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Abstract 

In this paper we consider policies for scheduling 
cells in an input-queued multicast switch. It  is assumed 
that each input maintains a single queue for arriving 
multicast cells and that only the cell at the head of 
line (HOL) can be observed and scheduled at one time. 
The policies are assumed to be work-conserving, which 
means that cells may be copied to the outputs that they 
request over several cell times. 

When a scheduling policy decides which cells to 
schedule, contention may require that it leave a residue 
of cells to be scheduled in the next cell time. The 
selection of where to place the residue uniquely defines 
the scheduling policy. We prove that for a 2 x N switch, 
a policy that always concentrates the residue, subject 
to a natural fairness constraint, always outpegorms 
all other policies. 

Simulation results indicate that this policy also 
pelforms well for  more general M x N  switches. We 
present a heuristic round-robin policy called mRRM 
that is simple to implement in hardware, fais and per- 
forms almost as well as the concentrating policy. 

1 Introduction 

A growing proportion of traffic on the Internet 
is multicast, with users distributing a wide variety 
of audio and video material. This dramatic change 
in the use of the Internet has been facilitated by the 
MBONE [l], [2] ,  [3]. It seems inevitable that the 
volume of multicast traffic will continue to grow for 
sometime to come. So, if ATM switches are to find 
widespread use in the Internet it is important that they 
be able to handle multicast traffic efficiently. 

Although a number of different architectures and 
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implementations have been proposed for multicast 
switches [6, 7, 81, we restrict our attention to input- 
queued switches. In particular, we consider how an 
input-queued switch may schedule multicast cells so 
as to achieve a high throughput and hence efficient 
utilization. 

Most of the work on input-queued ATM switches 
has concentrated on unicast traffic in which cells are 
destined for only a single output. It is well known 
that when FIFO queues are used, the throughput of an 
input queued switch with unicast traffic can be lim- 
ited to just 58% under relatively benign conditions [4]. 
When arrivals are correlated, the throughput can be 
even lower [5]. However, numerous papers have indi- 
cated that by using non-FIFO input queues and using 
good scheduling policies, much higher throughputs are 
possible [9, 10, 11, 12, 13, 14, 151. 

In [16], Hayes et al. give an excellent queueing 
analysis of the performance of input-queued multicast 
switches. To maintain tractability, ‘they assume a ran- 
dom scheduling policy for determining which cells are 
copied to each output during each cell time. Specifi- 
callly, each output randomly and independently selects 
one input from among those that request it. 

In this paper we consider the performance of dif- 
ferent multicast scheduling policies. As may be ex- 
pec ted, we find that the random scheduling policy is 
not the optimum policy. Instead, we find that a better 
algorithm is one that concentrates the cells that it leaves 
behind (the “residue”) on as few inputs as possible. In 
the next section we describe our model and various 
scheduling policies in more detail. We then prove that 
for a 2xN switch, the concentrating policy is the op- 
timum policy, subject to a natural fairness constraint. 
Finally, we present simulation results suggesting that 
this policy also performs well for more general M x N 
swiitches. 
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that does not always concentrate residue. 

It is assumed that the switch has M input and N 
output ports and that each input maintains a single 
FIFO queue for arriving multicast cells. Arriving mul- 
ticast cells are assumed to contain a vector indicating 
which outputs the cell is to be sent to. For example, 
the 2 input and N output switch shown in Figure 1 has 
a cell at the head of each queue. Input queue Q A  has 
an input cell destined for outputs { 1,2,3.4} whereas 
input queue Q R  has an input cell destined for outputs 
{3,4,5,6). We shall refer to the size of the vector as 
the fanout. In the figure, the input cell at the head of 
each queue has a fanout of four. For clarity, we distin- 
guish an arriving input cell from its constituent ouipur 
cells. In the figure, the input cell at the head of queue 
Q R  will generate four output cells. 

rz, 

Figurc 1 : 2 X N  niulticast crossbar switch with sirigle 
Fi/F’O queue UT each input. 

