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ABSTRACT

Randomized load balancing greatly improves the sharing of
resources in a number of applications while being simple
to implement. One model that has been extensively used
to study randomized load balancing schemes is the super-
market model. In this model, jobs arrive according to a
rate-nA Poisson process at a bank of n rate-1 exponential
server queues. A notable result, due to Vvedenskaya et.al.
(1996), showed that when each arriving job is assigned to
the shortest of d > 2 randomly chosen queues, the equilib-
rium queue sizes decay doubly exponentially in the limit as
n — oo. This is a substantial improvement over the case
d = 1, where queue sizes decay exponentially.

The method of analysis used in the above paper and in
the subsequent literature applies to jobs with exponential
service time distributions and does not easily generalize. It is
desirable to study load balancing models with more general,
especially heavy-tailed, service time distributions since such
service times occur widely in practice.

This paper describes a modularized program for treating
randomized load balancing problems with general service
time distributions and service disciplines. The program re-
lies on an ansatz which asserts that any finite set of queues in
a randomized load balancing scheme becomes independent
as n — oo. This allows one to derive queue size distribu-
tions and other performance measures of interest. We estab-
lish the ansatz when the service discipline is FIFO and the
service time distribution has a decreasing hazard rate (this
includes heavy-tailed service times). Assuming the ansatz,
we also obtain the following results: (i) as n — oo, the pro-
cess of job arrivals at any fixed queue tends to a Poisson
process whose rate depends on the size of the queue, (ii)
when the service discipline at each server is processor shar-
ing or LIFO with preemptive resume, the distribution of the
number of jobs is insensitive to the service distribution, and
(iii) the tail behavior of the queue-size distribution in terms
of the service distribution for the FIFO service discipline.
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1. INTRODUCTION

Load balancing is a canonical method for efficiently shar-
ing resources among different jobs. It is employed in a num-
ber of scenarios: for example, in hash tables, in distributed
memory machines (DMMs) emulating a single shared mem-
ory system, for path selection in networks, and for request
assignment at web servers. Randomized load balancing,
where a job is assigned to a server from a small subset of
randomly chosen servers, is very simple to implement and
delivers surprisingly good performance in terms of reducing
collisions, waiting times, backlogs, etc.

Two versions of the load balancing problem have been
studied in the literature: static and dynamic. The static
version was first analyzed by Azar et. al. [1] using the
balls-and-bins model. There are n bins into which n balls
are dropped sequentially. Each ball is placed in the least
loaded of d, d > 1, bins chosen uniformly at random with
replacement’, and ties are broken randomly. For d = 1, the
maximum load is (1 + o(1)) Inn/Inlnn whereas, for d > 2,
the maximum load is only Inlnn/Ind+O(1) [1]. Thus, there
is an exponential improvement in the performance with just
a small increase in implementation complexity. This model
was studied by Mitzenmacher using mean field theory [13].
Vocking [17] observed that breaking ties always to the “left”,
say when d = 2, is better than breaking ties at random.
This observation has led to the wide-spread use of the d-
left family of load balancing schemes in practical hash table
implementations. We refer the reader to the survey paper
[14] by Mitzenmacher et.al. for a detailed description of the
results.

!Throughout this paper, we assume sampling is done with
replacement, although the distinction between sampling
with and without replacement vanishes for large n.



We are interested here in the dynamic supermarket model
operating under the SQ(d) policy. Jobs arrive at a bank
of n servers according to a rate-n\ Poisson process, with
A < 1. The servers all employ the same service discipline
(e.g., FIFO, PS or SRPT). The service times are IID with
arbitrary distributions with mean 1. The policy assigns each
arrival to the shortest of d queues chosen independently and
uniformly at random. Here, by the shortest queue we mean
the queue with the least number of jobs. Ties are broken
randomly.

Vvedenskaya et.al. [18] analyzed the supermarket model
under the SQ(d) policy for service times with an exponential
distribution. They found that, for d > 2, as the number of
queues n goes to infinity, the probability that the number

k

of jobs in a typical queue is at least k is )\%. This is an
exponential improvement over the case d = 1, where the cor-
responding probability is A¥. The model was also studied by
Mitzenmacher [12], and its path-space evolution was studied
by Graham [4]. Luczak and McDiarmid [9] showed that the
length of the longest queue scales as Inlnn/Ind 4+ O(1).

Certain generalizations of the supermarket model have
also been explored. Martin and Suhov [10] studied the su-
permarket mall model where each node in a Jackson network
is replaced by IV parallel servers, and a job joins the short-
est of d randomly chosen queues at the node to which it is
directed. Luczak and McDiamid [8] studied the maximum
queue length of the original supermarket model (where ser-
vice times are exponential) when the service speed scales
linearly with the number of jobs in the queue.

Existing work on the analysis of the supermarket model
follows a common methodology, which we summarize as fol-
lows: (i) View the evolution of the system as a Markov
process. For instance, under the SQ(d) policy with Pois-
son arrivals and exponential services, the joint queue-size
process is Markov; on the other hand, with general service
distributions, the residual service times of jobs in the system
are needed to obtain a Markovian description. (ii) Demon-
strate that the Markov process is positive recurrent (i.e.,
the system is stable) and hence has an equilibrium distribu-
tion. (iii) Obtain a description of the limiting system using
differential (or partial differential) equations. (iv) Establish
the existence and uniqueness of solutions to the differential
equations. (v) Obtain the equilibrium distribution of the
queue-size process by solving for the fixed point of the dif-
ferential equations.

A limitation of the above approach for the SQ(d) policy is
this: Although the policy only looks at the number of jobs
in each queue, however, the Markov process description in
the case of general service distributions requires the resid-
ual service times as well. This considerably complicates the
model and the explicit computation of asymptotic queue oc-
cupancies. Our approach, outlined in Section 2, allows us
to re-interpret the system as a simpler Markov process by
using an asymptotic independence property.

Our contributions

1. The main contribution of the paper is a framework for
analyzing randomized load balancing systems with general
service times and service disciplines. A key component of
the framework is an ansatz that postulates the following
asymptotic independence property: the queue size processes
in a randomized load balancing system become asymptoti-

cally independent as the number of queues n goes to infinity.
This allows, through a fixed point computation, the explicit
determination of performance measures of interest.

2. A central piece of our framework is the “queue at the
cavity”. This object describes the behavior of a single queue
in the limit as the system size grows to infinity. The queue
at the cavity is interesting from a theoretical perspective
and as an efficient simulation tool. Using the queue at the
cavity, we theoretically evaluate the performance of different
load balancing policies and service disciplines; some specific
findings are listed in the next two items. As a simulation
tool, the queue at the cavity greatly reduces simulation time
from more than 3 hours for simulating a 500-queue load
balancing system to just 2 minutes.

