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Abstract

In this paper, we consider a critically loaded G/M/1 queue and contrast its transient behaviour with the transient behaviour
of stable (or unstable) G/M/1 queues. We show that the departure process from a critical G/M/1 queue converges weakly
to a Poisson process. However, as opposed to the stable (or unstable) case, we show that the departure process of a critical
GI/M/1 queue does not couple in finite time with a Poisson process (even though it converges weakly to one). Thus, as the
traffic intensity (ratio of arrival to service rates), p, ranges over (0, 00), the point p = 1 represents a singularity with regard

to the convergence mode of the departure process.

1. Introduction

The transient and equilibrium behaviour of stable
(service rate > arrival rate) queues with Poisson inputs
has been studied using Markov chain theory and
reversibility [3, 5, 6, 9]. The method of Loynes [7]
provides an understanding of their behaviour in the
stationary and ergodic context.

A key concept in the approach of Loynes and,
indeed, in the general stability theory of queueing sys-
tems is the notion of “finite time coupling” between
processes (see [1, 7]). Briefly, this has the following
meaning. Suppose that X°(¢) is the queue-size of a
G/G/1 queue at time ¢ > 0 starting with an empty
queue at time 0 and that D° is the corresponding
departure process. Then, provided the queue is stable
(i.e. arrival rate < service rate), Loynes [7] has shown
that X°(-) couples in finite time with a stationary and
ergodic process X(-) and that D° couples in finite
time with a stationary and ergodic process D. That
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is, there exists a finite random time 7 such that a.s.
for all ¢ > 1, X°(f) = X(¢), and the paths of D° and
D coincide. The processes X(-) and D are thought
of as the equilibrium queue-size and departure pro-
cesses from the G/G/1 queue. As a consequence of
the finite-time coupling property one then deduces
that the processes X(-) and D are unique, i.e. a stable
G/G/1 queue admits a unique stationary regime. Finite
time coupling is also used to establish the stability
of acyclic networks of -/G/1 queues and in demon-
strating the existence and uniqueness of stationary
operating regimes for such networks [1, 7].

The purpose of this paper is to investigate the finite
time coupling property in the context of critically sta-
ble G/M/1 queues. It will be shown that in this case the
property collapses, leading to a singular behaviour. A
variation of Loynes’ argument is first used to show
that for critical G/M/1 queues: (1) the queue-size
process, X°(#), goes to infinity in distribution as
t — oo although it visits every state infinitely often
(Lemma 2), and (2) the departure process D° con-
verges weakly (in distribution) to a Poisson process
(Theorem 1). Although these two facts are in keep-
ing with intuition developed from classical queueing
analysis, establishing them has proved non-trivial.
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This is because non-renewal type arrivals make it
impossible to use elementary Markov chain theory,
while criticality makes it difficult to use rate-based
arguments as in the case of stable or unstable queues.
This has led to the development of some non-standard
techniques (like those in Lemma 1 and Theorem 2)
which seem to be of interest in their own right.

The above developments lead to the following inter-
esting result which sets the critical -/M/1 queue apart
from the stable and unstable ones: (3) the departure
process, DO, from a class of critical GI/M/1 queues
does not couple in finite time with a Poisson process
even though it converges weakly to one (Theorem 2).
Hence, the convergence mode of the output from a
GI/M/1 node changes from strong (finite-time cou-
pling) to weak convergence, depending on whether
the value of the traffic intensity (arrival rate/service
rate) lies in the set (0,1) U (1, 00) or equals 1.

Our study of this special feature was initiated
during the analysis of certain types of parallel pro-
cessing and manufacturing systems: those involving
synchronizations and pipelining (see [8]). We believe
that beyond its theoretical interest, a study of this
singular behaviour will be useful in other practical
situations, where critically (heavily) loaded queues,
possibly with finite buffers and blocking, are approx-
imated by their infinite buffer counterparts for the
purpose of analysis.

1.1. Notation

Consider a first-come-first-served, -/M/1 queueing
node with mean service time equal to 1. Let the arrival
process, A, be given by

A= i 5t:, (1)

n=—0oo

where -+ <2, < <0< < <<t < -
pathwise, and J, is the point mass at x. #2 is the arrival
time of the nth job or customer to the queueing node.
We assume that A is a stationary and ergodic process
with respect to the transformation (time shift)

o0
@tA: Z 5(;:_1).

n=—00

Let N,(t,t] be the number of arrivals to the node
in (#5,t]. We abbreviate N,(0,¢] as N,(¢). The mean
arrival rate A4 is then equal to E(N,(1)). Recall that a
-/M/1 queueing node with mean service rate equal to 1

and arrival rate equal to 4, is said to be stable, critical
or unstable depending on whether 24 < 1,44 =1 or
Aa > 1. In this paper we will be concerned exclusively
with critical -/M/1 nodes.