Thc input queues are necessary because cells at 
different inputs may wish to copy cells to the same 
output port. At the end of each cell time, a schedul- 
ing policy decides which input cells to copy to which 
output ports. The policy selects a conflict-free match 
between inpui and output ports such that each output 
receives at most one cell. Thus, at the end of ev- 
ery cell time, the scheduling policy discharges some 
output cells, possibly leaving behind some residual 
output cells at the head-of-line (HOL) of the input 
buffers. For example, in the situation depicted in Fig- 
ure 1 the “discharge” will consist of output cells for 
outputs { I ,  2 ,3 ,4 ,5 ,6} ,  and the “residue” will con- 
sist of output cells for outputs {3,4}. Therefore, the 
scheduling policy now has to decide on where to place 
the rcsidue. It may elect to place the residue on both in- 
puts (i.e., it “distributes the residue”), or it may place 
tile rcsidue cxclusivcly in Q A  or exclusively in &B 
(i.c.? i t  “concentrates the residue”). It is the purpose 
of this papex to argue, based G:I theoretical results and 
simulations, t h a ~  a scheduling policy that always “con- 
ccnfrates the residue” pcrforms better (improves output 
utilizationl reduces input queue latency, etc.) than one 

To reduce the implementation complexity, we as- 
slime that an input cell must wait in line until all of the 
cells ahead of it have gained access to all of the out- 
puts that they requested. Furthermore, it is assumed 
that the scheduling policy observes only the cell at the 
head of each input queue, without further knowledge 
of the contents of individual input buffers behind the 
HOL and traffic arrival patterns. 

Perhaps the simplest way to service the input 
queues is to replicate the input cell over multiple cell 
times. generating one output cell per cell time. How- 
ever. this service discipline does not take advantage 
of the multicast properties of the crossbar switch. So 
instead, we assume that one input cell can be copied to 
any number of outputs in a single cell time for which 
there is no conflict. 

Following the description in [16], we distinguish 
two different service disciplines. The first is full multi- 
cast in which all of the copies of a cell must be sent in 
the same cell time. If any of the output cells loses the 
contention for an output port, none of the output cells 
are transmitted and the cell must try again in the next 
cell time. The second discipline is partial multicast 
in which case output cells may be delivered to output 
ports over any number of cell times. Only those output 
cells that are unsuccessful in one cell time continue to 
contend for output ports in the next cell time. 

Because partial multicast is work conserving, it 
enables a higher switch throughput, for little increase 
in implementation complexity. Therefore, we consider 
only partial multicast policies here. 

3 Some Definitions 

Residue: The residue is the set of output cells that 
lose contention for output ports and remains at 
the HOL of the input queues at the end of each 
cell time. It is important to note that given a set of 
requests, every work-conserving policy will leave 
the same residue. However, it is up to the policy 
to determine how the residue is distributed over 
the inputs. 

Concentrating Policy: A multicast scheduling pol- 
icy is said to be coFLCentrating if, at the end of 
every cell time, it  leaves the residue on the small- 
est possible number of input ports. 

Distributing Policy: A multicast scheduling policy 
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is said to be distributing if, at the end of every cell 
time, it leaves the residue on the largest possible 
number of input ports. 

Note that both the concentrating and distributing 
policies are defined in a constructive way (see 
also Section 6.1). Therefore, they are guaranteed 
to exist. 

A Non-concentrating Policy: A multicast schedul- 
ing policy is said to be non-concentrating if it 
does not always concentrate the residue. 

Fairness Constraint: A multicast scheduling policy 
is said to be fair if, given a choice of inputs having 
the same number of output cells in common with 
the residue, it concentrates the residue on the input 
that has been at HOL for the shortest time. 

Note that in the two input case this definition 
means that the residue alternates between the two 
inputs. 

4 MainResult 

We state and briefly discuss the main results of the 
paper. We believe that the following statement about 
general M x N  multicast switch scheduling policies is 
true. 

A scheduling policy that always “concentrates 
residue” at every possible instant subject to a natural 
faimess condition, leads to a higher output utilization 
than any other policy, with arbitrary arrival processes. 

This belief is borne out by simulations presented in 
Section 6 and the sample path proofs presented for the 
2 x N case in the Appendix. Specifically, the following 
theorem is proved in the appendix. 

Theorem 1: A schedulingpolicy for a 2 x N multicast 
switch that always “concentrates residue ” at every 
possible instant subject to a natural fairness condition, 
pelforms better than any other policy, with arbitrary 
arrival processes. 