3. In the case of the processor sharing (PS) or LIFO-
PR service disciplines and general service time distributions,
we use this framework to show that a certain asymptotic
insensitivity holds, namely, as n — oo, the pkrobability that
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a typical queue has at least k jobs equals A @=T1 .

4. For the FIFO service discipline and power-law service
times, we discover threshold phenomena for Py, the asymp-
totic probability that a typical queue has at least k jobs.
Specifically, as n — oo, the rate of decay of Px depends on
the number of samples d: P, decays either polynomially,
exponentially, or doubly exponentially depending on d and
the exponent of the power-law. We obtain the values of d at
which these transitions take place.

5. An outline of the proof of the ansatz for the case where
the queues are FIFO and the service times have a decreasing
hazard rate (DHR).? This generalizes the earlier work for
exponential service times. The family of random variables
with decreasing hazard rate includes power-law distributions
and, hence, is of great practical significance.

Organization of the paper. Section 2 describes our frame-
work for analyzing randomized load balancing systems and
the corresponding ansatz. Section 3 describes the queue at
the cavity and the cavity map. Section 4 explores the con-
sequences of the framework through a series of examples.
Section 5 studies various routing policies through simula-
tion and demonstrates the use of the queue at the cavity as
an efficient simulation tool. Section 6 establishes the frame-
work, i.e., outlines a proof of the ansatz, for load balancing
systems operating under the SQ(d) policy with DHR service
distributions and the FIFO service discipline.

Remark 1. In this paper, we restrict our attention to the
SQ(d) policies. Another family of policies consists of the
LL(d) policies, which always assign the arriving job to the
least loaded queue, i.e., the queue with the least unfinished
work. Analysis of the LL(d) policies is considerably easier
than the SQ(d) policies. In particular, the analog of the
ansatz will hold for all service distributions, irrespective of
the service discipline. This can be shown using the same
argument employed for the SQ(d) policies with the FIFO
service discipline and DHR service times, and gives strong
evidence in support of the ansatz.

2Recall that a random variable, S > 0, is said to have a
decreasing hazard rate if the function h(z) = limsy o P(S €
(x,z+6)|S > x)/d is decreasing in x.



2. A FRAMEWORK FOR ANALYSIS

We present a modularized program for analyzing load bal-
ancing systems after introducing some notation. Fix a ser-
vice discipline and distribution and suppose that the system
operates under the SQ(d) policy. Also, fix the value of d.
Let Q™(t) = (¢"™(t), ...,¢™"(t)) denote the joint queue-size
process at time t. For 1 < i < n, let r"™(t) be the vec-
tor of residual service times of the ¢“"(t) jobs at server 4
at time ¢ and let R™(t) = (r*™(t),...,r™™(t)). Under the
Poisson arrival and IID service assumptions, the process
(Q™(t), R™(t);t > 0) is Markov. Let (II"(¢),I'™(¢)) be the
distribution of (Q"(t), R™(t)).

DEFINITION 1. The service discipline at server i is said
to be local if it only depends on (¢"™(-),r*"(+)). Specifically,
the service discipline at server i cannot depend on the queue
sizes or residual service times of jobs at other servers. A load
balancing system is local if the service discipline at each of
its servers is local.

Examples of local service disciplines include FIFO, PS, LIFO-
PR, SRPT (shortest remaining processing time), LAS (least
attained service) and SJF (shortest job first).

A modularized program

We now describe a program which will allow us to compute
performance measures under the SQ(d) policy. The program
consists of the following steps.

a. Uniform stability. Under the condition A < 1, prove
that (Q"(t), R™(t);t > 0) is positive recurrent, and, hence,
has a unique equilibrium distribution (II",T'"). Show these
equilibrium distributions are uniformly stable. That is, let

at"™ (1)

wl’"(t): Z r;’n(t)

j=1
be the workload in queue 1 at time ¢. Define the norm:
(1) = ¢ (1) + ' (1),
Then uniform stability means

sup P(Hn’l"n) (|x1’"(t)‘ > M) —0as M — oo. (21)
n>1

Note that if the queue at each server has capacity B < oo,
then uniform stability is automatic.

Under the SQ(1) policy, the system decomposes into n
stable, independent M/GI/1 queues. It is therefore tempting
to infer that the system must be stable under the SQ(d)
policies, for d > 2. However, establishing the stability of the
SQ(d) policies is more difficult. It has recently been shown
by Bramson [3] that uniform stability holds under the SQ(d)
policies for all service disciplines.

In the following steps the service disciplines are assumed
to be local.

b. Asymptotic independence. Demonstrate (II") —
(II) as n — oo, where II is a stationary and ergodic measure
on Z$°. Show that the limit II is unique, depending only on
the service distribution, service discipline and load balancing
rule. Let II® be the restriction of II to its first k coordi-
nates, with = = 11" being the one-dimensional marginal of

I1. Show that, for every k,

k
n* = :
(§1) ™

That is, in the large n limit, any finite number of queues
become independent.

Note that, for any initial state,

m; < lim lim P(q"" (1) = j)
n

is the asymptotic equilibrium probability that queue 1 (and

by symmetry, any queue) has j jobs. Here, 7; is also the

asymptotic fraction of queues having j jobs.

c. Isolation of one queue, the queue at the cav-
ity.®> The above independence of the equilibrium distribu-
tion yields: In the large n limit, queue 1 (or any given queue)
has state-dependent Poisson arrivals. More formally, let A7
be the process of potential arrivals to queue 1 in the n-
system. These are arrivals that have queue 1 as one of their
d choices. Note that, for each n, A} is a Poisson process.
Now, let A7 be the process of actual arrivals to queue 1,
i.e., those arrivals that join queue 1. Show that Ay — A,
in distribution as n — oo, where A, is a state-dependent
Poisson arrival process whose rate depends on the number
of jobs in queue 1 prior to a potential arrival. Denote by
Ak the arrival rate of A, when queue 1 has k jobs, and set
A ={)\, k>0}.

For a given service distribution and service discipline at

queue 1, the previous statement allows one to obtain perfor-
mance measures of interest, as described next.

d. Calculations. Given A, analyze queue 1 in the large n
limit using queueing techniques to express 7 as a function
of A,

7= F(A). (2.2)

The given load balancing policy routes jobs to queue 1 de-
pending on the load of the rest of the infinite system, i.e.,
queues 2, 3,.... Since m; is the fraction of queues with j
jobs in the rest of the system, one can also express A as a
function of =,

A = G(n). (2.3)

Solve these two “fixed point” equations for = and A to obtain
explicit distributions for the queue size.

