
SCHEDULING MULTICAST CELLS IN AN INPUT-QUEUED SWITCH *

NICK MCKEOWN
Departments of EE & CS

Stanford University.
Email: nickm@ee.stanford.edu.

Abstract

In this paper we consider policies for scheduling
cells in an input-queued multicast switch. It is assumed
that each input maintains a single queue for arriving
multicast cells and that only the cell at the head of
line (HOL) can be observed and scheduled at one time.
The policies are assumed to be work-conserving, which
means that cells may be copied to the outputs that they
request over several cell times.

When a scheduling policy decides which cells to
schedule, contention may require that it leave a residue
of cells to be scheduled in the next cell time. The
selection of where to place the residue uniquely defines
the scheduling policy. We prove that for a 2 x N switch,
a policy that always concentrates the residue, subject
to a natural fairness constraint, always outpegorms
all other policies.

Simulation results indicate that this policy also
pelforms well for more general M x N switches. We
present a heuristic round-robin policy called mRRM
that is simple to implement in hardware, fais and per-
forms almost as well as the concentrating policy.

1 Introduction

A growing proportion of traffic on the Internet
is multicast, with users distributing a wide variety
of audio and video material. This dramatic change
in the use of the Internet has been facilitated by the
MBONE [l], [2] , [3]. It seems inevitable that the
volume of multicast traffic will continue to grow for
sometime to come. So, if ATM switches are to find
widespread use in the Internet it is important that they
be able to handle multicast traffic efficiently.

Although a number of different architectures and

*This work was done when B. Prabhakar was a Visiting Scholar
at the Department of EECS, University of California at Berkeley.

BALAJI PRABHAKAR
BRIMS

H[ewlett-Packard Labs, Bristol.
Email: balaji@hplb.hpl.hp.c0m.edu.

3a.l .I
0743-166W96 $5.00 0 1996 IEEE

implementations have been proposed for multicast
switches [6, 7, 81, we restrict our attention to input-
queued switches. In particular, we consider how an
input-queued switch may schedule multicast cells so
as to achieve a high throughput and hence efficient
utilization.

Most of the work on input-queued ATM switches
has concentrated on unicast traffic in which cells are
destined for only a single output. It is well known
that when FIFO queues are used, the throughput of an
input queued switch with unicast traffic can be lim-
ited to just 58% under relatively benign conditions [4].
When arrivals are correlated, the throughput can be
even lower [5]. However, numerous papers have indi-
cated that by using non-FIFO input queues and using
good scheduling policies, much higher throughputs are
possible [9, 10, 11, 12, 13, 14, 151.

In [16], Hayes et al. give an excellent queueing
analysis of the performance of input-queued multicast
switches. To maintain tractability, ‘they assume a ran-
dom scheduling policy for determining which cells are
copied to each output during each cell time. Specifi-
callly, each output randomly and independently selects
one input from among those that request it.

In this paper we consider the performance of dif-
ferent multicast scheduling policies. As may be ex-
pec ted, we find that the random scheduling policy is
not the optimum policy. Instead, we find that a better
algorithm is one that concentrates the cells that it leaves
behind (the “residue”) on as few inputs as possible. In
the next section we describe our model and various
scheduling policies in more detail. We then prove that
for a 2xN switch, the concentrating policy is the op-
timum policy, subject to a natural fairness constraint.
Finally, we present simulation results suggesting that
this policy also performs well for more general M x N
swiitches.

27 1

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

that does not always concentrate residue.

It is assumed that the switch has M input and N
output ports and that each input maintains a single
FIFO queue for arriving multicast cells. Arriving mul-
ticast cells are assumed to contain a vector indicating
which outputs the cell is to be sent to. For example,
the 2 input and N output switch shown in Figure 1 has
a cell at the head of each queue. Input queue Q A has
an input cell destined for outputs { 1,2,3.4} whereas
input queue Q R has an input cell destined for outputs
{3,4,5,6). We shall refer to the size of the vector as
the fanout. In the figure, the input cell at the head of
each queue has a fanout of four. For clarity, we distin-
guish an arriving input cell from its constituent ouipur
cells. In the figure, the input cell at the head of queue
Q R will generate four output cells.

rz,

Figurc 1 : 2 X N niulticast crossbar switch with sirigle
Fi/F’O queue UT each input.