Let S be the ‘service process’ (or virtual departure
process) of the -/M/1 queueing node. S is a Poisson
process of rate 1 that is independent of A. Let S be
given by

S= 3 o )

A=—00

where - - < | <0< < <<ty <o
pathwise, and £; is the arrival time of the nth service
token. Let N,(#,¢] be the number of service tokens
arriving to the node in (%, ¢], and let Ny(¢) = Ny(0,¢].
Note that E(Ng(1)) = 1. All random quantities are
assumed to be defined on some common probability
space (2, %, P).

Given any two realizations of A and S, using
Loynes’ construction (see [1] or [7]), we obtain for
s < t the queue size process X°(¢) which represents
the number of unserved customers in the queue at
time ¢ if the queue started processing arrivals at time
s, having been empty before that time. Let D* be the
corresponding departure process. In this letter we are
interested in studying the transient behaviour of crit-
ical -/M/1 nodes and contrasting it with the transient
behaviour of stable and unstable :/M/1 nodes. The
issues of interest to us are the characteristics of the
queue-size process X °(-) and the associated departure
process D°.

2. The output of critical G/M/1 queues

The main results of this section are establishing the
weak convergence of the output of a critical G/M/1
queue to a Poisson process (Theorem 1) and showing
that the output of a critical GI/M/1 node does not
couple in finite time with a Poisson process (The-
orem 2). Lemma 2 establishes the null-recurrence-
type behaviour of the queue-size process of a critical
G/M/1 node, to be used in the proofs of Theorems 1
and 2.

Given A and S we construct for s € £, the depar-
ture process D* by ignoring all points of A which are
less than s. Thus, D’ is the departure process from
the queue if it were started empty at time s and is
processing arrivals since that time. The corresponding
queue-size process X°(¢) is a non-negative integer-
valued process with almost surely right continuous
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paths which are constant outside points in A and S
and varying at points of A and S as follows:

0 ift<s

X¥(t) = Xt )+1 forrzs, teA 3)
X(t7)—1 fortzs, teS

and X°(t7)>0.

Of course by the independence of A and S we need
not consider points in both A and S. The departure
process D’ can then be defined as the points {t>s:
t € S and X*(¢7) > 0}. Specifically,

D0 = Sl{X°(t‘)>0}- (4)

Reasoning in a manner similar to the one in
Loynes’ construction [1] it is not hard to see that
X3(¢) increases as s decreases. Fig. 1 illustrates the
situation for some fixed but arbitrary realizations of
A and S. It is seen that for u < s, X*(¢) > X°(¢).

A quick explanation for this can be formulated
along the following lines. Notice that X*(s)=0 =
X*(s). All upward jumps of X*“(¢) and X*(¢) coincide
for t > s (same arrivals); and a downward jump of
X*(-) at some time ¢ implies a downward jump of
X?(-) at ¢, unless X°(¢z~) = 0. These facts ensure that
X*¥(¢) is bigger than or equal to X*(¢) for all ¢z > s.
Thus, lims—, _ o, X*(¢) = X(t) exists pathwise, what-
ever the value of the arrival rate is. We also recall the
following additional details of Loynes’ construction,
to be used below.

Fact 1. X°(t) Z xs*7(t + p) for all p € &; in
particular, X~'(0) Z X°(t). This follows from the
Jjoint stationarity of the processes A and S.

Fact 2. If lim;, o, X°(t) = X(#) < oo a.s., then
X(¢) is a stationary and ergodic process.

Before we proceed to our first lemma, we recall
the following standard notation from [1] regarding the
structure of the canonical space of point processes (the
space of realizations). Let M be the set of all counting
measures, m, on %. Endow M with the sigma field .#
generated by functions m — m(C), where C is a Borel
subset of 4. The pair (M, .#) is known as the canon-
ical space of point processes; and a point process is
thought of as a measurable mapping from (2, #,P)
to (M, .#). For issues regarding the joint behaviour of
a pair of point processes, one works with the product
space (M x M, 4 x .#) and the corresponding time
shift @ = @, x O,.