Discussion: The theorem is proved in the appendix, 
where the fairness condition and a performance cri- 
terion are explicitly defined. Essentially, one policy 
is said to perform better than another if it leads to a 
higher output utilization. Although Theorem 1 covers 
the special case of 2 x N  switches, the methods devel- 
oped are quite general and provide valuable insight 
into the general case. We believe that the arguments 

can be adapted with some suitable modifications to the 
case of M x N  multicast switch scheduling policies. 

5 Intuitive Explanation of Results 

We now offer an intuitive explanation as to why 
a policy that always concentrates the residue outper- 
for”  one that does not. 

Referring to Figure 1, consider the options faced 
by a work-conserving scheduling algorithm at this time 
(t1)i. Note that whatever decision the algorithm makes, 
the residue will be the same. The scheduling algorithm 
just determines where to place the residue. If at time 
t l ,  the algorithm concentrates the residue on Q B  then 
all of a1 ’s output cells will be sent and cell will be 
brought forward at time t 2 .  At time t 2 ,  the algorithm 
selacts between a2 and the residue leftover from tl . If 
on ithe other hand, the algorithm distributes the residue 
over both input queues at t l ,  then at tz the algorithm 
can only schedule the residue leftover from t l .  No 
nevv cells can be brought forward. So, on average, 
a concentrating policy will bring new work forward 
sooner, increasing the diversity of its choice. This 
enables it to schedule more output cells in the next cell 
time. 

To demonstrate that the fairness constraint is nec- 
essary, consider the example again in Figure 1. As- 
surne that the concentrating policy is not fair and con- 
centrates the residue at Q A  at both times tl and tz. 
From then on, only one input cell can be completed 
per cell time. An algorithm that distributes residue at 
time tl would actually perform better. However, if the 
Concentrating policy is fair and at time t z  concentrates 
the residue at Q B ,  it will, in this case, complete input 
cells at the same rate as the distributing policy. 

6 Simulation Results 

In support of our argument that a “concentrating: 
policy” outperforms all other fair policies, we present 
some simulation results. 

6.1 Scheduling Policies 

Co’ncentrate: This policy always concentrates the: 
residue onto as few inputs as possible. This is 
achieved by performing the following algorithm 
at the beginning of each cell time. 

1. Determine the residue and find the input 
which has the most in common with the 
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residue. If there is a choice of inputs, se- 
lect the one with the input cell that has been 
at the HOL for the shortest time. This en- 
sures fairness, although not in the sense of 
Definition 1 of the appendix. 

2. Concentrate as much residue onto the in- 
put as possible and remove the input from 
further consideration. 

3. Repeat steps (1) and (2) until no residue 
remains. 

Distribute: This policy always distributes the residue 
onto as many inputs as possible. This is achieved 
by the following algorithm. 

1. Determine the residue and find the input 
with at least one cell but otherwise the least 
in common with the residue. If there is a 
choice of inputs, select the one with the in- 
put cell that has been at the HOL for the 
shortest time. 

2. Place one output cell of residue onto that in- 
put and remove the input from further con- 
sideration. 

3. Repeat steps (1) and (2) until no inputs re- 
main. If residue remains, consider all the 
inputs again and start at step (1). 

Random: This policy is motivated by the work of 
Hayes et al. in [ 161, which is the multicast version 
of the algorithms described in [4] and [9]. Each 
output in turn, and independently of the other 
outputs, randomly selects one input from among 
those that request it. 

Multicast Round Robin (mRRh4): This policy is 
motivated by the algorithms described in [lo]. 
A single round-robin pointer is collectively main- 
tained by all of the outputs. Each output selects 
the next input that requests it at, or after, the 
pointer. At the end of the cell time, the pointer 
is moved to one position beyond the first input 
that is served. Designed to be simple to imple- 
ment in hardware, mRRM tends to concentrate 
the selection onto a small number of inputs, yet 
maintain fairness. Note that for a 2 x N  switch 
this algorithm performs almost identically to the 
concentrate algorithm. 

6.2 TrafficTypes 

Uncorrelated Arrivals: At the beginning of each 
cell time, a cell arrives at each input with prob- 

ability p independently of whether a cell arrived 
during the previous cell time. 

