the input cell that has been
at the HOL for the shortest time.

3) Place one output cell of residue onto that input.
4) Remove the input from further consideration.
5) Repeat steps 2)–4) until no inputs remain.
6) If residue remains, consider all the inputs again and start
at step 2).

Let us look at an example to see how these two algorithms
work. Referring to Fig. 1, consider the options faced by a
work-conserving scheduling algorithm at this time . Note
that whatever decision the algorithm makes, the residue will be
the same. The scheduling algorithm just determines where to
place the residue. If at time the algorithm concentrates the
residue on , then all of ’s (also see Fig. 12) output cells
will be sent, and cell will be brought forward at time . At
time , the algorithm selects between and the residue left
over from . If, on the other hand, the algorithm distributes the
residue over both input queues at , then at , the algorithm
can only schedule the residue left over from . No new cells
can be brought forward.
From the example above, we can make the following

intuitive argument: it is more likely that Concentrate will bring
new work forward sooner, thus increasing the diversity of
its choice. This enables more output cells to be scheduled
in the following cell time. For the case of a 2 switch, the
following theorem is true.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

858 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 5, JUNE 1997

Theorem 1: A scheduling policy for a 2 multicast
switch that always concentrates residue at every possible
instant, subject to the fairness condition of Definition 12,
performs better than any other fair policy when subjected to
static inputs.

Proof: See Appendix.

IV. TETRIS MODELS FOR SWITCHES
This section presents a unified approach to the design and

analysis of schedulers for an multicast switch. It is
shown that the general multicast scheduling problem can be
mapped onto a variation of the popular block-packing game
Tetris. Within this common framework, one is able to describe
and analyze any multicast scheduling policy in an intuitive
and geometric fashion. The presentation in this section follows
earlier work presented in [24] and [25].
We first describe the class of scheduling policies to be

considered in this section, all of which are required to satisfy
the following fairness constraint.
Definition 6 (Fairness Constraint for Switches): A
scheduling policy for an switch is said to be fair
if no cell, from any input, is held at HOL for more than
cell times.
Class of Policies Considered: In addition to requiring that

policies be fair and work conserving, we also require that they
assign departure dates to input cells once the cells advance to
HOL. This departure date (DD) is some number between 1
and specifying how long, from the current cell time, the
input cell will be held at HOL before being discharged. The
DD of a cell is decremented by one at the end of each cell
time. Clearly, this class of policies is smaller than the class of
fair and work-conserving policies since fairness allows one to
reassign departure dates to input cells at HOL (but not beyond

cell times).
We use the “static input assumption” to describe the Tetris

models. As will become clear, this description holds equally
well for “dynamic inputs” since scheduling is based only on
cells at HOL without look-ahead.

A. Tetris Models: A Sketch
Every input cell is mapped onto a Tetris block, each of

which is an amalgamation of smaller blocks, one per output
cell. Upon assignment of DD’s, the input cells at HOL are
dropped into a compartmentalized box of size ; see
Fig. 3. Each of the columns of the box holds cells destined
to a specific output, i.e., column holds cells destined to output
. The label on a cell denotes the input port from which it has
arrived; all output cells with the same label result from the
same input cell. The cells in the bottommost row of the box
in Fig. 3 at columns 1, 3, and 5 are all identical copies of a
cell from input 1 destined to outputs 1, 3, and 5. Similarly,
the cell at the HOL of input 2 will be delivered to outputs 2,
3, 4, and 5.
Suppose that, at time , the switch is to schedule input

cells which have advanced to HOL. After the scheduler has
assigned DD’s to these input cells, they are dropped into the
box which currently holds the cells or residues at the HOL of

Fig. 3. An example. Cells from inputs 1, 2, 3, 4 are assigned DD’s 1, 2, 3,
4, respectively, while the cell from input 5 is assigned a DD of 4.