The program we have outlined has a structural component
(parts a—c) and a computational component (part d). The
key steps that allow the explicit computation of the distri-
bution of queue lengths are parts b and ¢. We formulate
part b as an ansatz, which will be employed in Section 4.

An Ansatz

Consider a load balancing system operating under the SQ(d)
policy, with A < 1, and a given local service discipline. The
jobs are assumed to have an arbitrary service time distribu-
tion with mean 1. Then part b of the modularized program
is valid for this load-balancing system. That is, in the large

3This step and the next are reminiscent of the Cavity
Method in Spin Glass Theory, a connection we elaborate
in Section 3.



n limit, there is a unique equilibrium distribution. More-
over, under this distribution, any finite number of queues
are independent.

3. THE QUEUE AT THE CAVITY

The Cavity Method of Spin Glass Theory (see [11] and
[16]) is used for analyzing the behavior of n-particle systems
in the limit as n — oco. At a high-level, the Cavity Method
compares an n- and an (n + 1)-particle system; the removal
of a particle from the (n+1)-particle system results in the n-
particle system, creating a “cavity.” Equations are obtained
for quantifying the effect of the particle at the cavity on the
remaining n particles, the environment, and vice versa. By
solving these equations one gets the behavior of the entire
system in the large n limit.*

— potential arrivals to queue 1
AN consult d=2 queues
N
/ N
/ AN
/ AN
AN
queue 1 queue 2 ... n

Figure 1: A bank of n servers with the SQ(2) routing
policy. Potential arrivals to queue 1 are jobs that
have queue 1 among the d choices.

Consider the n-queue system in Figure 1 and the dynamics
at queue 1. As n — oo, this will be the queue at the cavity.
For ease of exposition, we shall consider the SQ(2) policy
and indicate the corresponding for the SQ(d) policy, d > 2.
Recall that the potential arrival process at queue 1 consists
of jobs that have queue 1 as one of their two choices. For
any n, this process is Poisson with rate (recall sampling is
with replacement)

2n —1

5 nA — 2\ as n — oo.
n

For SQ(d), the potential arrival process is Poisson with asymp-

totic rate dA.

At any time ¢, let the empirical distribution of queues
2,...,n be denoted by p"(t) = {ur(t),k = 0,1,...}, where
1y (t) is the fraction of queues 2,...,n having k jobs at time
t. Thus, p"(¢) is a random probability measure that reflects
the distribution of the environment at time ¢. Let u™ denote
this measure when the n-queue system is in equilibrium.
Note the following: for each finite n, (i) u™ is a random
probability measure and (ii) at any time, the size of queue
1 is dependent on p™ at that time. However, by the ansatz,

4While the Cavity Method has proved to be a powerful tool
in the analysis of a variety of complex systems (spin glasses,
matching problems, coding systems, satisfiability problems,
etc.), our use in the networking context does not need the
full power of the method. However, the nature of problems
in large complex networks suggests that there are likely to
be several challenging applications for the Cavity Method in
networking.

as n — oo, u" converges to a fixed (deterministic) limiting
measure i that is independent of the size of queue 1. We will
refer to u", respectively u, as the background distribution.

Suppose an n-queue system is in equilibrium and that
queue 1 has k jobs at some time t. Suppose also that there
is a potential arrival to queue 1 at this time. This arrival
samples a value, say j, from the background distribution p™.
In the original SQ(2) system, this is equivalent to a potential
arrival at queue 1 sampling a queue that has j jobs. Now,
the potential arrival becomes an actual arrival (that is, joins
queue 1) if k& < j or, if k = j, it becomes an actual arrival
with probability 0.5. Since p™ is not independent of the
size of queue 1 for any finite n, the actual arrival process
at queue 1 is not a Poisson process. However, as n — oo,
the background distribution becomes independent of queue
1 and the actual arrival process is a Poisson process with a
rate that depends only on the number of jobs in queue 1.

As n — oo, we refer to queue 1 as the queue at the cav-
ity. See Figure 2. The queue at the cavity has the same
service discipline and service time distribution as prescribed
in the n-queue system. Potential arrivals occur at the queue
as a rate-2)\ Poisson process, with actual arrivals occurring
according to a state-dependent Poisson process of rate Ax
when the size of the queue is k. For My =3, ;, one can
check that

d_ d
A=A (%) . (3.1)

]
state-dependent arrival
with rate Ay

queue 1 background distribution p

Figure 2: Asymptotic independence allows us to iso-
late queue 1 and treat the rest of the system as a
background distribution . The actual arrival pro-
cess to queue 1 is a state-dependent Poisson process
with rate )\, where k is the number of jobs in the
queue.

Now suppose that for a given background distribution v
that does not change over time, the queue at the cavity
evolves according to the dynamics specified by v. Assuming
stability, let v’ denote the equilibrium distribution of the
queue size. The map v’ = T (v), of the set of probability
measures on {0,1,...} into itself, is called the cavity map.

When 7 = T (), 7 is a fixed point of the cavity map. Such
a m, if it exists and is unique, is the distribution of the size
of queue 1 in the large n limit. It is also the asymptotic frac-
tion of queues with a given number of jobs. For performing
computations, we need to first obtain the maps in equations



(2.2) and (2.3), since the map 7 is the composition of the
maps F and G, that is, 7 (7)) = F(G(r)).

We outline the existence and uniqueness of the fixed points
of T for FIFO queues with DHR service time distributions in
Section 6. In the next section, we solve the cavity equations
for some important scenarios.

4. COMPUTATION OF EQUILIBRIUM DIS-
TRIBUTIONS

We now apply the ansatz and the Cavity Method to com-
pute the equilibrium distributions for three scenarios.

1. Exponential service times

In [18], the stability of the SQ(d) policy with exponential
service times was obtained through a coupling of the SQ(d)
policy, d > 2, and the SQ(1) policy, with the asymptotic in-
dependence of the queue sizes being established in [4]. Here
we rederive this result via the fixed point computation in
part d of Section 2.

Consider queue 1 in the large n limit. Let P, = 37,5, m;
be the tail of the equilibrium queue-size distribution at queue
1 in the limit and note that it is also equal to the asymptotic
fraction of queues with at least k jobs.

Since queue 1, with a state-dependent Poisson arrival pro-
cess, is a simple birth-death chain, the flow balance equa-
tions give

Thk4+1 = AT & Pk+1 — Pk+2 = Ak(Pk — Pk+1). (4.1)
At the fixed point, the background distribution is 7; hence
(Po) — (Pk+1)d)
A=A —=———T— ). 4.2
. < Py — Py (4.2)
Solving equations (4.1) and (4.2) yields

k

d
Pk:)\d'—l,

which is the result in [18].