Correlated Arrivals: Cells are generated using a 2- 
state Markov process which alternates between 
BUSY and IDLE states. The process remains in 
each period for a geometrically distributed num- 
ber of cell times. The expected duration of the 
BUSY state is fixed at 32 cells (corresponding 
approximately to the maximum length of a seg- 
mented Ethernet packet). When in this state cells 
arrive at the beginning of every cell time and all 
with the same set of destinations. No cells arrive 
during the IDLE state. 

For both types of traffic, each arriving multicast 
cell has a multicast vector that is uniformly distributed 
over all possible multicast vectors (ignoring the null 
vector). As a result, for an M x N  switch, the average 
fanout is N[2N - 1]/2N-*, little more than N/2. 

6.3 2x8 Switch 

Figures 2 and 3 respectively compare the four 
scheduling policies for a 2 x 8  switch, with uncorre- 
lated and correlated arrivals. As predicted by our the- 
orem, the concentrute algorithm leads to an average 
cell latency that is much lower than for the distribute 
algorithm. In fact, as intuition suggests, the distribute 
algorithm is always the worst algorithm: it maximizes 
the HOL blocking. 

6.4 8 x 8  Switch 

Figures 4 and 5 respectively compare the four 
scheduling policies for an 8 x 8 switch, with uncorre- 
lated and correlated arrivals. Once again, the concen- 
trate algorithm leads to an average cell latency that 
is much lower than for the distribute algorithm. This 
supports our argument, not proved in this paper, that 
the concentrate policy outperforms other algorithms. 
Note that for an 8x8 switch mRRM performs worse 
than concentrate. This is because it does not neces- 
sarily concentrate the residue on as small a number of 
inputs. 

7 Conclusion 

Scheduling policies for input-queued multicast 
switches have been studied. We observed that when 
designing a multicast scheduling policy, it is important 
to determine the placement of the residue. In particular, 
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Figure 2: Graph of average cell latency a s  a func- 
tion of offered load for a 2 x 8 switch. Arrivals are 
uncorrelated. 

we proved that, subject to a natural fairness constraint, 
for a 2 x N  switch the optimum policy is one that al- 
ways concentrates the residue. Our simulation results 
indicate that the concentrating policy also outperforms 
a distributing or random policy for M x N  switches. In 
addition, we present the mRRM algorithm which per- 
forms favorably when compared to the concentrating 
algorithm, yet is simple to implement in hardware. 
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A Proof of Theorem 1 

We first prove Theorem 1 under the static input 
assumption; that is, we assume that at time 0 both 
input queues have an infinite number of packets, placed 
according to some (possibly random) configuration. 
Fix one such configuration and label cells at inputs 
1 and 2 as {ai}i=1,2 .... and {bi}i=1,2 .... respectively 
(see Figure 6). Once the theorem is proved under the 
static input assumption, a suitable modification of the 
performance criterion generalizes the same argument 
to dynamic inputs. 

Definition 1 (fairness): A scheduling policy T is said 
to bejufr if no cell from either input is held at HOL for 
more than one cell time. 

Definition 2 (performance criterion): A fair schedul- 
ing policy 7r1 for a 2 x N  multicast switch is said toper- 

t -  - - -  - -  L . 1  

. . . .  

. . . .  

t - -  - - - -  - -  ‘ 1  
0.11 015 0.16 0.17 0.18 0.19 0.2 0.21 022 0.23 

~ Z a B O n  

Figure 5: Graph ofaverage cell latency as afunction of 
offered load for a 8 x 8 switch. Arrivals are correlated. 

form better than another fair policy r2 if every input 
cell, belonging to either input, departs no later under 
?y‘ than under T ~ .  

As a consequence of Definition 1, a fair scheduling 
policy discharges the cell (or residue) at the HOL of 
each input buffer alternately, and the fairness constraint 
orders all input cells according to their departure times 
as follows: (1) a1 bl <d  a2 <d  b z . . .  if a1 is the 
first cell to depart, and (2) bl I d  a1 <d  b2 <d a2 . . .  if 
bl is the first cell to depart. Here a I d  b is to be read 
as “U departs no later than b”. 

QA ... a4 a3 a2 a1 I 
... 