the other inputs.3 Each new output cell may occupy
any position in its appropriate output slot as long as: 1) it does
not alter the DD of any other cell, and 2) it does not leave any
slots beneath it unoccupied. Note that there are no unoccupied
slots between cells in any output column.
At the end of time , all output cells at the bottom-most

layer of the box are discharged and are assumed to be served.
For the example in Fig. 3, input 1 is completely served and
can advance a new cell to HOL at time 2. Input 2 discharges
cells to outputs 2 and 4, and is left with a residue for outputs 3
and 5. Note that the discharge at any time is the set of output
cells in the bottommost layer, and the residue is everything
that is left behind. It should now be clear that we do not allow
unoccupied slots in output columns because of the restriction
to policies which are work-conserving.
At the beginning of time , all residue cells drop down

one level, and their DD’s are decremented by one. Those
inputs which have been completely served in the previous cell
time advance a new cell to the HOL. These cells are assigned
DD’s, and the cycle continues.
This is reminiscent of Tetris where blocks are dropped into

a bin and the aim is to achieve maximum packing. The main
difference here is that Tetris blocks are rigid and cannot be
decomposed. Note also that there are never more than input
cells in the box. Thus, when an input cell is dropped into the
box, it is guaranteed to depart within cell times since input
cells arriving in the future do not alter its departure date. This
automatically ensures fairness.

B. Tetris Models: The Details
We now make the description of Tetris models mathe-

matically precise. If a plurality of cells advance to HOL at
the beginning of a cell time, we choose, for simplicity, the
following fixed ordering: for , the new cell at input will
3The order in which the scheduler assigns DD’s to the new cells is

important because, if the cells contend for the same outputs, it may not be
possible to assign them DD’s in parallel. For example, suppose that two of the
new cells have a fan-out of one and are the only cells contending for a specific
output. Then, deciding who goes first is important since no two cells in an
output column can have the same DD. In general, the order of assignment
of DD’s can either be prefixed or made to depend upon some criterion (e.g.,
size of fan-out). However, for ease of exposition, we will assume a prefixed
ordering.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

PRABHAKAR et al.: SCHEDULING FOR INPUT-QUEUED SWITCHES 859

be assigned its DD before the new cell at input . Before
proceeding to define a scheduling algorithm, we make the
following definitions.
Definition 7 (Tetris Box): The Tetris box is specified by a

matrix , where the rows are
numbered from bottom to top and the columns are numbered
from left to right. Thus, is the bottom-left slot of the box
and is the top-right slot.
Definition 8 (Occupancy Set): The occupancy set of the

cell or residue at the HOL of input at time is given by
: an output cell of resides at at time .

Definition 9 (Peak Cell and Departure Date): An output
cell belonging to input is said to be a peak cell at time
if it occupies a slot in the row whose number is given by

. The corresponding row number is the
departure date (DD) of the input cell at time .
That is, the peak cell of an input is one which is furthest

from the bottom of the box, and the distance from the bottom
is its departure date. Note that there may be more than one
peak cell for a given input.
Definition 10 (Scheduling Policy): Given new cells

at the HOL of inputs
at time , a scheduling policy is given by a se-

quence of decisions , where associates
to each of (in that order) the corresponding
occupancy sets subject to the
following rules.
1) No cell should change the DD of a cell that is already
scheduled. This means that no peak cells should be
raised or lowered.

2) For every and , if any of is occupied, then
so are , i.e., there should be no gaps in the
output columns.

Algorithm for : Given the above definitions, the algo-
rithm for implementing a policy just requires a specification
for transitioning from one cell time to the next. The following
steps enumerate the procedure.
1) At the end of time , all output cells occupying slots in
the set are discharged. In particular,
input cells (or residues thereof) with DD’s 1 are
completely served.

2) Each output cell occupying slot for and in
the set is assigned to
the slot . The occupancy set, peak cell(s), and
the departure dates of the residue are recomputed. For
example, the occupancy set of the residue at input is
given by . From
this peak, cells and DD’s are easily computed.

3) New cells advancing to HOL are then scheduled ac-
cording to .

Consider the example of Fig. 3 again. The input cells are
scheduled in the order 1, 2, 3, 4, and 5. The occupancy sets,
peak cells, and departure dates at time 1 are given in Table I.
As a final remark, the discussion in this section presents

a unified framework for thinking about multicast scheduling
policies. We have seen how constraints like fairness and work
conservation translate into rules for placing Tetris blocks in the

TABLE I
OCCUPANCY SET, PEAK CELLS, AND DEPARTURE DATE

(DD) OF INPUT CELLS FOR TETRIS BOX SHOWN IN FIG. 3

box. This general framework allows us to design and evaluate
the performance of specific scheduling algorithms.