2. General service times: Insensitivity

The insensitivity of a policy refers to its indifference to
the distribution of job service times, i.e., performance mea-
sures such as the queue size distribution depend on the ser-
vice time distribution only through its mean. For example,
an M/GI/1 queue operating under the PS or the LIFO-PR
service discipline is well-known to be insensitive [6]. The
insensitivity property is appealing since it allows the devel-
opment of engineering rules without knowing precise traffic
statistics.

Bonald and Proutiere studied the insensitivity property of
adaptive routing policies for load balancing flows on n par-
allel links ([2], 8.2). Flows of mean size 1/ arrive according
to a rate-\ Poisson process. An arriving flow is routed to
one of the links according to a routing polity. Each link has
unit capacity, which it shares equally among all the flows
passing through it. Link ¢ can serve a maximum of N; flows
simultaneously. This system is equivalent to the supermar-
ket model having queues with finite buffers and with the PS
service discipline. Figure 3 shows link 1 with two flows and
link n with 1 flow.

It was found in [2] that there exists a unique insensitive
routing policy characterized as follows: Let ¢ = (21, -+ , Zn),

n parallel links

adaptive
routing

Figure 3: Adaptive routing on n parallel links with
finite capacity.

where x; is the number of flows on link ¢, and let v;(x) de-
note the actual arrival rate at link ¢ when the network is
in state . The routing algorithm will be insensitive if and
only if

vi(z) = —Ni — T
' T (NG =)

(4.3)

Therefore, the greedy routing policy, which directs an ar-
riving flow to the link with the most “room,” i.e., the link
J = argmax{N; — z,}, is not insensitive.

Note that under the greedy routing policy and the as-
sumption N; = N for all ¢, the model for the routing problem
is equivalent to the supermarket model operating under the
Join the Shortest Queue load balancing policy and where
the servers use the PS service discipline. This is because
the queue with the most room will be the one with smallest
number of jobs. By condition (4.3), the SQ(d) policy for
this system is also not insensitive for any finite n.

However, the situation changes completely when n — oo.
Suppose that flows arrive according to a rate-n\ Poisson
process at the system of n parallel links, each link with a
capacity N. Suppose that flows are assigned to the links
according to the SQ(d) policy. Assuming the ansatz, the
backlogs at each of the links become independent and the
actual arrival process at link 1 becomes a state-dependent
Poisson process. Therefore, by the argument in [6] (pg. 72—
80), the flow backlog process at link 1 is reversible and the
distribution of the number of flows passing through it is
insensitive to the service distribution. Specifically,

dk—
A\ d—1
Po=———— fork<Nand P. =0 for £k > N.

di—1"’
Zﬁio A d—1
Thus, even though important properties such as reversibility
and insensitivity do not hold for any finite n, they emerge
in the limit as n — oo.

It should be noted that insensitivity holds also in a num-
ber of other cases, for example, with the LIFO-PR and other
symmetric service disciplines. It also holds for the follow-
ing randomized version of the policy due to Bonald and
Proutiere [2]:

BP(d). Consider the supermarket model where each queue
has a buffer of capacity IN. The service time distribution is
arbitrary and the service discipline is PS. The BP(d) load
balancing policy works as follows: For each arrival, d queues
are sampled. Let x = (z1,--- ,z4) be the number of jobs in
each of these queues. The flow is assigned to the i** sampled



queue with probability

pi = N — X;

LT —a)
i.e., the job is assigned to a queue with a probability pro-
portional to the “room” available in the queue.
The performance of the BP(d) policy is hard to obtain via
the standard approach. Indeed, the differential equations
describing the proportion of queues with a given load are
difficult to solve explicitly, especially for arbitrary service
distributions. However, with our approach, the model is
easy to analyze using the queue at the cavity and the insen-
sitivity of the PS service discipline. The performance of the
BP(2) algorithm is studied in Section 5.2.

3. General service times with the SQ(d) policy and
the FIFO service discipline: Threshold phenomena
and generalized Fibonacci sequences

In the previous examples we have seen that with expo-
nential service times or with symmetric service disciplines,
the queue size distribution decays super-exponentially for
all d > 2; there is no real improvement to be obtained from
sampling more than two queues: the “power of two choices”
holds. The example here will show that the number of sam-
ples matters crucially when the service times are power-law
and the service discipline is FIFO. In particular, we will
obtain super-exponentially decaying queue sizes when d ex-
ceeds a threshold value. Theorem 1 specifies this value of d
in terms of the tail of the service distribution.

Once again, we assume that the ansatz holds. Therefore,
assuming the background distribution is 7, the arrival pro-
cess at queue 1 is a state-dependent Poisson process with
rates given by equation (4.2). To obtain the reverse rela-
tionship between 7(-) and A(-), we need to solve the queue-
ing equations corresponding to queue 1. That is, we need to
determine the queue-size distribution of a FIFO queue with
state-dependent Poisson arrival process with arrival rates
{Ax} and power-law, IID service times. The result of this
computation is stated below as Theorem 1.

DEFINITION 2. Let |3] be the largest integer not exceed-

ing B and let B = B — 18]

sequence is given by

Fgr=1for0<k<|B]—1, and

The B-generalized Fibonacci

k-1

> Fsi+BFsuip fork>|B].

i=k—[B]+1
For a fixed integer d > 2, let

SR (Y (g VY01
k—oo k

Fax =

be the growth rate of the sequence.

One can check that 0 < a < co. Note that for § = 3 and
d = 2, we get the familiar Fibonacci sequence 1, 1, 2, 3, 5,...,
1+V5 )

with growth rate a = log, ( 5

In the next two theorems, we consider the SQ(d) load
balancing policy for a fixed d > 2 and the FIFO service dis-
cipline. Theorem 1 considers power-law service times with
asymptotic “shape parameter” 8 and gives a relationship be-
tween d and (3, depending upon which, the equilibrium queue

sizes decay doubly exponentially, exponentially, or just poly-
nomially. Theorem 2 states that when service times have
exponential moments, the queue sizes decay doubly expo-
nentially.

THEOREM 1. Let 8* = ﬁ and suppose the service time
S satisfies P(S > x) = ©(z~").
(1) For 8 > %, logdlogpik = (a4 o(1))k. That is, if the
tail of the service times decays faster than 8%, then the queue
size decays doubly exponentially.

(2) For g = ", log Pik = O(k). That is, at the critical value
B*, the number of samples just suffices to ensure that the
queue size decays exponentially.

_ B—1
(3) For1 < B < B, Py =k =@ 0@ N That is, the
number of samples only suffices for the queue size to decay
polynomially.

THEOREM 2. Suppose E(ees) < oo for some 6 > 0. Then,
for all d > 2, log, log Pik = (14 o(1))k.