Thc input queues are necessary because cells at
different inputs may wish to copy cells to the same
output port. At the end of each cell time, a schedul-
ing policy decides which input cells to copy to which
output ports. The policy selects a conflict-free match
between inpui and output ports such that each output
receives at most one cell. Thus, at the end of ev-
ery cell time, the scheduling policy discharges some
output cells, possibly leaving behind some residual
output cells at the head-of-line (HOL) of the input
buffers. For example, in the situation depicted in Fig-
ure 1 the “discharge” will consist of output cells for
outputs { I , 2 ,3 ,4 ,5 ,6} , and the “residue” will con-
sist of output cells for outputs {3,4}. Therefore, the
scheduling policy now has to decide on where to place
the rcsidue. It may elect to place the residue on both in-
puts (i.e., it “distributes the residue”), or it may place
tile rcsidue cxclusivcly in Q A or exclusively in &B
(i.c.? i t “concentrates the residue”). It is the purpose
of this papex to argue, based G:I theoretical results and
simulations, t h a ~ a scheduling policy that always “con-
ccnfrates the residue” pcrforms better (improves output
utilizationl reduces input queue latency, etc.) than one

To reduce the implementation complexity, we as-
slime that an input cell must wait in line until all of the
cells ahead of it have gained access to all of the out-
puts that they requested. Furthermore, it is assumed
that the scheduling policy observes only the cell at the
head of each input queue, without further knowledge
of the contents of individual input buffers behind the
HOL and traffic arrival patterns.

Perhaps the simplest way to service the input
queues is to replicate the input cell over multiple cell
times. generating one output cell per cell time. How-
ever. this service discipline does not take advantage
of the multicast properties of the crossbar switch. So
instead, we assume that one input cell can be copied to
any number of outputs in a single cell time for which
there is no conflict.

Following the description in [16], we distinguish
two different service disciplines. The first is full multi-
cast in which all of the copies of a cell must be sent in
the same cell time. If any of the output cells loses the
contention for an output port, none of the output cells
are transmitted and the cell must try again in the next
cell time. The second discipline is partial multicast
in which case output cells may be delivered to output
ports over any number of cell times. Only those output
cells that are unsuccessful in one cell time continue to
contend for output ports in the next cell time.

Because partial multicast is work conserving, it
enables a higher switch throughput, for little increase
in implementation complexity. Therefore, we consider
only partial multicast policies here.

3 Some Definitions

Residue: The residue is the set of output cells that
lose contention for output ports and remains at
the HOL of the input queues at the end of each
cell time. It is important to note that given a set of
requests, every work-conserving policy will leave
the same residue. However, it is up to the policy
to determine how the residue is distributed over
the inputs.

Concentrating Policy: A multicast scheduling pol-
icy is said to be coFLCentrating if, at the end of
every cell time, it leaves the residue on the small-
est possible number of input ports.

Distributing Policy: A multicast scheduling policy

3a.l .

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

is said to be distributing if, at the end of every cell
time, it leaves the residue on the largest possible
number of input ports.

Note that both the concentrating and distributing
policies are defined in a constructive way (see
also Section 6.1). Therefore, they are guaranteed
to exist.

A Non-concentrating Policy: A multicast schedul-
ing policy is said to be non-concentrating if it
does not always concentrate the residue.

Fairness Constraint: A multicast scheduling policy
is said to be fair if, given a choice of inputs having
the same number of output cells in common with
the residue, it concentrates the residue on the input
that has been at HOL for the shortest time.

Note that in the two input case this definition
means that the residue alternates between the two
inputs.

4 MainResult

We state and briefly discuss the main results of the
paper. We believe that the following statement about
general M x N multicast switch scheduling policies is
true.