Figure 6: 

Without loss of generality, we assume the first 
ordering for cells and link them in a vertical or oblique 
fashion as shown in Figure 6. The directions of the 
arrows on the links denote where the residue is to be 
concentrated, should a policy choose to concentrate 
residue at some time. The vertical link between a; and 
bi is labelled 12i-1 and the oblique link between b; and 
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u,.~] is labelled 12i. The following facts now follow 
easily. 

Fact 1: All schedulingpolicies work their way through 
links 11 ,12 ,13 ,  . . . in that order releasing no links (when 
there is contention between cells at HOL and residue is 
distributed), one link (when there is contention between 
cells at HOL and residue is concentrated), or two links 
(when there is no contention between cells ut HOL) in 
one cell time. 

Fact 2: The time at which an input cell is completely 
served is exactly equal to the time at which the link 
emanating from it is released. 

Fact 3: The residue concentrating fair policy, T*, 
never takes two cell times to release a link. As a 
consequence, under T*, the cell ut the arrow end of 
any link is always a fresh cell. 

In light of Fact 2, Theorem 1 is proved if we show 
that the fair concentrating policy 7r* releases each link 
i no later than any other policy T. To this end consider 
the plots in Figure 7. Each plot is a “time-link graph” 
showing the time a policy releases a certain link. Note 
that in Figure 7 the diagonal line (of slope 1) is the 
time-link graph of the worst policy - that is, this policy 
releases precisely one link per unit time. Similarly, the 
line of slope 1/2 is the time-link graph of the best policy 
- one that always releases 2 links per unit time (this is 
only possible if there is no contention at all). Clearly, 
the time-link graphs of all fair policies lie between 
these two extremes. 

Figure 7: Time-link graphs of a non-concentrating 
policy, T, and the concentrating policy, T*. 

Thus, proving Theorem 1 is equivalent to show- 
ing that the time-link graph of the residue concen- 
trating policy T* lies below that of any other non- 

concentrating policy. In other words, it is sufficient to 
prove the following assertion. 

Assertion 1: The time-link graph of the optimal 
scheduling policy 7r* is never above that of any other 
scheduling policy. 

The proof of the above assertion requires the fol- 
lowing lemima. 

Lemma 1: Under the ordering of rells mentioned in 
Fact I ,  consider any two scheduling policies T’ and 
r2. Suppose that the two policies are serving link E,, 
which originates in cell c and terminates in cell d, say. 
Suppose also that cell d is a fresh cell for both r’ and 
T’. Denote by r;  (respectively, r ; )  the cell c or some 
residue of it under T’ (respectively, r2). That is, r i  
is the residue or cell connected to d by link 1, under 
policy 7rk for IC = 1 , 2. If the policies are fuil; then 
either r; C r; or r; C r;. 

Proof: First of all, suppose that link li+, originating in 
cell d and terminating in cell e, follows link I,. Since 
p + l  - ’ - r: n e (here r;” is the residue at link 1;+1 
undler policy rk) ,  rk 2 2 . . .  2 a. That is, 
the residue monotonically decreases to the empty set. 
Call this property the “residue-monotonicity property”. 
Observe also that if rt c r i ,  then rf” c r;+’”. This 
is because ri+’ = ri n e and T;” = ri n e. Call this 
property the “residue-domination property”. 

Now, if either rj = c or T ;  = c, then Lemma 1 is 
trivially true. If neither equals c, then they are proper 
subsets of c which, using the “residue-monotonicity 
property” in  the reverse direction, implies that r; C 

Since the size 
of the residue is bounded by the number of outputs, 
either r;“ or T; will soon equal a fresh cell for some 
m,n < i. Without loss of generality suppose that 
m < n; that is r; equals a fresh cell first while ry  
is still a proper residue. Since r; is a fresh cell, this 
me,ans that r; c r;. Using the “residue-domination 
property” we are now able to conclude that ri C ri ,  
thus proving Lemma 1. 