Remark 2. Under the SQ(1) policy, queue 1 becomes an
M/GI/1 queue and it is well-known that when P(S > z) =
O(z"), the queue-size has only a (8 — 1) moment (see [7],
pg. 191-196). Thus, in case (3) of Theorem 1, the queue-size
does not even have a finite first moment.

However, as Theorem 1 shows, the SQ(d) policy for d > 2
not only gives finite moments for all 8 > 1, but it can give
exponential or even double exponential moments when d is
chosen correctly. Theorem 2 shows that double exponential
moments are the best one can get.

Proof outline of Theorem 1. We compute accurate upper and
lower bounds on the equilibrium distribution of an isolated
queue. Since there are three regions for g, this gives six
cases in all to consider.

We start by rephrasing the problem in terms of the tail
of the return time for the corresponding Markov process,
whose transition probabilities are given by the (unknown)
background distribution. Associated with this Markov pro-
cess is the discrete time Markov chain given by the num-
ber of jobs after each succeeding departure from the queue;
bounds for the tail of the return time for the chain can be
reinterpreted in terms of the tail for the Markov process.

The arguments associated with the three regions of 8 are
different. The arguments for the upper and lower bounds
when 8 > (% are the most natural, and because of the
very rapid decrease of the tail here, estimates can be crude.
Elementary combinatoric arguments together with Borel-
Cantelli estimates over events associated with the size of
upward jumps for the Markov chain give both directions.

The arguments associated with the other two regions are
more delicate. When 8 < 8%, one first obtains a weak bound
on the power of the tail distribution, which one improves
by successive iteration. When S = (%, one employs the
upper bounds obtained from the previous case, together with
direct computation, again employing various Borel-Cantelli
estimates.

3.1 A robust sampling algorithm

Theorem 1 shows that two samples may not suffice, in
general, for obtaining a doubly exponential tail for the queue
size. For this reason and the fact that service distributions



(or file sizes) may not be knowable or may change over time,
we formulate an algorithm, called d-adaptive, which chooses
the right number of samples in an adaptive fashion.

The d-adaptive algorithm: Let f(k) be a positive integer-
valued, non-decreasing function of k. For every arrival, do
the following:

1. Choose a queue at random.

2. Suppose this queue has k jobs. Sample f(k) additional
queues so that the total number of samples equals f(k) + 1.
3. Send the arrival to the shortest of these f(k) + 1 queues,
breaking ties at random.

Some choices for f(-) are f(k) = k and f(k) = k*. The
correct choice involves a trade-off between the desired de-
gree of load balancing and the complexity of sampling sev-
eral queues. When f(k) = k, the arrival rate at queue 1
asymptotically equals

o (2
Py — P

In Section 5, we will simulate the d-adaptive algorithm
using f(k) = k.

5. SIMULATION

There are two parts to this section. In 5.1, we simulate
a large system of n queues with various service disciplines
and distributions, under the SQ(d) and the d-adaptive poli-
cies. We demonstrate the insensitivity property of the PS
and LIFO-PR disciplines under the SQ(d) policy in 5.1.1.
In 5.1.2, we study the tail behavior of queue sizes under
the FIFO service discipline for different service distributions.
We pay particular attention to the threshold phenomenon.
In 5.1.3, we compare the performance of the d-adaptive al-
gorithm to the SQ(d) algorithm when the queue is FIFO
and the service distribution is heavy-tailed.

In 5.2, we simulate the queue at the cavity with a fixed
background distribution and iterate the cavity map v/ =
I'(v) to obtain its fixed point, 7. (Recall that 7 gives us the
tail behavior of the queue sizes in the limit as n — 00.) Sim-
ulating the cavity map is a much faster method for studying
the performance of the load balancing system for large n
than actually simulating a large n system. Thus, it is an ef-
ficient simulation tool for studying various policies for large
randomized load balancing systems. We demonstrate the
convergence of the cavity map corresponding to the SQ(d)
policy when the FIFO service discipline is used in 5.2.1. We
investigate the insensitivity property of the BP(2) random-
ized routing policy, defined in Section 4, in 5.2.2.

Simulation parameters

Throughout this section, we use the following four service
distributions. To be able to compare the results, we nor-
malize by setting the traffic intensity p = AE(S) = 0.6 in all
cases.

1. Constant services. S = 1 with probability 1, A = 0.6.

2. Exponential services. P(S > z) =e~%, A =0.6.

3. Power-law, 3=3. P(S>x) =272 2> 1, A =04.

3. Power-law, B =15. P(S>z) =2 "%, 2> 1, A =0.2.

5.1 Large System of Queues

In this section, we obtain the following empirical measure
of the queue size distribution in a large randomized load

balancing system:

P (t) = }:m&%ﬂzk%

SR

where t is measured in the number of arrivals. By the
PASTA property [7], this is equal to the empirical queue
size distribution at an arbitrary time instant. We start with
q"™(0) = 0 for 1 < i < n and a large value of ¢ so that the
system is close to equilibrium. We find that 7' = 10 million
suffices. We record

el

T
A0
t=1

5.1.1 Asymptotic Insensitivity of PS and LIFO-PR

We consider the SQ(2) load balancing system for n = 500
and p = 0.6. Table 1 shows the empirical distribution of
the tail of the queue sizes with the PS and LIFO-PR service
disciplines. The first column shows the putative limiting
distribution P, = p2k71. The 2nd and 3rd columns give
the empirical distribution of the tail of the queue sizes when
the service times are constant, equal to 1. The 4th and
5th columns give the corresponding values when the service
times are power-law with shape parameter g = 1.5.

As can be seen from the table, the queue-size distribution
under the PS and LIFO-PR service distributions is very close
to the corresponding values for the exponential service time
distribution, supporting the claimed insensitivity.

ok _1 constant power law (8 = 1.5)
PS | LIFO-PR| PS | LIFO-PR
Py 1 1 1 1 1
P 0.6 0.601 0.601 0.599 0.599
P> || 0.216 0.217 0.217 0.215 0.214
Ps || 0.0280 | 0.00282 | 0.0282 | 0.0276 0.0276
P, || 0.0005 | 0.0005 0.0005 | 0.0005 0.0005
P 1077 | 1077 1077 1077 1077

Table 1: Asymptotic insensitivity of PS and LIFO-PR
service disciplines. Service time distributions are con-
stant or power law with g = 1.5.

Next, we study the behavior of the system as n varies.
Figure 4 plots the difference between the empirical distribu-
tion for a given value of n and the limiting distribution for
the PS service discipline, that is, it plots

5
k_
o= 1P =p"

k=1

against n, with p = 0.6. We use four service time distribu-
tions for this experiment: constant, exponential, power-law
with 8 = 3 and 8 = 1.5. The figure shows that the empiri-
cal queue size distribution converges quickly to the limiting
distribution as n increases. Note that the plot is in log-log
scale. The plot for the LIFO-PR service discipline is similar.