V. TATRA: A MULTICAST SCHEDULING ALGORITHM
Motivated by the Tetris models of the previous section,

we now describe a specific multicast scheduling algorithm,
TATRA, first introduced in [24], and discuss some of its salient
features.
Again, we assume that the switch has been idle prior to time

0, and that the “static input assumption” holds. We denote by
the policy TATRA. Since TATRA

schedules input cells solely based on their DD’s, we assume
that this number is stamped upon all of the output cells
belonging to a specific input cell (both peak and nonpeak
cells).
For time , the algorithm is specified by the following

steps.
1) At the beginning of time assigns a DD to each
new cell at HOL according to the formula given in (1)
below. The order in which the DD is assigned when
there is a plurality of new cells is in increasing order of
their input port numbers.

2) Each new output cell is dropped to the lowest possible
level in the appropriate output slot, without getting ahead
of another cell whose DD is less than or equal to its own.

Remark: It follows that a nonpeak cell cannot be ahead of
a peak cell unless it has the same DD as the peak cell. If
such a nonpeak cell exists, we call it a pseudopeak cell (an
example of a pseudopeak cell is given below). Corresponding
to each output slot, there is thus a (possibly empty) column of
peak/pseudopeak cells. This column is called the peak column.
3) Cells in the bottommost row are discharged. New DD’s
are computed for the residue cells. Time is advanced to

.
Using the terminology introduced in the remark above, and

from the constitution of a new input cell, its DD is computed as

height of peak columns across fan-out (1)

A. An Example
By applying the above algorithm to the example of Fig. 3,

it is easy to see that TATRA schedules the cells as shown in
Fig. 4(a). Assuming that at the end of time 1 the two new
cells at inputs 1 and 5 wish to access ouputs 1, 5 and 2 ,
respectively, Fig. 4(b) shows how TATRA schedules them.
Observe that in Fig. 4(b), the cell from input 3 at position

is a pseudopeak cell because the cell at input 3 has a

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

860 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 5, JUNE 1997

(a) (b)

Fig. 4. TATRA schedules. (a) Cells of Fig. 3. (b) New cells from inputs 1
and 5 at time 2.

DD equal to two, which is the same as the cell from input
1. Therefore, the height of the peak column corresponding to
output 1 in Fig. 4(b) is equal to two.

B. Properties of TATRA
In this subsection, we discuss some desirable properties of

TATRA. For brevity, the properties are stated and only briefly
explored.
Property 1: Under TATRA, an input cell is guaranteed to be

discharged every cell time. This is equivalent to the statement
that there is a peak cell in every row of the Tetris box. To see
this, merely observe that: 1) under every peak cell, there is a
column of peak (or pseudopeak) cells, and 2) the cell furthest
from the bottom of the box must be a peak cell.
Property 2: Residue concentration. Suppose that we are

given the occupancy sets and of two input cells
and . If and for some and
for some , then it is impossible that there exists an output

such that and , where
. That is occupancy sets cannot “criss-cross.” This

follows from the fact that output cells are arranged in output
columns according to a monotonic increase of DD’s. The “no
criss-crossing” property corresponds to residue concentration.

VI. WBA
Although it performs well and is simple to describe, there

are two disadvantages to TATRA. First, it is difficult to
implement since the assignment of DD’s at inputs requires
a collective effort, and this process cannot be parallelized.
Second, the definition of fairness is both rigid (i.e., no input
cell should be held at HOL for more than cell times) and
uniformly the same for all inputs. Treating all inputs uniformly
does not help when the inputs are nonuniformly loaded or
when some inputs request a higher priority.
These issues motivate us to look for an algorithm that: 1) is

simple to implement in hardware, 2) is fair and achieves a high
throughput, and 3) is able to cope with nonuniform loading
and/or to provide different priorities to inputs. A weight-based
algorithm, called WBA, is introduced in this section, and is
shown to meet the above requirements.
It is worth mentioning that if one merely wishes to achieve

a high throughput without regard to fairness, then it is best

to always achieve the highest residue concentration. But this
can lead to the starvation of some inputs. For example, in
the Concentrate algorithm, an input cell with maximum fan-
out may wait forever without being served. Conversely, if an
algorithm aims to be fair, it may not achieve the best possible
residue concentration, and therefore sacrifices throughput.
WBA—The Weight-Based Algorithm: This algorithm works