Proof of Assertion 1: Let x be any other policy. For 
ease of exposition, consider, as in Figure 7, a time-link 
graph showing the evolution of T and T*. We will use 
induction over time to show that the time-link graph 
of ‘r is always above that of 7 r * .  Assume that T* is 
optimal upto time n, we will show that it is optimal at 
time n + 1 Consider the following cases. 

ri-l  c rk-2 c . . .  for IC = 1,2. 
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( I )  At the beginning of time n, x is two or more links 
behind x*: During time n, x can release at most two 
links while T* must release at least one link. Therefore, 
at the beginning of time n + 1, x is at least one link 
behind x* which implies the optimality of x* at the 
beginning of time n + 1. 

(2) At the beginning of time n, x is one link behind T*: 
Again during time n, x can release at most two links 
while x* must release at least one link. Therefore, at 
the beginning of time n + 1, x has at best caught up 
with (but not overtaken) x*. 

(3) At the beginning of time n, x and x* are both at 
the same link: Now, the time-link graph of x* can 
go over that of x if, and only if, during time n, x* 
releases only one link while T releases two links. By 
contradiction, we argue that this is impossible. First, 
suppose that the link at which T and x* find themselves 
at time n is l i ,  and suppose also that 1; originates in 
cell f and terminates in cell g. It is now necessary 
to determine the status of f and g (whether they are 
whole or fragmented), first under x* and then under x. 

( i )  The status of Zi under x*: By Fact 3, cell g must 
necessarily be a fresh cell while cell f can either be 
whole (fresh) or fragmented (residue). 

( i i )  The status of l i  under x: Now, under x, f and g 
cannot both be residues. Because this implies that x 
must have distributed residue at 1; at time n - 1 and, 
therefore, must have first arrived at Z; at time n - 1. 
However, since x* is presently serving l i ,  by Fact 3 it 
could not have been serving link li at time n - 1 as well. 
Thus x* must have arrived at link I ;  at time n while x 
must have arrived at 1; at time n - 1. This contradicts 
the optimality of x* at time n - 1. Therefore, under x, 
cell g must be fresh whereas cell f can either be whole 
or fragmented. 

Observe from cases (i) and (ii) above that the 
whole cell g is common to both x* and x at time 
n. Under T* call the other cell at link l i  (this cell 
is f or a fragment of it) f*, and under T call it fT. 
Note that Lemma 1 now implies that either f* c fT 
or fT C f * .  Recall that, for the sake of contradiction, 
we have assumed that during time n T* releases only 
one link whereas x releases two links. Given this, it 
follows that fT c f * and the inclusion is proper. 

that x* was at link 1i-z at time n- 1. However, since fT 
is strictly contatined in f*, fir is aproper residue which 
means that T was at link Zi-1 at time n - 1. Again this 
contradicts the optimality of x* at time n - 1. 

If f* is not a fresh cell, then using the “residue- 
domination property” backwards we arrive at a link, 
say l j ,  where (at some time m < n) x* was facing 
two fresh cells while T was facing a fresh cell and a 
proper residue. The above argument then leads us to 
conclude that T* was not optimal at time m - 1. This 
contradiction proves the assertion and Theorem 1. 

Now, to extend the above proof to the dynamic- 
input case, the performance criterion is first modified 
as follows. 

Definition 3 (perfomance criterion 2): A possibly 
idling, fair scheduling policy x1 for a 2 x N  mul- 
ticast switch subject to dynamic inputs is said 
to perform better than another non-idling, fair 
policy 5 2  if every input cell (belonging to either 
input) departs no later under x1 than under x2. 

Thus, given a non-idling, non-concentrating 
scheduling policy T for a 2 x N  multicast switch sub- 
ject to dynamic inputs, it is easy to see that a possibly 
idling, concentrating policy x* exists which performs 
no worse than T .  

As before, consider two copies of the switch sub- 
ject to the same inputs, one operating under x and the 
other operating under x*. For convenience, we label 
the former switch 5’ and label the latter switch S*. 
Starting at time 0, the switches will experience iden- 
tical periods when both inputs are active alternating 
with identical periods when at least one of the inputs 
is inactive, Since x* always finishes earlier than T ,  we 
will allow S* to idle whenever it is ahead of S in terms 
of releasing links. This idling time is then credited 
to x* and can be used to measure how much better it 
is performing in comparison with x in processing the 
particular input that is applied. 

Now if f* is also a fresh cell then, since g is a 
fresh cell, we deduce that at time n - 1 x* must have 
released links Zi-1 and 1;-2. In particular this means 
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