5.1.2 FIFO under SQ(2)

We simulate four service time distributions with FIFO
under SQ(2): constant, exponential, power law with 8 = 3
and 8 = 1.5. The constant distribution is an example of
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Figure 4: Convergence of equilibrium distributions
for the PS discipline. The y-axis is the distance be-
tween the empirical distribution and the computed
limiting distribution, which is the same for all four
service distributions.

distributions with an increasing hazard rate, and the power
law distributions are examples of distributions with an de-
creasing hazard rate. The exponential distribution has a
constant hazard rate. We tabulate the results for n = 500
and p = 0.6.

constant exponential | power law | power law
(B=3) (B=1.5)
P, 1 1 1 1
P, 0.601 0.601 0.601 0.600
P, 0.121 0.217 0.144 0.270
P 0.0032 0.028 0.0084 0.130
P, || 1.5x107° 0.0005 7.5 x107° 0.0762
P; 0 1077 0 0.0517
Ps 0 0 0 0.0383
j== 0 0 0 0.0299
Ps 0 0 0 0.0244
Py 0 0 0 0.0204

Table 2: Empirical distribution for n = 500 and FIFO
service discipline under SQ(2), with four different service
time distributions.

The queue size distribution for the constant service times
has the fastest decreasing tail among the four. The queue
size for exponential service times has a distribution close
to P, = ka_l. From Theorem 1, the threshold for the
two power law distributions are: d = 3 for 8§ = 1.5, and
d = 1.5 for 8 = 3. Thus, under the SQ(2) policy, the
power law distribution with 8 = 3 is expected to have a
doubly-exponential tail and that with g = 1.5 is expected
to have a polynomial tail. The numbers in Table 2 support
the threshold phenomenon: the queue size distribution for
B = 1.5 decays much more slowly than for g = 3.

5.1.3 FIFO and the d-adaptive Algorithm

We simulate the d-adaptive algorithm using f(k) = k
when the service times have a power law with g = 1.5
and compare the result to that of SQ(d), d = 2,3,4. From
Theorem 1, the tail of the queue size decays polynomially,
exponentially or doubly exponentially as d = 2, 3 or 4, re-

spectively. The experiment uses n = 500 and p = 0.6. Table
3 gives a comparison of the performance.

SQ(2) | SQ(3) | SQ(4) | d-adaptive
P, 1 1 1 1
P, || 0.601 | 0.602 | 0.602 0.601
P, || 0.270 | 0.202 | 0.155 0.238
P; || 0.130 | 0.057 | 0.019 0.061
P, || 0.0762 | 0.017 | 0.001 0.0044
Ps || 0.0517 | 0.006 0 0
Ps || 0.0383 | 0.002 0 0
P; || 0.0299 | 0.0007 0 0
Ps || 0.0244 | 0.0002 0 0
P, [[ 0.0204 | 107° 0 0

Table 3: Comparison of the d-adaptive and SQ(d) algo-
rithm, for d = 2,3,4, under FIFO. The service times are
power law with g = 1.5.

First of all, this experiment shows the threshold phe-
nomenon in sharp relief: the tail of the queue sizes decays
very slowly when d = 2 when compared with d = 3. In
turn, the decay is much slower for d = 3 when compared
with d = 4.

Secondly, the tail of the queue sizes under the d-adaptive
algorithm decays much faster than under the SQ(2) and
SQ(3) policies, and is very comparable to the decay under
the SQ(4) policy. On the other hand, the d-adaptive policy
obtains much fewer samples than the SQ(4) policy; indeed,
it obtains a total of 3 samples or fewer for 94% of the arrivals.

5.2 Simulating the Queue at the Cavity

In this section, we study the queue at the cavity. There
are two ways to proceed:

(i) Obtain the cavity map 7 (-) for the given load balancing
policy, service discipline and service distribution. Take an
initial background distribution vy and obtain the iterates
v = T (10).% Hence obtain the fixed point m = T ().

(ii) Simulate the queue at the cavity. That is, take an empty
single server queue with a rate-2)\ Poisson process according
to which potential arrivals occur and a given background
distribution vy. Use the load balancing policy, the service
discipline and service distribution to simulate the queue as
described in Section 3 until it is close to equilibrium (as-
suming equilibrium exists). Obtain the distribution of the
resulting queue size and denote it 1. Repeat this procedure
to obtain vk and .

We use both methods, taking 1o = (1,0,0,...). Method
(ii) will be easier when the queueing equations are hard to
write down explicitly, making it difficult to obtain the map

T.
5.2.1 FIFO under SQ(2)

We use method (ii) to iterate the cavity map correspond-
ing to a queue which uses FIFO service discipline and the
SQ(2) policy. Table 4 shows the evolution of

Pr i = g VK ks

jzk

5The iterates can be obtained numerically if it is difficult to
obtain them analytically.



that is, the tail of the queue size distribution vx. For sim-
plicity, we shorten Pk j to Px and tabulate the results for
some selected iterations K, as indicated in the table. The
service distribution is exponential with mean 1. Table 5
shows the corresponding results when the service distribu-
tion is power law with 8 = 3.

As mentioned earlier, the queue at the cavity is a much
more efficient way of simulating large load balancing sys-
tems. For example, both the above-mentioned experiments
finish within 2 minutes, which is approximately 100 times
faster than the time it takes to simulate a load balancing
system with 500 queues to a comparable precision.

” Tter 1 | Iter 2 | Iter 5 | Iter 10 ” p2k71

P, 1 1 1 1 1
P, || 0.374 | 0.502 | 0.588 | 0.600 0.6
P, 0 0.092 | 0.199 | 0.215 || 0.216
P 0 0 0.021 | 0.0277 || 0.0280
P, 0 0 0.0002 | 0.0005 || 0.0005
Ps 0 0 0 1077 1077
Ps 0 0 0 0 0

Table 4: Iteration of the cavity map for FIFO under
SQ(2). The service time distribution is exponential. The
queue size distribution after 1, 2, 5 and 10 iterations are
shown. The total variation distance between the back-
ground and the queue size distributions at 10*" iteration
is 0.0005.

Tter 1 | Iter 2 | Iter 5 Iter 10 Table 2
Py 1 1 1 1 1
P || 0.375 | 0.507 0.591 0.600 0.601
P 0 0.064 0.139 0.143 0.144
Ps 0 0 0.0074 0.0082 0.0084
Py 0 0 0.00005 [ 6 x 107° || 7.5 x 10
Ps 0 0 0 0 0

Table 5: Iteration of the cavity map for FIFO under
SQ(2). The service time distribution is power law with
B = 3. The queue size distribution after 1, 2, 5 and
10 iterations are shown. The total variation distance
between the background and the queue size distributions
at 10t" iteration is 0.00054.