A scheduling policy that always “concentrates
residue” at every possible instant subject to a natural
faimess condition, leads to a higher output utilization
than any other policy, with arbitrary arrival processes.

This belief is borne out by simulations presented in
Section 6 and the sample path proofs presented for the
2 x N case in the Appendix. Specifically, the following
theorem is proved in the appendix.

Theorem 1: A schedulingpolicy for a 2 x N multicast
switch that always “concentrates residue ” at every
possible instant subject to a natural fairness condition,
pelforms better than any other policy, with arbitrary
arrival processes.

Discussion: The theorem is proved in the appendix,
where the fairness condition and a performance cri-
terion are explicitly defined. Essentially, one policy
is said to perform better than another if it leads to a
higher output utilization. Although Theorem 1 covers
the special case of 2 x N switches, the methods devel-
oped are quite general and provide valuable insight
into the general case. We believe that the arguments

can be adapted with some suitable modifications to the
case of M x N multicast switch scheduling policies.

5 Intuitive Explanation of Results

We now offer an intuitive explanation as to why
a policy that always concentrates the residue outper-
for” one that does not.

Referring to Figure 1, consider the options faced
by a work-conserving scheduling algorithm at this time
(t1)i. Note that whatever decision the algorithm makes,
the residue will be the same. The scheduling algorithm
just determines where to place the residue. If at time
t l , the algorithm concentrates the residue on Q B then
all of a1 ’s output cells will be sent and cell will be
brought forward at time t 2 . At time t 2 , the algorithm
selacts between a2 and the residue leftover from tl . If
on ithe other hand, the algorithm distributes the residue
over both input queues at t l , then at tz the algorithm
can only schedule the residue leftover from t l . No
nevv cells can be brought forward. So, on average,
a concentrating policy will bring new work forward
sooner, increasing the diversity of its choice. This
enables it to schedule more output cells in the next cell
time.

To demonstrate that the fairness constraint is nec-
essary, consider the example again in Figure 1. As-
surne that the concentrating policy is not fair and con-
centrates the residue at Q A at both times tl and tz.
From then on, only one input cell can be completed
per cell time. An algorithm that distributes residue at
time tl would actually perform better. However, if the
Concentrating policy is fair and at time t z concentrates
the residue at Q B , it will, in this case, complete input
cells at the same rate as the distributing policy.

6 Simulation Results

In support of our argument that a “concentrating:
policy” outperforms all other fair policies, we present
some simulation results.

6.1 Scheduling Policies

Co’ncentrate: This policy always concentrates the:
residue onto as few inputs as possible. This is
achieved by performing the following algorithm
at the beginning of each cell time.

1. Determine the residue and find the input
which has the most in common with the

3a.l.3
273

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

residue. If there is a choice of inputs, se-
lect the one with the input cell that has been
at the HOL for the shortest time. This en-
sures fairness, although not in the sense of
Definition 1 of the appendix.

2. Concentrate as much residue onto the in-
put as possible and remove the input from
further consideration.

3. Repeat steps (1) and (2) until no residue
remains.

Distribute: This policy always distributes the residue
onto as many inputs as possible. This is achieved
by the following algorithm.

1. Determine the residue and find the input
with at least one cell but otherwise the least
in common with the residue. If there is a
choice of inputs, select the one with the in-
put cell that has been at the HOL for the
shortest time.

2. Place one output cell of residue onto that in-
put and remove the input from further con-
sideration.

3. Repeat steps (1) and (2) until no inputs re-
main. If residue remains, consider all the
inputs again and start at step (1).

Random: This policy is motivated by the work of
Hayes et al. in [161, which is the multicast version
of the algorithms described in [4] and [9]. Each
output in turn, and independently of the other
outputs, randomly selects one input from among
those that request it.

Multicast Round Robin (mRRh4): This policy is
motivated by the algorithms described in [lo].
A single round-robin pointer is collectively main-
tained by all of the outputs. Each output selects
the next input that requests it at, or after, the
pointer. At the end of the cell time, the pointer
is moved to one position beyond the first input
that is served. Designed to be simple to imple-
ment in hardware, mRRM tends to concentrate
the selection onto a small number of inputs, yet
maintain fairness. Note that for a 2 x N switch
this algorithm performs almost identically to the
concentrate algorithm.