Lemma 1. Let A and S be two jointly stationary
and ergodic point processes of rate 1. Let the process
B(w) C A(w) be the set of those points t, € A(w)
such that N,(tp,t]=Ny(tp,t] + 1 V¢ >1,. Then B
is a stationary and ergodic process with mean
rate g = E(Np(1)) = 0. In particular, the event
{w: B(w)(#) > 0} has zero probability.

Proof. Note that B is the process that consists of
the bad points of A — starting from any of these
points #, we have at least one more point of A
than of S for all time bigger than f#,. Given the
joint stationarity and ergodicity of A and S, it is
easy to see that B is stationary and ergodic with
respect to O;. Indeed, if G € 4 and H € A4 x #
are such that

B(w) € G« (A(w),S(w)) € H,

then
P(B € G)=P((A,S) € H) = P(@*(A,S) € H)

=P(04(B) € G)

N

- - ——-d:—-X'(‘)

Fig. 1. Loynes’ construction.
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verifies stationarity of B. Ergodicity follows from the
fact that if G is an invariant event for the process B
under ©; then A is an invariant event for (A, S) under
©2. The @2 ergodicity of (A,S) implies that P(H) =
0 or 1; and this implies P(G) = 0 or 1.

The process B thus has a well-defined average rate
function which is almost surely equal to the constant
/g = E(Ny(1)). Let B have the representatlon B =
> oo oo O, Where - <P <Bh<0 < <o <
<t <.

By deﬁnmon of the process B, N,(¢/,t]=N,(t0,1]
+1 V¢>¢. But, more importantly, notice that
Na(2, 8] 2 Ny(¢0,t]+nif 2 € (¢4, 1]. That is, the differ-
ence between N,,(tf ,t] and NS(Z{’ ,t] grows by 1 as soon
as the time variable ¢ encounters (and exceeds) a point
of the process B. Thus, N,(22, 1= N,(¢2,1] + Ny(2, 1]
with probability one. Dividing by ¢ and taking the
limit as + — oo and appealing to the ergodic theo-
rem, we get 121 + Ag. This implies that A3 = 0.
Hence, almost surely the process B does not exist.
This implies that the event {w: B(w)(#) > 0} has
zero probability. [

Our next lemma establishes the null-recurrent type
behaviour of the queue-size process of a critical G/M/1
queue. Indeed, this fact would be immediate if we
were looking at critical GI/M/1 queues (and not the
bigger class of G/M/1 queues); for, then the embedded
Markov chain obtained by looking at the queue-size at
the instant of an arrival is a null-recurrent one. In the
following lemma and throughout the rest of the paper
we set O(t) = X°(¢).

Lemma 2. For a critical GIMI node with stationary
and ergodic arrival process A, the following state-
ments are true:

(1) The queue-size process X(t) given by X(t) =
lims— _ o X°(t) = o0 a.s.

(2) With Q(t) = X%1), lim,_o P(Q(t) <i) =0
for everyi € ¥,

(3) Q(r) visits state i infinitely often (i.0.) almost
surely.

Proof. (1) The event {X(¢)= o0} is invariant
with respect to the transformation @;. Thus it has
probability 0 or 1. Suppose P(X(#) < oo) = 1. Then,
by Fact 1, X(t) is a stationary and ergodic process.
Since A is a process of rate 1, E(N,(0,6]) = o for
any d € #. Moreover, if 0 < § < 1, then clearly this
implies that P(N,(0,8] = 0) > 0. Taking 6 = 0.5,
we therefore get that P(N,(0,0.5] =0) > 0. Let

B; = {X(0) = i; N,(0,0.5] = 0}. Then P(B;) > 0 for
some /. The event B; N {N(0,0.5] > i} is contained
in the event {X(0.5) = 0} and so

P(X(0.5) = 0) > P(B; N {N,(0,0.5] > i})

= P(B;)P(N,(0,0.5] > i)

'
> P(B,-)e—O-S(O—;,'S)- >0,
where the second equality follows from the indepen-
dence of S, for ¢ > 0, with X(0) and A. And because
the process X (¢) is stationary, P(X(¢) = 0) > 0 for
all ¢. In particular, P(X(0)=0) > 0. Thus, P(X () <
oc) =1 implies P(X(0) = 0) > 0. It now follows
from {1, Lemma 2.3.1, p. 78] that this is impossible
since for a critically loaded, queue, P(X(0) =0) =0
and (1) is proved.