by assigning weights to input cells based on their age and fan-
out at the beginning of every cell time. Once the weights are
assigned, each output chooses the heaviest input from among
those subscribing to it. It is clear that a positive weight should
be given to age in order to achieve fairness. We claim that to
maximize throughput, fan-out should be weighted negatively.
To see this, recall that at the end of each cell time, the output
cells in the bottommost row of the Tetris box are discharged,
and all other cells are left behind as residue. To improve
residue concentration, we must therefore ensure that as many
input cells as possible can be placed in the bottommost row at
every cell time. This automatically ensures that the residue is
concentrated on fewer inputs. Since the bottommost row can
only take output cells, one has to choose input cells with
the smallest fan-out to place on this row. Thus, the weight of
an input cell should vary inversely as its fan-out.
Algorithm—WBA:
1) At the beginning of every cell time, each input calculates
the weight of the new cell/residue at its HOL based on
a) the age of the cell/residue: the older, the heavier;

b) the fan-out of the cell/residue: the larger, the lighter.
2) Each input then submits this weight to all of the outputs
that the cell/residue at its HOL wishes to access.

3) Each output grants to the input with the highest weight,
independently of other outputs, ties being broken ran-
domly.

By making a suitable choice of weights based on these
two quantities (age and fan-out), one arrives at a compromise
between the extremes of pure residue concentration and of
strict fairness. Simple calculations show that if we give weight
to the age of the cell and weight to the fan-out, the

bound on the time for which a cell has to wait at HOL is
simply () cell times. In particular, if we give
equal weight to age and to fan-out, no cell waits at the HOL for
longer than cell times. And if the negative weight
of fan-out is twice the weight of the age, then one increases
residue concentration and decreases fairness, allowing a cell
to wait at the HOL up to cell times.
Many variations of the WBA are possible. In particular,

one can use other features to assign weights to the cells. For
example, one can take into account input queue occupancy
while computing weights, or keep track of the utilization
of each output link and use negative weight to discourage
inputs subscibing to heavily loaded outputs. When dealing
with nonuniform loading or when offering different priorities
to different inputs, one can use different formulas to compute
weights at different inputs. However, these weights should be
within the proper range to ensure stability, i.e., the range of
possible values for the weights should be the same on all of
the inputs.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

PRABHAKAR et al.: SCHEDULING FOR INPUT-QUEUED SWITCHES 861

Fig. 5. Graph of average cell latency (in number of cell times) as a function of offered load for a 2 8 switch (uncorrelated arrivals with an
average fan-out of four).

VII. SIMULATION RESULTS
In order to validate our claims in the previous sections,

we compare different scheduling policies through simulation.
The switch behavior is simulated by using a discrete-event
simulator written for the purpose. Our simulated switch is
assumed to have infinite buffers at the inputs so that no cells
are dropped due to lack of buffer space. In each simulation run,
there is a sufficient warm-up period (typically half of the total
simulation time) to allow the input buffers to be filled up with
cells before statistics about the queue lengths and cell latencies
are collected. The simulation continues for a fixed amount
of simulation time (typically 1 million cell times) unless the
switch becomes unstable (i.e., it reaches a stage where it is
unable to sustain the offered load).

A. Traffic Types
We assume that the stream of arrivals at the inputs are

independent of each other. We compare each scheduling policy
for two different arrival processes.
Uncorrelated Arrivals: At the beginning of each cell time,

a cell arrives at each input with probability (the “arrival
rate”) independently of whether a cell arrived during the
previous cell time.
Correlated Arrivals: Cells are generated using a two-state

Markov process which alternates between BUSY and IDLE
states. The process remains in the busy and idle states for a
geometrically distributed number of cell times, with expected
duration and , respectively. is fixed at 16 cells
for all the simulations.4 When in this state, cells arrive at the

4The choice of an expected duration of 16 cells per burst is arbitrary, but
is representative. The same qualitative results are obtained for different burst
lengths.