6.2 TrafficTypes

Uncorrelated Arrivals: At the beginning of each
cell time, a cell arrives at each input with prob-

ability p independently of whether a cell arrived
during the previous cell time.

Correlated Arrivals: Cells are generated using a 2-
state Markov process which alternates between
BUSY and IDLE states. The process remains in
each period for a geometrically distributed num-
ber of cell times. The expected duration of the
BUSY state is fixed at 32 cells (corresponding
approximately to the maximum length of a seg-
mented Ethernet packet). When in this state cells
arrive at the beginning of every cell time and all
with the same set of destinations. No cells arrive
during the IDLE state.

For both types of traffic, each arriving multicast
cell has a multicast vector that is uniformly distributed
over all possible multicast vectors (ignoring the null
vector). As a result, for an M x N switch, the average
fanout is N[2N - 1]/2N-*, little more than N/2.

6.3 2x8 Switch

Figures 2 and 3 respectively compare the four
scheduling policies for a 2 x 8 switch, with uncorre-
lated and correlated arrivals. As predicted by our the-
orem, the concentrute algorithm leads to an average
cell latency that is much lower than for the distribute
algorithm. In fact, as intuition suggests, the distribute
algorithm is always the worst algorithm: it maximizes
the HOL blocking.

6.4 8 x 8 Switch

Figures 4 and 5 respectively compare the four
scheduling policies for an 8 x 8 switch, with uncorre-
lated and correlated arrivals. Once again, the concen-
trate algorithm leads to an average cell latency that
is much lower than for the distribute algorithm. This
supports our argument, not proved in this paper, that
the concentrate policy outperforms other algorithms.
Note that for an 8x8 switch mRRM performs worse
than concentrate. This is because it does not neces-
sarily concentrate the residue on as small a number of
inputs.

7 Conclusion

Scheduling policies for input-queued multicast
switches have been studied. We observed that when
designing a multicast scheduling policy, it is important
to determine the placement of the residue. In particular,

274
3a.l.4

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

lW I ” ’ ,

1MXx) 1

1 I
1..

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
U 8 b l h

Figure 2: Graph of average cell latency a s a func-
tion of offered load for a 2 x 8 switch. Arrivals are
uncorrelated.

we proved that, subject to a natural fairness constraint,
for a 2 x N switch the optimum policy is one that al-
ways concentrates the residue. Our simulation results
indicate that the concentrating policy also outperforms
a distributing or random policy for M x N switches. In
addition, we present the mRRM algorithm which per-
forms favorably when compared to the concentrating
algorithm, yet is simple to implement in hardware.

Acknowledgement

The authors thank Ritesh Ahuja of Stanford Uni-
versity for his prompt and timely help with the simu-
lations and graphs.

References
Paxson, V; “Growth trends in wide-area TCP connec-
tions,” IEEE Network, vo1.8, (no.4):8-17. July-Aug
1994.

Eriksson, H.; “MBone: the Multicast Backbone,”
Communications of the ACM,vo1.37, (no.8):54-60.
Aug 1994.

Deering, S.E.; Cheriton, D.R.; “Multicast Routing in
datagram intemetworks and extended LANs,” ACM
Transactions on Computer Systems, ~01.8, (no.2):85-
110. May 1990.

Karol, M., Hluchyj, M., and Morgan, S. “Input Vs.
Output Queueing on a Space Division Switch,” IEEE
Trans. Comm, 35(12) pp.1347-1356

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
W‘ah

Figure 3: Graph of average cell latency a s afunction of
offk-ed loadfor a 2 x 8 switch. Arrivals are correlated.

Li, S.-Q; “Performance of a nonblocking space-
division packet switch with correlated input traffic,”
IEEE Trans. Comm, vo1.40, (no.l):97-108. Jan 1992.

Lee, T.T.; “Nonblocking copy networks for multicast
packet switching,” IEEE J. Select. Areas Comm., vo1.6,
pp.1455-1467. Dec 1988.