Table 4 traces the evolution of the iterates of vk for K =
1,2,5 and 10 when the service times have an exponential
distribution and compares this with the theoretical limiting
distribution P, = ka_l, which is tabulated in the last col-
umn. As can be seen, the convergence is pretty rapid: 1o
is very close to the right answer.

Table 5 compares the iterates of vx when the services have
a power law distribution with 8 = 3. This is compared with
the distribution of the tail of the queue size obtained from
simulating a system of 500 queues, which was presented in
Table 2. We again observe a close match.

5.2.2 BP(2): A randomized routing policy

We consider the BP(2) randomized routing policy described
in Example 2 of Section 4. Recall that the supermarket
model under consideration has a finite buffer size N. The

service time distribution is arbitrary and the service disci-
pline is PS. For each arrival, 2 queues are sampled. Let
(z1,22) be the number of jobs in each queue. The flow is
assigned to the i** sampled queue, i = 1,2, with probability
N — Z;
pi = P} .
Zj:l(N — ;)

Note that, by the result in [2], the randomized version
of the routing algorithm is not insensitive for any finite n.
Nevertheless, due to our ansatz, it is insensitive in the limit
as n — oo. We verify this via simulations.

First, we need to obtain the limiting distribution of the
queue sizes. Since we have assumed the ansatz and since the
PS service discipline is insensitive, we can obtain the limiting
distribution of the queue sizes by analyzing the cavity map
for the exponential service distribution.

|| Iter 1 | Iter 2 | Iter 3 | Iter 5 || Exponential

P 1 1 1 1 1

P || 0.561 | 0.594 | 0.599 | 0.600 0.600
Py || 0.297 | 0.335 | 0.341 | 0.342 0.342
Ps; || 0.147 | 0.178 | 0.182 | 0.183 0.183
Py || 0.067 | 0.087 | 0.0905 | 0.091 0.091
Ps || 0.028 | 0.039 | 0.041 | 0.041 0.041
Ps || 0.010 | 0.016 | 0.017 | 0.017 0.017
Pr || 0.0033 | 0.0054 | 0.058 | 0.0058 0.0058
Py || 0.0008 | 0.0015 | 0.0016 | 0.0016 0.0017
Py || 0.0001 | 0.0003 | 0.0003 | 0.0003 0.0003

Table 6: Iteration of the cavity map for PS under the
BP(2) routing policy. The service time distribution is
power law with 8 = 3. The queue size distribution af-
ter 1, 2, 3 and 5 iterations is compared with the fixed
point for the exponential service time distribution (last
column). The closeness of the last two columns supports
the insensitivity of the BP(2) routing policy.

Accordingly, let vy be a probability measure on {0, 1, ..., N}
and let it be the background distribution to the queue at the
cavity. Let vy ; be the probability of obtaining j when sam-
pling from v. According to the routing policy BP(2), the
arrival rate at the queue at the cavity when it has k jobs is
given by

N
A = N —k

= ~ 5 VYo,
= N—-k+N-—j

(5.1)

When the services are exponential, the queue size process of
the queue at the cavity is a birth-death chain. Its distribu-
tion v is given by

)\kl/l,k = V1,k+1;, fOI“ k’ = 07 e ,N — 1. (52)

One can solve equations (5.1) and (5.2) numerically to ob-
tain v1. Repeating the procedure, one obtains v for K > 2
and the fixed point 7. The last column in Table 6 contains
the values of the fixed point 7 for exponential services.

By simulating the queue at the cavity, one can also obtain
the iterates vx when the service time distribution h is power
law with 8 = 3. The iterates are shown in Table 6. As
can be seen by comparing the last two columns, the queue
size distributions are virtually identical for the exponential



service distribution and the power law distribution, strongly
supporting the claimed insensitivity of the BP(2) policy in
the limit as n — oo.

6. PROOF OF THE ANSATZ FOR FIFO AND
DHR SERVICES

We outline the proof of the ansatz when the service dis-
cipline is FIFO and the services have a decreasing hazard
rate (DHR). These assumptions will be in force throughout
this section, unless stated otherwise. The proof has several
steps, which, due to a shortage of space, we only sketch here.
We highlight the crucial role played by the FIFO and DHR

assumptions.

Consider an n-queue load balancing system and let Q™ (t) =
(g"™(t),...,g™™(t)) be the queue size process and E™(t) =
(eb™(t),...,e™™(t)) be the elapsed service time of the first
job in each of the n queues at time ¢. The state of the
Markov process corresponding to the load balancing system
is given by (Q"(t), E™(t)). Note that this is different from
the state representation (Q"(t), R™(t)) used in Section 2. It
is crucial for facilitating some coupling arguments that we
consider the elapsed time of a job rather than its residual
time.

For each n, the Markov process (Q"(t), E™(t)) is positive
recurrent; let (II",£™) be its equilibrium distribution and
1™ ®) be the restriction of II" to its first k co-ordinates. In
order to discuss the convergence of distributions in the rest
of the section, we need to introduce the following metric.

Fix an n and let 2" = (¢",e") denote a point in Z} X
R;,. Such an z™ denotes the state of the Markov process
(Q™(t), E™(t)). Let h(s) denote the hazard rate of the ser-
vice time distribution, that is,

.. P(S€(s,54+0))
As) =lm ———5——

Denote by
(i) s the smallest value of s at which infs h(s) is attained.
This may be oo as happens, for example, if P(S > z) = z=°
or P(S>ux)=¢€".
(ii) r(s) the mean residual time of a job which has already
received s units of service.

For defining the metric below, we require that " < sqo.
Define the norm on Z x Ry as follows:

l, (6.1)

" .
2™ = ||l=""
i=1
where

" = mlg"™ = 1)+ + ().

Here m is the mean service time, which we take to be 1.
The term m(g"™ — 1); measures the mean service time still
required for all completely unserved jobs in queue i and 7™
measures the mean residual time of the job at the head of
queue %.

Similarly, for two points 1 and z2 on Z} X Ry, we set

d"(z1,22) = > d""(21,72), (6.2)
i=1

where

" (or,w2) = m(@" = D — (6" = D4

+ () = ()]

The convergence of measures in the theorems below is with
respect to the above metric.

THEOREM 3. Consider a load balancing system operating
under the SQ(d) policy with FIFO service discipline and
DHR service times.

(a) Then (I £F)) = Tim,, oo (1T €)Y epists.
(b) Let 7 = I, Then I® = @F_, 7, that is, I®) s [ID
with marginal distribution 7.