(2) Next, since Q(¢) = X°(¢) Z X7H0), P(O(2)
< )=P(X7'(0) <i). And X*(0) /" X(0) = o0 as
t — oo. Therefore, lim; .., P(Q(t) < i)\, 0 for every
et i

(3) Since O(t) 2 o0, it is enough to show that
P(Q(¢) visits 0 i.0.) = 1, for then this implies P(Q(¢)
visits i i.0.) = 1 for each i € 2. The event {Q(¢) =
0 1.0.} is @;-invariant = P(Q(t) = 0i.0.) =0or 1.
If P(Q(t) = 0 1i.0.) = 0, then Q(¢) > 0 eventually
with probability 1. Let T < oo be the last time that
Q(') transits from state O to state 1, never to return
to 0 again. Then obviously 7" must coincide with an
arrival of A, and we emphasize this by setting 7 = 7.
Since N,(T4,t]1=Ny(T4,t] + 1 Vt > T4 almost surely
(because Q(¢) > 0Vt > T), it must be the case that
the point 7, belongs to the process B where B is as
defined in Lemma 1. Therefore, the process B has
at least one point per sample path almost surely, i.e.
the event {w:B(w)#) > 0} has probability 1. This
contradicts the conclusion of Lemma 1 and Lemma 2
is proved. O

We are now ready to show that the output of a
critical G/M/1 queue converges weakly to a rate 1
Poisson process. Specifically, we start processing
arrivals at time 0, the arrival buffer having been empty
before then. Suppose that the departure process is
D’ =", 5,0 and look at DY = @, (D°1(u5,). DY
is D® viewed from time ¢ onwards and to obtain it
from DY, we first ignore all points of D° that are less
than ¢ and then shift D® by ¢ units to the left. We will
show that D? goes weakly to a Poisson process as
t — oo. In a sense, this is expected because Lemma
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2 shows that eventually the chance that the arrival
buffer is empty is going to zero and whenever the
arrival buffer is non-empty, the departure process is
simply the service process S, and this is Poisson.

We first recall the definition and some facts concern-
ing the stochastic intensity of point processes which
are of relevance to us in the sequel. Our main refer-
ence is [2].

Definition. Let Z be a point process adapted to some
history %, and let 4, be a non-negative %-progressive
process such that for all >0, fot Asds < oo as. If
for all non-negative %,-predictable processes C;, the
equality

E [/Omcsdz] =E [/Omcsxsds]

holds, then Z admits the %;-intensity A,.

Fact 3 (Chapter II, Brémaud [2]). Let Z have %,-
intensity A, and let 9, be some history such that 9,
is independent of %, for all t 20. Then 2, is also the
F, NV Y-intensity of L, where F,V G, is the smallest
a-algebra containing both #, and %,.

Now, for a G/M/1 queue, the stochastic intensity of
the service process S with respect to its own history
F5 = o(t;0<£<1t) is constant and is equal to 1
(because S is a Poisson process). But, by Fact 3 and
the independence of S with A for all ¢ > 0, the intensity
of S with respect to the combined history 97,”’3 =
o2, 15, 0<12 <1,0< 2 <t)isalso 1. Since the process
1{o(s—)=0} 18 ff’s-predictable (being left continuous
and 97,’"3 -adapted, this implies that

E [/0 Lo~ )=0} ds} =k V Lioe—)=0) ds] :
0

(5)

We now recall the definition of weak convergence
of point processes [4, Chapter 9]. The sequence of
point processes {D} converges weakly to the point
process P as ¢ — oo iff for every bounded continuous
function f with compact support, the random variable

o0
/ f(s)dD? converges in distribution to
0

/cof(s)dP as t — oo.
0

Theorem 1. The departure process of a critical
G/IMI queue, D?, converges weakly to a Poisson
process as t — o0o.

Proof. Let f be bounded and continuous with sup-
port in [0, N]. By a change of variable rewrite x; =
i (s)dD? as [Zfs—1 dD’. Now consider the
term y = [, f(s)dS. Since the process S is Poisson,
we are done if we can show that x, converges in distri-
bution to y. Since [~ f(s)dS = [~ f(s —)dS =
1, say, this is equivalent to showing that, as t — oo,
y; — X, goes to zero in distribution.
Now

y,—xtzjwf(s—t)d@—n")

t+N
- / (s — 1)d(SL g6 r-0p):

since D° = S1{g(s-y=0y (this follows from Eq. (4))
and the support of f is in [0, N]. Therefore,

t+N
Elyi—x| <E {/ |f(s — )| d(ST (- ):0})]

t+N
< | flmax E [/ d(SI{Q(S‘FO} )]

t+N
= [flmax E [/t 1{Q(S“):O} dS}

t+N
= | f|max 1E [/t Lios)=0 ds]

t+N
= 1 T / POG™)=0)ds,  (6)

where the second last equality follows from Eq. (5).
The last equality follows from Fubini’s theorem. All
other relations are obvious. By Lemma 2,

Jim P(Q(s™)=0)=0.