Tumer, J.S.; “Design of a broadcast switching net-
work,” Proc. IEEE INFOCOM ’86, pp.667-675.

Huang, A.; “Starlite: A wideband digital switch,”
Proc. IEEE GLOBECOM ’84, pp.121-125.

Anderson, T., Owicki, S., Saxe, J., and Thacker, C.
“High Speed Switch Scheduling for Local Area Net-
works,”
Proc. Fijth International Conference on Architectural
Support for Programming Languages and Operating
Systems Oct 1992, pp. 98-1 10.

McKeown, N.; Varaiya, P.; and Walrand, J.; “Schedul-
ing Cells in an Input-Queued Switch,” IEE Electronics
Letters, Dec 1993, pp.2174-5.

Chen, M.; Georganas, N.D.;‘ “A Fast Algorithm for
multi-channel/port traffic scheduling,” Proc. IEEE Su
percomm/lCC ‘94, pp.96-100.

Obara, H. “An Efficient Contention Resolution Algo-
rithm for Input Queueing ATM Switches,”
Intl. Joul: of Digital & Analog Cabled Systems,
vol. 2, no. 4, Oct-Dec 1989, pp. 261-267.

Obara, H. “Optimum Architecture For Input Queue-
ing ATM Switches,” Elect. Letters, 28th March 1991,
pp.555-557.

3a.l.5
275

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

.. ,. . . , , ... ,

.

iwo

p IW

D 10

5
J

k

0

1
. - - -- - . - .

. - - - - -. - -.

Figure 4: Graph of average cell latency as afunc-
tion of offered load for a 8 x 8 switch. Arrivals are
uncorrelated.

[14] Obara, H., Okamoto, S., and Hamazumi, Y. “Input
and Output Queueing ATM Switch Architecture with
Spatial and Temporal Slot Reservation Control”
Elect. Letters, 2nd Jan 1992, pp.22-24.

[15] Karol, M., Eng, K., Obara, H. “Improving the Perfor-
mance of Input-Queued ATM Packet Switches,” IN-
FOCOM ’92, pp.110-115.

[I61 Hayes, J.F; Breault, R.; and Mehmet-Ah, M; “Perfor-
mance Analysis of a Multicast Switch,” ZEEE Truns.
Commun., ~01.39, no.4, pp. 581-587. April 1991.

A Proof of Theorem 1

We first prove Theorem 1 under the static input
assumption; that is, we assume that at time 0 both
input queues have an infinite number of packets, placed
according to some (possibly random) configuration.
Fix one such configuration and label cells at inputs
1 and 2 as {ai}i=1,2 and {bi}i=1,2 respectively
(see Figure 6). Once the theorem is proved under the
static input assumption, a suitable modification of the
performance criterion generalizes the same argument
to dynamic inputs.

Definition 1 (fairness): A scheduling policy T is said
to bejufr if no cell from either input is held at HOL for
more than one cell time.

Definition 2 (performance criterion): A fair schedul-
ing policy 7r1 for a 2 x N multicast switch is said toper-

t - - - - - - L . 1

. . . .

. . . .

t - - - - - - - - ‘ 1
0.11 015 0.16 0.17 0.18 0.19 0.2 0.21 022 0.23

~ Z a B O n

Figure 5: Graph ofaverage cell latency as afunction of
offered load for a 8 x 8 switch. Arrivals are correlated.

form better than another fair policy r2 if every input
cell, belonging to either input, departs no later under
?y‘ than under T ~ .

As a consequence of Definition 1, a fair scheduling
policy discharges the cell (or residue) at the HOL of
each input buffer alternately, and the fairness constraint
orders all input cells according to their departure times
as follows: (1) a1 bl <d a2 <d b z . . . if a1 is the
first cell to depart, and (2) bl I d a1 <d b2 <d a2 . . . if
bl is the first cell to depart. Here a I d b is to be read
as “U departs no later than b”.

QA ... a4 a3 a2 a1 I
...