The proof of Theorem 3 will follow from Theorem 4.

THEOREM 4. Assume the system is empty at time 0, i.e.,
(Q™(0),E™(0)) = (0,0). At any timet > 0, let (II"(¢),E™(t))
be the distribution of (Q™(t), E™(t)). Then

@™, &My = lim @ (1),e~M@).  (6.3)

t,n—o00

Moreover, I*) = ®f:1 m, for m as in Theorem 3.

Proof outline of Theorem 4.

Consider the process (Q"(t), E™(t)). It is a function of the
initial condition (Q"(0), E™(0)), the arrival process to the
load balancing system in [0, ¢) and the services rendered to
the jobs in the system during this time. Now, by the hy-
pothesis of Theorem 4, (Q™(0), E™(0)) is IID, being the all
zeros vector. Moreover, the service times of all jobs are IID.
Therefore, in order to prove that the first £ co-ordinates of
(Q™(t), E™(t)) become independent as n — oo, we need to
establish and use the fact that the actual arrival processes
to the first k£ queues under the SQ(d) policy become asymp-
totically independent as n — oo. This is done using the
branching process argument outlined in Section 6.2. This
style of argument is referred to as “propagation of chaos” in
the literature; see [5, 4, 15], for example. Note that this step
only relies on the randomized load balancing policy SQ(d)
and not on the DHR and FIFO assumptions.

Now, to generalize from the IID initial condition to the
more general setting where (Q™(0), E"(0)) can be arbitrar-
ily distributed, we use the monotonicity argument in Section
6.1. Essentially, this step consists of observing that the evo-
lution of the load balancing system with any non-zero initial
condition stochastically dominates the evolution of the same
system with the all-zeros initial condition. This step uses
the DHR and FIFO assumptions. Given the monotonicity
property, uniform stability is used to show that the distance
between the two evolutions of the load balancing system
monotonically decreases with time, and uniformly in n, in
the metric defined in (6.2). This is used to conclude that
for n and t large enough, the evolution of the load balancing
system under the arbitrary initial condition is close to be-
ing IID. The complete proof will be presented in subsequent
publications.

6.1 Monotonicity

Consider two FIFO queues serving jobs with a common
DHR service distribution. Suppose that, at a given time,
neither queue is empty. Denote by e; and d;, ¢ = 1,2, the



elapsed and departure times of the first job at queue i. The
following lemma is a consequence of DHR service times.

LEMMA 1. Suppose e1 > ez. Then there exists a coupling
such that di > do.

DEFINITION 3. Let (Q1, E1) and (Q2, E2) be two random
vectors taking values in ZY X RY. Then (Q1, E1) >4 (Q2, E2)
means there exists a coupling under which every entry of
(Q1, Ev) is larger than or equal to the corresponding entry

of (Q2, E2).

The following lemma establishes an important monotonic-
ity property under the FIFO and DHR assumptions.

LEMMA 2. Consider two n-queue load balancing systems
that have common arrivals, with each arriving job having the
same service time. If (Q1(s), E1(s)) >st (Q2(s), Ea(s)) for
some time s, then (Q1(¢), E1(t)) >s¢ (Q2(¢), E2(t)) for all
t>s.

Remark 3: The proof proceeds similarly to a well-known
argument in the case of exponential service times. Lemma
1 is a key component of the proof, since it ensures that
departure times do not violate the inequality.

COROLLARY 1. Consider an n-queue load balancing sys-
tem. Suppose the system is empty at time 0. Then, for
s <t

(Q"(s), E"(s)) <« (Q"(1), E"(t)).

Corollary 1 states that the measures (II"(t), £™(¢)) are mono-
tonically increasing in ¢. The corollary follows from Lemma
2 since (Q"(t — s), E™(t — 5)) > (Q™(0), E™(0)).

6.2 Independence via Branching Process

To simplify matters somewhat, we do this for & = 2; ac-
cordingly, we fix a t > 0 and consider ¢"™(t) and ¢*>"(t).
Recall that the system is empty at time 0. It will be use-
ful to employ the terminology selection set of an arrival to
denote the set of d queues that it chooses.

The basic idea is to consider a random “influence set”,
consisting of queues, that governs the state of queues 1 and
2 at time t. The influence set for queue i is rooted at queue
i at time ¢ and increases monotonically, going backwards in
time. It increases when the selection set of an arrival in-
tersects with the influence set, at which time the influence
set increases to include the entire selection set. Omne can
show that the size of the influence set is dominated by an
appropriate d-ary branching process. Since the branching
process increases exponentially in time, by time ¢, it has
of the order et nodes. Therefore, for large enough n, the
probability will be arbitrarily small that the influence sets
corresponding to queues 1 and 2 ever intersect. Moreover,
the probability that a selection ever intersects the influence
set at more than one queue will be arbitrarily small. Con-
sequently with overwhelming probability, the influence set
will be a tree, whose law does not depend on n.

Since ¢"™(t) is a function of the arrivals and their service
times that occur at the queues belonging to its influence
set, by the preceding discussion, ¢*" (t), i = 1,2, converges
in distribution as n — oco. Moreover, ¢*"(t) and ¢*"™(t)
become independent as n — oo.

7. CONCLUSION AND FURTHER WORK

The paper presented a modularized program for the anal-
ysis of randomized load balancing systems with general ser-
vice time distributions. This program, particularly the ansatz,
significantly enhances the analyzability of the popular super-
market model. The queue at the cavity bridges the struc-
tural and computational parts of the program. It facilitates
the analysis of complicated randomized load balancing poli-
cies under general service disciplines and service distribu-
tions. In this paper, the program has been used to show
that under the SQ(d) policy the PS and LIFO-PR service
disciplines are insensitive in the large n limit. Moreover, it
has been used to discover threshold phenomena for the FIFO
service discipline: The tail of the queue size decays polyno-
mially, exponentially or doubly exponentially depending on
the tail of the service distribution and the number of the
samples, d.

We have only obtained a proof of the ansatz for a load
balancing system operating under the SQ(d) policy with the
FIFO service discipline and DHR services. However, simu-
lations show that it appears to be true under very general
assumptions.

Some further work: Obviously, a proof of the ansatz for
the SQ(d) policies would be good to obtain and this may
yield a new technical insight or a new approach. As men-
tioned, we have only used the most basic form of the Cavity
Method in this problem. Generalizations of the load bal-
ancing model to problems where the queues are vertices in
a graph (say the D-regular graph) would need a stronger
form of the Cavity Method. Other scheduling problems
in networking, where the system size increases, would also
make candidates for an application of the Cavity Method,
for example, load balancing with migration penalties or cy-
cle stealing.
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