
Detailed Network Measurements Using Sparse Graph Counters:
The Theory

Yi Lu, Andrea Montanari and Balaji Prabhakar

Abstract—Measuring network flow sizes is important for
tasks like accounting/billing, network forensics and security.
Per-flow accounting is considered hard because it requires that
many counters be updated at a very high speed; however,
the large fast memories needed for storing the counters are
prohibitively expensive. Therefore, current approaches aim to
obtain approximate flow counts; that is, to detect large elephant
flows and then measure their sizes.
Recently the authors and their collaborators have developed

[1] a novel method for per-flow traffic measurement that is
fast, highly memory efficient and accurate. At the core of this
method is a novel counter architecture called “counter braids.”
In this paper, we analyze the performance of the counter
braid architecture under a Maximum Likelihood (ML) flow
size estimation algorithm and show that it is optimal; that is,
the number of bits needed to store the size of a flow matches
the entropy lower bound. While the ML algorithm is optimal,
it is too complex to implement. In [1] we have developed an
easy-to-implement and efficient message passing algorithm for
estimating flow sizes that is analyzed elsewhere.

I. INTRODUCTION
This paper addresses a theoretical problem arising in a

novel approach to network traffic measurement the authors
and their collaborators have recently developed. We refer
the reader to [1] for technological background, motivation,
related literature and other details. In order to keep this paper
self-contained, we summarize the background and restrict the
literature survey to what is relevant for the results of this
paper.
Background. Measuring the sizes of network flows on high
speed links is known to be a technologically challenging
problem [2]. The nature of the data to be measured is as
follows: At any given time several 10s or 100s of thousands
of flows can be active on core Internet links. Packets arrive
at the rate of one in every 40-50 nanoseconds on these
links which currently run at 10 Gbps. Finally, flow size
distributions are heavy-tailed, giving rise to the well-known
decomposition of flows into a large number of short “mice”
and a few large “elephants.” As a rule of thumb, network
traffic follows an “80-20 rule”: 80% of the flows are small,
and the remaining 20% of the large flows bring about 80%
of the packets or bytes.
This implies that measuring flow sizes accurately requires

a large array of counters which can be updated at very
high speeds, and a good counter management algorithm for

Yi Lu is with the Department of Electrical Engineering, Stan-
ford University, yi.lu@stanford.edu. Andrea Montanari is
with Departments of Electrical Engineering and Statistics, Stan-
ford University, montanari@stanford.edu. Balaji Prabhakar is
with the Department of Electrical Engineering, Stanford University,
balaji@stanford.edu.

updating counts, installing new counters when flows initiate
and uninstalling them when flows terminate.
Since high-speed large memories are either too expensive

or simply infeasible in the current technology, the bulk of
research on traffic measurement has focused on approximate
counting methods. These approaches work aim at detecting
elephant flows and measure their sizes.
Counter braids. In [1] we develop a novel counter archi-
tecture, called “counter braids”, which is fast, very efficient
with memory use and gives an accurate measurement of all
flow sizes, not just the elephants. We will briefly review this
architecture using the following simple example.
Suppose we are given 5 numbers and are told that four of

them are no more than 2 bits long while the fifth can be 8
bits long. We are not told which is which!
Figures 1 and 2 present two approaches for storing the

values of the 5 numbers. The first one corresponds to a
traditional array of counters, whereby the same number of
memory registers is allocated to each measured variable
(flow). The structure in Fig. 2 is more efficient in mem-
ory, but retrieving the count values is less straightforward,
requiring a flow size estimation algorithm.

1

2

3

1

35

Fig. 1. A simple counter structure: to each flow size we associate
its binary representation (filled circle = 1, empty circle = 0).

1

2

3

1

35

Fig. 2. Counters braid.

Viewed from an information-theoretic perspective, the
design of an efficient counting scheme and a good flow size
estimation is equivalent to the design of an efficient source

code [3]. However, the applications we consider impose a
stringent constraint on such a code: each time that the size
of a flow changes (because a new packet arrives) a small
number of operations must be sufficient to update the stored
information. This is not the case with standard source codes,
where changing a single letter in the source stream may alter
completely the compressed version.
In this paper we prove that, under a probabilistic model

for the flow sizes (namely that they form a vector of iid
random variables), counter braids achieve a compression
rate equal to the entropy of the flow sizes distribution, in
the large system limit. Namely, for any rate larger than
the flow entropy, the flow sizes can be recovered from the
counters values, with error probability vanishing in the large
system limit. Further, we prove optimal compression can be
achieved by using braids that are sparse. The result is non-
obvious, since counter braids form a pretty restrictive family
of architectures.
Our treatment makes use of techniques from the theory of