beginning of every cell time and all with the same set of
destinations. The arrival rate .
For both types of traffic, each arriving multicast cell has a

multicast vector that is uniformly distributed over all possible
multicast vectors. However, the destination vector of all zeros
is not allowed. As a result, for an switch, the average
fan-out is . The offered load is the fraction of link
bandwidth used at each input by the incoming traffic. Since the
average fan-out is on each of the inputs, the total
traffic load of all outputs combined is . Since
this traffic is uniformly divided among all the outputs, the load
as seen on each of the output links is . Thus,
for a 2 switch, the offered load shown in the graphs is
the actual load, whereas for an 8 8 switch, the total switch
load is approximately four times the offered load shown in
the graphs.
For comparison, we also show the performance of an

algorithm, Random, in which each output randomly selects
one input from among those that request it. This algorithm is
motivated by the work of Hayes et al. in [18], which is the
multicast version of the unicast algorithm described in [4]. The
WBA plots are obtained by using a fan-out weight equal to
twice the weight for cell age.

B. 2 8 Switch
Figs. 5 and 6 compare the different scheduling policies for

a 2 8 switch, with uncorrelated and correlated arrivals,
respectively. As predicted by Theorem 1, the Concentrate
algorithm leads to an average cell latency that is lower than
for the Distribute algorithm.
The algorithms also differ in the maximum possible

throughput sustainable by the switch. As expected, the

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

862 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 5, JUNE 1997

Fig. 6. Graph of average cell latency (in number of cell times) as a function of offered load for a 2 8 switch (correlated arrivals with an average
fan-out of four).

Fig. 7. Graph of average cell latency (in number of cell times) as a function of offered load for an 8 8 switch (uncorrelated arrivals with an average
fan-out of four). Note that the total load on the switch is four times the offered load at the inputs.

algorithm that leads to lower cell latency through the switch
also provides higher throughput.

C. 8 8 Switch
Figs. 7 and 8 compare the different scheduling policies for

an 8 8 switch, with uncorrelated and correlated arrivals,
respectively. Once again, the Concentrate algorithm leads to an
average cell latency that is much lower than for the Distribute
algorithm.

Note that for an 8 8 switch, TATRA performs worse than
Concentrate. This is because it does not necessarily concentrate
the residue on the minimum number of inputs. WBA performs
a little worse than TATRA for uncorrelated arrivals, even
though TATRA provides a stricter bound on the HOL latency.
The reason for this relatively poor performance of WBA is
that the outputs make their decision independently. So, if
two or more inputs have the same weight, different outputs
will not concentrate the residue onto the same input. As a

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

PRABHAKAR et al.: SCHEDULING FOR INPUT-QUEUED SWITCHES 863

Fig. 8. Graph of average cell latency (in number of cell times) as a function of offered load for an 8 8 switch (correlated arrivals with an average
fan-out of four).

result, WBA is not as effective in concentrating residue as
TATRA. Thus, WBA sacrifices some residue concentration for
simplicity. Note that for correlated arrivals, the performance
of WBA is almost indistinguishable from TATRA (as seen in
Fig. 8).

VIII. IMPLEMENTATION COMPLEXITY
Since input-queueing architectures are interesting only at

very high bandwidths, it is very important that the scheduling
algorithm for an input-queued switch be simple enough to
implement in hardware. Here, we compare the implementation
complexity of the various scheduling algorithms we have
considered.
Concentrate: Even though the Concentrate algorithm pro-

vides the best throughput performance, it is not a practicable
algorithm. First of all, it could lead to the starvation of some
inputs; and second, the algorithm requires up to iterations
per cell time to complete. This makes the algorithm difficult
to implement at high speed.
TATRA: The TATRA algorithm is simpler to implement

than the Concentrate algorithm, but still has a time complexity
. To understand why this is so, consider a newly

arriving HOL input cell. Scheduling the cell is equivalent to
determining the position of its peak cell(s) and its nonpeak
cells. If only one input cell is scheduled per cell time, the
scheduling decision can be broken down into two simple
stages: 1) the peak cell is scheduled by examining the current
profile, and 2) the nonpeak cells are scheduled independently
by each output. Unfortunately, up to new input cells may
need to be scheduled in a cell time where the positions of

their nonpeak cells are dependent on the nonpeak cells at other
outputs. This results in an algorithm of complexity .5
WBA: This algorithm can be divided into two main parts:

1) every input computes a request weight, and 2) every output
chooses the input making a request with the highest weight.
Since calculating an input’s weight does not depend on the
weight of any other input, this may be performed in parallel.
Similarly, each output may choose the input with the highest
weight independently, and may be performed in parallel.
Hence, the complexity of WBA is . Not only is WBA well
suited for parallel implementation, but the logic required is
relatively simple. To compute its weight, each input subtracts
the fan-out of the cell at HOL from its age; see Fig. 9. Each
output employs an input magnitude comparator to select the
input with the highest weight; see Fig. 10. A WBA scheduler
for an switch can be constructed by using input
blocks and output blocks as shown in Fig. 11.