Figure 6:

Without loss of generality, we assume the first
ordering for cells and link them in a vertical or oblique
fashion as shown in Figure 6. The directions of the
arrows on the links denote where the residue is to be
concentrated, should a policy choose to concentrate
residue at some time. The vertical link between a; and
bi is labelled 12i-1 and the oblique link between b; and

3a.l.6
276

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

u,.~] is labelled 12i. The following facts now follow
easily.

Fact 1: All schedulingpolicies work their way through
links 11 ,12 ,13 , . . . in that order releasing no links (when
there is contention between cells at HOL and residue is
distributed), one link (when there is contention between
cells at HOL and residue is concentrated), or two links
(when there is no contention between cells ut HOL) in
one cell time.

Fact 2: The time at which an input cell is completely
served is exactly equal to the time at which the link
emanating from it is released.

Fact 3: The residue concentrating fair policy, T*,
never takes two cell times to release a link. As a
consequence, under T*, the cell ut the arrow end of
any link is always a fresh cell.

In light of Fact 2, Theorem 1 is proved if we show
that the fair concentrating policy 7r* releases each link
i no later than any other policy T. To this end consider
the plots in Figure 7. Each plot is a “time-link graph”
showing the time a policy releases a certain link. Note
that in Figure 7 the diagonal line (of slope 1) is the
time-link graph of the worst policy - that is, this policy
releases precisely one link per unit time. Similarly, the
line of slope 1/2 is the time-link graph of the best policy
- one that always releases 2 links per unit time (this is
only possible if there is no contention at all). Clearly,
the time-link graphs of all fair policies lie between
these two extremes.

Figure 7: Time-link graphs of a non-concentrating
policy, T, and the concentrating policy, T*.

Thus, proving Theorem 1 is equivalent to show-
ing that the time-link graph of the residue concen-
trating policy T* lies below that of any other non-

concentrating policy. In other words, it is sufficient to
prove the following assertion.

Assertion 1: The time-link graph of the optimal
scheduling policy 7r* is never above that of any other
scheduling policy.

The proof of the above assertion requires the fol-
lowing lemima.

Lemma 1: Under the ordering of rells mentioned in
Fact I , consider any two scheduling policies T’ and
r2. Suppose that the two policies are serving link E,,
which originates in cell c and terminates in cell d, say.
Suppose also that cell d is a fresh cell for both r’ and
T’. Denote by r; (respectively, r ;) the cell c or some
residue of it under T’ (respectively, r2). That is, r i
is the residue or cell connected to d by link 1, under
policy 7rk for IC = 1 , 2. If the policies are fuil; then
either r; C r; or r; C r;.

Proof: First of all, suppose that link li+, originating in
cell d and terminating in cell e, follows link I,. Since
p + l - ’ - r: n e (here r;” is the residue at link 1;+1
undler policy rk) , rk 2 2 . . . 2 a. That is,
the residue monotonically decreases to the empty set.
Call this property the “residue-monotonicity property”.
Observe also that if rt c r i , then rf” c r;+’”. This
is because ri+’ = ri n e and T;” = ri n e. Call this
property the “residue-domination property”.

Now, if either rj = c or T ; = c, then Lemma 1 is
trivially true. If neither equals c, then they are proper
subsets of c which, using the “residue-monotonicity
property” in the reverse direction, implies that r; C

Since the size
of the residue is bounded by the number of outputs,
either r;“ or T; will soon equal a fresh cell for some
m,n < i. Without loss of generality suppose that
m < n; that is r; equals a fresh cell first while ry
is still a proper residue. Since r; is a fresh cell, this
me,ans that r; c r;. Using the “residue-domination
property” we are now able to conclude that ri C ri ,
thus proving Lemma 1.

Proof of Assertion 1: Let x be any other policy. For
ease of exposition, consider, as in Figure 7, a time-link
graph showing the evolution of T and T*. We will use
induction over time to show that the time-link graph
of ‘r is always above that of 7 r * . Assume that T* is
optimal upto time n, we will show that it is optimal at
time n + 1 Consider the following cases.

ri-l c rk-2 c . . . for IC = 1,2.