low-density parity check codes, and the whole construction is
inspired to LDPC’s [4], [5]. These have an analogous in the
source coding problem thanks to standard equivalence be-
tween coding over discrete memoryless symmetric channels,
and compressing iid discrete random variables [6]. However,
the key ideas in the present paper have been developed
to deal with the problem that the flow sizes are a priori
unbounded. In the channel coding language, this would be
equivalent to use a countable but infinite input alphabet.
Finally, we insist on using sparse braids for two reasons.

First, this allows the stored values to be updated with a small
(typically bounded) number of operations. Second, it is easy
to realize that ML decoding of counter braids is NP-hard,
since it has ML decoding of linear codes as a special case
[7]. However, thanks to the sparseness of the underlying
graph, one may use iterative message passing techniques [8].
Indeed, a simple message passing algorithm for estimating
flow sizes is described and analyzed using real and synthetic
network traces in [1].

II. COUNTER BRAIDS: BASIC DEFINITIONS
Definition 1. A counter braid is a couple (G, q) where q ≥ 2
is an integer (register capacity) and G is a directed acyclic
graph on vertex sets I (input nodes) and R (registers),
with the input nodes having in-degree zero. We write G =
(I, R, E), with E the set of directed edges in G.
For any node i ∈ I ∪ R, we will denote by ∂+i ≡ {j :

(i, j) ∈ E} the set of descendants of i, and by ∂−i ≡ {j :
(j, i) ∈ E} the set of parents of i. Finally ∂i ≡ ∂+ ∪ ∂−i.

In the following we shall often omit the explicit reference
to the register capacity and write G for (G, q). The input
size of the braid is |I| ≡ n, and its storage size |R| ≡ m.
An important parameter is its rate, which we measure in bits

r =
|R| log2 q

|I|
. (1)

We will say that a sequence of counters braids {Gn =
(In, Rn, En)} is sparse if the number of edges per input

node |En|/|In| is bounded.

Definition 2. A state (or configuration of the counter braid
Gq , with is an assignment (x, y) of non-negative integers to
the nodes in G, with x = {xi : i ∈ I} ∈ NI , and y = {yj :
j ∈ R} ∈ NR. The state (x, y) is valid if yj ∈ {0, . . . , q−1}
for any register j ∈ R.

Notice that a valid register configuration can be regarded
as an element of (Zq)R (where Zq is the group of integers
modulo q.) We denote by 0 the zero vector in NK .
We want now to describe the braid behavior when one

of the input nodes is incremented by one unity (i.e. when a
packet arrives at input node i ∈ I .) Assume the braid (G, q)
to be in a valid state (x, y). Given i ∈ I , we define the new
state (x′, y′) = Ti(x, y) by letting x′

i = xi + 1, x′
j = xj

for any j &= i, and y′ be defined by the following procedure.
Notice that this definition is ambiguous in that we did not

REGISTERS UPDATE (INPUT: flow index i)

1: yj(0) = yj for j &∈ ∂+i,
and yj(0) = yj + 1 otherwise.

2: Set t = 0.
3: while y(t) is not valid
4: Let j ∈ R be such that yj(t) ≥ q;
5: Set yj(t + 1) = yj(t) − q;
6: For any l ∈ ∂+j, set yl(t + 1) = yl(t) + 1;
7: For any l ∈ R \ {j, ∂+j}, set yl(t + 1) = yl(t);
8: Increment t := t + 1;
9: end
10: return y(t).

specify which register to pick among the ones with yj(t) ≥ q
at step 4 in the registers update routine. However this is not
necessary, as stated in the following lemma (the proof is
omitted from this extended abstract).

Lemma 1. The update procedure above halts after a finite
number of steps. Further its output Ti(x, y) does not depend
on the order of update of the registers.

With an abuse of notation we shall write x′ = Ti(x),
y′ = Ti(y), when (x′, y′) = Ti(x, y).
When input values x are incremented sequentially, the

stored information y is updated according to the above pro-
cedure. From now on we shall take a static view and assume
a certain input x. The corresponding stored information y is
obtained through the mapping defined below.