IX. CONCLUSION
The increase in demand for network bandwidth creates a

need for high-speed input-queued multicast switches. To help
the designer of such switches, we have studied a variety of
multicast scheduling policies, searching for algorithms that
achieve high throughput, avoid starvation, and yet are simple
to implement in hardware.
In particular, we have observed that when designing a

multicast scheduler, it is important to determine the placement
of residue. This leads to the development of the following
“residue-concentration heuristic”: to achieve a high through-
put, a scheduler should always concentrate the residue onto
5However, we have designed an approximation to TATRA, in which the

input cells can be dropped in parallel, leading to complexity.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

864 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 5, JUNE 1997

Fig. 9. The hardware required in WBA for computation of weight at each input. The age counter is reset when a new multicast cell comes to HOL, and is
incremented every cell time thereafter. The bits corresponding to the outputs, which grant to this input, are selectively reset in every cell time until the entire
destination vector (the register dests) becomes zero. At this point, the input port is signaled that the transmission of the cell is over, so a new cell can come to
HOL. Since the maximum age of a cell at HOL is for an switch, the age counter needs to be bits wide. Subtracting the fan-out
(which spans from 1 to) from the age makes the total range of weights to be , which can be represented by using bits.

Fig. 10. The hardware required in WBA for determining the input to grant to at each output. The input requesting with the highest weight is selected.

as few inputs as possible. The heuristic was supported by
simulations and, for 2 switches, a proof established
the optimality of the residue-concentrating policy. However,
concentrating residue at all times can be unfair and can lead
to the starvation of some inputs. We therefore concluded that
designing a simple, fast, and efficient multicast scheduler is an
exercise in balancing the conflicting requirements of through-
put maximization, ensuring fairness, and implementational
simplicity.
We imposed a fairness constraint on our scheduling policies,

and used Tetris models to study the general multicast
scheduling problem. This led to the development of a fair and
efficient scheduling policy—TATRA, and some salient features
of TATRA were explored. Although fair and efficient (in terms
of high throughput and low latency), TATRA was found to be
implementationally complex. To remedy this, we developed

and studied a weight-based algorithm called WBA which is
easily implemented in hardware, ensures fairness, and achieves
good throughput.

APPENDIX
PROOF OF OPTIMALITY FOR 2 SWITCHES

We now present a proof to show that for a 2 switch,
a residue concentrating algorithm, subject to a fairness con-
straint, outperforms all other fair algorithms. We use the
following class of inputs for comparing scheduling policies.
Definition 11 (Static Input Assumption): Following [23],

we make the “static input assumption” for switches. That is, it
is assumed that at time 0, an infinity of cells has been placed
in each input buffer according to some (possibly random)
configuration.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

PRABHAKAR et al.: SCHEDULING FOR INPUT-QUEUED SWITCHES 865

Fig. 11. Connecting input blocks and output blocks to form an
WBA scheduler.

Fig. 12. 2 multicast crossbar switch. The links show the order in
which cells are released.

The next two definitions give a fairness constraint for 2
switches and a criterion used to judge the performance

of scheduling policies.
Definition 12 (Fairness Constraint for 2 Switches): A

scheduling policy for a 2 switch is said to be fair if no
cell, from either of the two inputs, is held at HOL for more
than one cell time.
Definition 13 (Performance Criterion): A fair scheduling

policy for a 2 multicast switch is said to perform
better than another fair policy if every input cell, belonging
to either input, departs no later under than under .
Under the above conditions, a proof of Theorem 1 was given

in [23]. For the sake of completeness, a brief sketch of the
proof is included here.
Sketch of the Proof of Theorem 1: At time 0, we are given

an infinity of packets in each input queue, placed according
to some configuration. Fix one such configuration and label
the cells at inputs 1 and 2 as and ,
respectively (Fig. 12).
As a consequence of Definition 12, every fair scheduling

policy discharges the cell (or residue) at the HOL of each input
buffer alternately. This orders all input cells according to their
departure times as follows: 1) if
is the first cell to depart, and 2) if

Fig. 13. Time-link graphs of a nonconcentrating policy and the concen-
trating policy .

is the first cell to depart. Here, is to be read as “
departs no later than .”
Without loss of generality, we assume the first ordering for

cells, and link them in a vertical or oblique fashion as shown
in Fig. 12. The directions of the arrows on the links denote
where the residue is to be concentrated should a policy choose
to concentrate residue at some time. The vertical link between
and is labeled , and the oblique link between and
is labeled . The following facts now follow easily.