3a. 1 .?
277

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

(I) At the beginning of time n, x is two or more links
behind x*: During time n, x can release at most two
links while T* must release at least one link. Therefore,
at the beginning of time n + 1, x is at least one link
behind x* which implies the optimality of x* at the
beginning of time n + 1.

(2) At the beginning of time n, x is one link behind T*:
Again during time n, x can release at most two links
while x* must release at least one link. Therefore, at
the beginning of time n + 1, x has at best caught up
with (but not overtaken) x*.

(3) At the beginning of time n, x and x* are both at
the same link: Now, the time-link graph of x* can
go over that of x if, and only if, during time n, x*
releases only one link while T releases two links. By
contradiction, we argue that this is impossible. First,
suppose that the link at which T and x* find themselves
at time n is l i , and suppose also that 1; originates in
cell f and terminates in cell g. It is now necessary
to determine the status of f and g (whether they are
whole or fragmented), first under x* and then under x.

(i) The status of Zi under x*: By Fact 3, cell g must
necessarily be a fresh cell while cell f can either be
whole (fresh) or fragmented (residue).

(i i) The status of l i under x: Now, under x, f and g
cannot both be residues. Because this implies that x
must have distributed residue at 1; at time n - 1 and,
therefore, must have first arrived at Z; at time n - 1.
However, since x* is presently serving l i , by Fact 3 it
could not have been serving link li at time n - 1 as well.
Thus x* must have arrived at link I ; at time n while x
must have arrived at 1; at time n - 1. This contradicts
the optimality of x* at time n - 1. Therefore, under x,
cell g must be fresh whereas cell f can either be whole
or fragmented.

Observe from cases (i) and (ii) above that the
whole cell g is common to both x* and x at time
n. Under T* call the other cell at link l i (this cell
is f or a fragment of it) f*, and under T call it fT.
Note that Lemma 1 now implies that either f* c fT
or fT C f * . Recall that, for the sake of contradiction,
we have assumed that during time n T* releases only
one link whereas x releases two links. Given this, it
follows that fT c f * and the inclusion is proper.

that x* was at link 1i-z at time n- 1. However, since fT
is strictly contatined in f*, fir is aproper residue which
means that T was at link Zi-1 at time n - 1. Again this
contradicts the optimality of x* at time n - 1.

If f* is not a fresh cell, then using the “residue-
domination property” backwards we arrive at a link,
say l j , where (at some time m < n) x* was facing
two fresh cells while T was facing a fresh cell and a
proper residue. The above argument then leads us to
conclude that T* was not optimal at time m - 1. This
contradiction proves the assertion and Theorem 1.

Now, to extend the above proof to the dynamic-
input case, the performance criterion is first modified
as follows.

Definition 3 (perfomance criterion 2): A possibly
idling, fair scheduling policy x1 for a 2 x N mul-
ticast switch subject to dynamic inputs is said
to perform better than another non-idling, fair
policy 5 2 if every input cell (belonging to either
input) departs no later under x1 than under x2.

Thus, given a non-idling, non-concentrating
scheduling policy T for a 2 x N multicast switch sub-
ject to dynamic inputs, it is easy to see that a possibly
idling, concentrating policy x* exists which performs
no worse than T .

As before, consider two copies of the switch sub-
ject to the same inputs, one operating under x and the
other operating under x*. For convenience, we label
the former switch 5’ and label the latter switch S*.
Starting at time 0, the switches will experience iden-
tical periods when both inputs are active alternating
with identical periods when at least one of the inputs
is inactive, Since x* always finishes earlier than T , we
will allow S* to idle whenever it is ahead of S in terms
of releasing links. This idling time is then credited
to x* and can be used to measure how much better it
is performing in comparison with x in processing the
particular input that is applied.

Now if f* is also a fresh cell then, since g is a
fresh cell, we deduce that at time n - 1 x* must have
released links Zi-1 and 1;-2. In particular this means

278
3a.l.8

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:32 from IEEE Xplore. Restrictions apply.