Hence, by dominated convergence the right most term
in (6) goes to zero as t — oc. This implies that y, —
x; — 0 in probability and hence in distribution, as was
required. [

From the proof, it is apparent that the advantage
in viewing the departure process of a -/M/1 node
as given by equation (4) is that we have a bona
fide Poisson process to which the departure pro-
cess converges weakly, namely the service process
S. Since weak convergence of point processes is



244 B. Prabhakar, N. Bambos/!Systems & Control Letters 28 (1996) 239-245

a distributional-type convergence, one wonders
whether the stronger mode of convergence (finite time
coupling) is possible. Indeed, as already mentioned, if
the -/M/1 node were stable this does happen. In The-
orem 2 we use the Central Limit Theorem and show
that for critical GI/M/1 queues with i.i.d. inter-arrival
times having mean 1 and variance o2, the departure
process does not couple in finite time with a Poisson
process although it converges weakly to one.

Before we proceed to Theorem 2, we state the defi-
nition of finite time coupling for point processes as it
applies to our problem (see also [1, Section 4.2]). As
before, let D® be given by D = > ome1 0. Also sup-
pose that Z = 32, g is a rate 1 Poisson process.
Then D is said to couple in finite time with Z. if there
is a random N € Z* such that ¢ = ¢Z for all n > N.
That 1s, the departures coincide with the occurrences
of a rate 1 Poisson process eventually. We now pro-
ceed to show that such a coupling is impossible.

Theorem 2. Consider a critical GIIM/I1 queue with
iid mean 1, variance af, inter-arrival times. The
departure process from this queue does not couple in
finite time with a rate 1 Poisson process. Hence for
such critical GI/MI1 queues, only weak convergence
of departures is possible.

Proof. We will argue by contradiction. Suppose
D° couples with a (rate 1) Poisson process Z, i.e.
IN(w) < oo such that ¢d = ¢ for all n > N. Since
the inter-occurrence times of Z are i.i.d. exponentials
with parameter 1, #Z is the sum of » i.i.d. exponentials.
By the Central Limit Theorem we then get that

z
t,—n

7

But because of the supposed coupling of D° with
Z, (18 — n)/y/n = (& — n)/y/n for n > N and so

Z ¥©,1).

d
tn—nz

N

where &(z) = —= [ e /2 dx.

On the other hand, given T € &7, the fact that there
have been n departures in (0, 7] implies that there
have been at least » arrivals and » services in (0, T'].
In other words, for every T

H(0,1) = P(ty<n+ev/n) — ®(e), (7)

{(B<Tyc{<T}N{£<T}.

Taking T = n + &4/n in the above equation and us-
ing the fact that the arrival and service processes are
independent, we get that

P(e<n+ ev/n) SP(2 <n+ ev/n)P(£ <n + ev/n).
(8)

Now 2 = £+ 37 ,#* —* |. By the i.i.d. assump-
tion of the inter-arrival times, ¢3 is a delayed renewal
process (because £} is not necessarily a mean 1, vari-
ance aﬁ random variable). Thus, by the Central Limit
Theorem,

P(z;<n+a\/ﬁ):P<’3_”<i) _><1>(i).

PN Oa

Using this in (8) and remembering that ¢ is the sum
of ni.i.d., mean 1, exponentials, we get

lim sup P(t3<n + ey/n) < @ (i> () < D(e).

n—o0 aa
This contradicts (7) and hence no such coupling exists.
O

3. Conclusions and final remarks

In this letter, we have identified and studied a sin-
gular feature exhibited by queues in criticality. A shift
is observed in the convergence mode of the departure
process from strong (pathwise coupling) to weak at
the point of critical loading. Although Theorem 2
has been shown to hold under renewal arrival
processes, we believe that it is true under general sta-
tionary and ergodic arrivals. However, some technical
difficulties need to be resolved before such a result
can be obtained.
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