Fact 1: All scheduling policies work their way through
links in that order. In one cell time, the policies
release no links when there is contention between cells at HOL
and residue is distributed, one link when there is contention
between cells at HOL and residue is concentrated, or two links
when there is no contention between cells at HOL in one cell
time.
Fact 2: The time at which an input cell is completely

served is exactly equal to the time at which the link emanating
from it is released.
In light of Fact 2, Theorem 1 is proved if we show that

the fair concentrating policy releases each link no later
than any other fair policy . To this end, consider the plots
in Fig. 13. Each plot is a “time-link graph” showing the time
a policy releases a certain link. Thus, proving Theorem 1 is
equivalent to showing that the time-link graph of the residue
concentrating policy lies below that of any nonconcentrat-
ing policy. In other words, it is sufficient to prove the following
assertion.
Assertion 1: The time-link graph of the optimal scheduling

policy is never above that of any other scheduling policy.
A proof of the above assertion (and a complete proof of

Theorem 1) may be found in [23].
Remark: The above proof sample path proof cannot be

adapted to prove an analogous result for
switches. This is because cells at different inputs cannot
be ordered in such a way that all fair, work-conserving
policies release them in that specific order. Thus, the simple
performance criterion used above cannot be used to compare
policies for switches when . Indeed, counter-
examples suggest that by deliberately distributing residue at
certain times, it is possible for a nonconcentrating policy to

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

866 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 5, JUNE 1997

achieve a higher throughput than a concentrating policy (see
[25]).

REFERENCES

[1] V. Paxson, “Growth trends in wide-area TCP connections,” IEEE
Network, vol. 8, pp. 8–17, July–Aug. 1994.

[2] H. Eriksson, “MBone: The multicast backbone,” Commun. ACM, vol.
37, pp. 54–60, Aug. 1994.

[3] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram
internetworks and extended LAN’s,” ACM Trans. Comput. Syst., vol.
8, pp. 85–110, May 1990.

[4] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing
on a space division switch,” IEEE Trans. Commun., vol. COM-35, pp.
1347–1356, Dec. 1987.

[5] S.-Q. Li, “Performance of a nonblocking space-division packet switch
with correlated input traffic,” IEEE Trans. Commun., vol. 40, pp.
97–108, Jan. 1992.

[6] T. T. Lee, “Nonblocking copy networks for multicast packet switching,”
IEEE J. Select. Areas Commun., vol. 6, pp. 1455–1467, Dec. 1988.

[7] J. S. Turner, “Design of a broadcast switching network,” in Proc. IEEE
INFOCOM’86, pp. 667–675.

[8] A. Huang, “Starlite: A wideband digital switch,” in Proc. IEEE GLOBE-
COM’84, pp. 121–125.

[9] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High speed switch
scheduling for local area networks,” in Proc. 5th Int. Conf. Architectural
Support for Programming Languages and Operating Syst., Oct. 1992,
pp. 98–110.

[10] N. McKeown, P. Varaiya, and J. Walrand, “Scheduling cells in an
input-queued switch,” Electron. Lett., pp. 2174–2175, Dec. 9, 1993.

[11] N. McKeown, “Scheduling algorithms for input-queued cell switches,”
Ph.D. dissertation, Univ. California, Berkeley, May 1995.

[12] M. Chen and N. D. Georganas, “A fast algorithm for multi-channel/port
traffic scheduling,” in Proc. IEEE Supercomm/ICC’94, pp. 96–100.

[13] H. Obara, “An efficient contention resolution algorithm for input queue-
ing ATM switches,” Int. J. Digital and Analog Cabled Syst., vol. 2, pp.
261–267, Oct.–Dec. 1989.

[14] , “Optimum architecture for input queueing ATM switches,”
Electron. Lett., pp. 555–557, Mar. 28, 1991.

[15] N. McKeown and B. Prabhakar, “Scheduling multicast cells in an
input-queued switch,” Tech. Rep., Comput. Syst. Lab., Stanford Univ.
Stanford, CA.

[16] H. Obara, S. Okamoto, and Y. Hamazumi, “Input and output queueing
ATM switch architecture with spatial and temporal slot reservation
control,” Electron. Lett., pp. 22–24, Jan. 2, 1992.

[17] M. Karol, K. Eng, and H. Obara, “Improving the performance of
input-queued ATM packet switches,” in Proc. IEEE INFOCOM’92, pp.
110–115.

[18] J. F. Hayes, R. Breault, and M. Mehmet-Ali, “Performance analysis of
a multicast switch,” IEEE Trans. Commun., vol. 39, pp. 581–587, Apr.
1991.

[19] K. Eng, M. Hluchyj, and Y. Yeh, “Multicast and broadcast services in
a knockout packet switch,” in Proc. IEEE INFOCOM’88, pp. 29–34.

[20] J. Giacopelli, J. Hickey, W. Marcus, D. Sincoskie, and M. Littlewood,
“Sunshine: A high-performance self-routing broadband packet switch
architecture,” IEEE J. Select. Areas Commun., vol. 10, pp. 1289–1298,
Oct. 1991.

[21] J. Y. Hui and T. Renner, “Queueing analysis for multicast packet
switching,” IEEE Trans. Commun., vol. 42, pp. 723–731, Feb./Mar./Apr.
1994.

[22] M. Mehmet-Ali and S. Yang, “Performance analysis of a random packet
selection policy for multicast switching,” IEEE Trans. Commun., vol.
44, pp. 388–398, Mar. 1996.

[23] N. McKeown and B. Prabhakar, “Scheduling multicast cells in an
input-queued switch,” in Proc. IEEE INFOCOM’96, pp. 271–278.

[24] B. Prabhakar and N. McKeown, “Designing a multicast switch sched-
uler,” in Proc. 33rd Annu. Allerton Conf., Urbana-Champaign, IL, 1995.

[25] B. Prabhakar, N. McKeown, and J. Mairesse, “Tetris models for multi-
cast switches,” in Proc. 30th Annu. Conf. Inform. Sci. Syst., Princeton,
NJ, 1996.

Balaji Prabhakar received the M.A. degree in mathematics and the Ph.D.
degree in electrical engineering from the University of California, Los
Angeles, in 1994.
In the early part of 1995, he was a Visiting Scholar at the Department

of Electrical Engineering and Computer Science, University of California,
Berkeley. Since October 1995, he has been with Hewlett-Packard’s Basic
Research Institute in the Mathematical Sciences (BRIMS), Bristol, U.K. His
research interests are in high-speed networks, information theory, wireless
networks, and probability theory. He is currently interested in usage-based
pricing of network resources, and in fixed-point problems for queueing
operators.

Nick McKeown received the Ph.D. degree from the
University of California, Berkeley, in 1995.
From 1986 to 1989, he worked for Hewlett-

Packard Laboratories, in their Network and Com-
munications Research Group in Bristol, U.K. During
the Spring of 1995, he worked briefly for Cisco
Systems. He is now an Assistant Professor of Elec-
trical Engineering at Stanford University, Stanford,
CA. His research interests are in techniques for
high-speed networks, including high-speed Internet
routing and architectures for high-speed switches.

More recently, he has worked on the analysis and design of cell scheduling
algorithms and the economics of the Internet.

Ritesh Ahuja received the B.Tech. degree from the
Indian Institute of Technology, Delhi, in 1994. Since
Fall 1995, he has been working toward the Ph.D.
degree in the Department of Computer Science,
Stanford University, Stanford, CA.
After that, he worked for one year in the Net-

working Research Department of AT&T Bell Labo-
ratories, Murray Hill, NJ, implementing the Native
Mode ATM protocol stack on PC’s running the
Brazil operating system. Currently he is on leave
from Stanford, working at Torrent Network Tech-

nologies. His research interests are in the areas of network protocol design,
high-speed switching architectures, VLSI, and CAD.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 17:47 from IEEE Xplore. Restrictions apply.