Definition 3. Given a counter braid (G, q), the associated
storage function FG : NI → ZR

q returns, for any input
configuration x ∈ NI a register configuration y = FG(x) ∈
ZR

q defined as follows. Let x(0) = 0, x(1), . . . , x(N) = x
be a sequence of input configurations such that x(s+1) is
obtained from x(s) by incrementing its entry i(s). Then

FG(x) ≡ Ti(N) ◦ Ti(N−1) ◦ · · · ◦ Ti(1)(0) . (2)

We shall drop the subscript G from FG whenever clear
from the context. A priori it is not obvious that the mapping

FG is well defined. In particular, it is not obvious that it
does not depend on the order in which input values are
incremented, i.e. on the sequence {i(1), . . . , i(N)}. This is
nevertheless the case (the proof is omitted.)

Definition 4. Given a counter braid (G, q), a reconstruction
(or decoding) function is a function F̂ : ZR

q → N.

A. Main results

Throughout this paper, we shall model the input values
as iid integer random variables (X1, . . . , Xn) ≡ X (identi-
fying V = [n]) with common distribution p. The (binary)
entropy of this distribution will be denoted by H2(p) ≡
−

∑
x p(x) log2 p(x).

Definition 5. A sequence of counters braids {Gn =
(In, Rn, En)}, with |In| = n has design rate r if

r = lim
n→∞

|Rn|
|In|

log2 q . (3)

It is reliable for the distribution p if there exists a sequence
of reconstruction functions F̂n ≡ F̂Gn such that, for X a
random input and Y ≡ FGn(X)

Perr(Gn, F̂n) ≡ P{F̂n(Y) &= X} n→ 0 . (4)

Shannon’s source coding theorem implies that there cannot
exist reliable counter braids with asymptotic rate r < h2(p).
However, the achievability of such rates is far from obvious,
since counter braids are a fairly specific compression scheme.
The main theorem of this paper establishes achievability,
even under the restriction that the braid is sparse.
In order to avoid technical complication, we make two

assumptions on the input distribution p:
1) It has at most power-law tails. By this we mean that

P{Xi ≥ x} ≤ Ax−ε for some ε > 0.
2) It has decreasing digit entropy. Let Xi =∑

a≥0 Xi(a)qa be the q-ary expansion ofXi, and hl be
the q-ary entropy of Xi(l). Then hl is monotonically
decreasing in l for any q large enough.

We call a distribution p with this two properties admissible.
While this class does not cover all possible distributions, it
is likely to include any case of practical interest.

Theorem 1. For any admissible input distribution p, and
any rate r > H2(p) there exist a sequence of reliable sparse
counter braids with asymptotic rate r.

As stressed above, we insist on the braid being sparse for
two reasons: (i) It allows to update the registers content y
with a small number of operations, whenever one entry of
x is incremented (i.e. the storage function can be efficiently
recomputed); (ii) It opens the way to using low-complexity
message passing algorithms for estimating the input vector x,
given the stored information (i.e. for evaluating the recovery
function F̂G).

III. THE ARCHITECTURE
A. Layering
We will consider layered architectures. By this we mean

that the set of register is the disjoint union of L layers R =
R1∪R2∪· · ·∪RL and that directed edges are either from I
to R1 or from Rl to Rl+1 for some l ∈ {1, . . . , L − 1} (we
shall sometimes adopt the convention R0 ≡ I). We denote
by y(l) = {yi : i ∈ Rl} the vector of register values in layer
l. We further let ml ≡ |Rl| denote the size of the l-th layer
(with m0 ≡ n).
The graph structure is conveniently encoded in L matrices

H1, . . .HL, whereby Hl is the ml ×ml−1 adjacency matrix
of the subgraph induced by Rl ∪Rl−1. We further let Hl =
Hl ·Hl−1 · · ·H1. The storage function F can be characterized
as follows.

Lemma 2. Consider an L-layers counters braid, let x be
its input, and define the sequence of vectors z(l) ∈ NRl

, by
z(0) = x and

z(l) = +(Hlz
(l−1))/q, . (5)

(the division and floor operation being component-wise on
the vector Hlz(l−1).) Then, the register values are y(l) =
Hlz(l−1) mod q.

B. Recovery function
We now describe the recovery function F̂. Since in this

paper we are only interested in achievability, we will neglect
complexity considerations.
1) One layer: Let us start from a one-layer braid and

assume the inputs to be iid with common distribution p∗
supported on {0, . . . q−1} - xi. Then the register values are
y = Hx mod q, where H is the adjacency matrix of the
braid. Fix γ ∈ (0, 1). We say that the input x ∈ {0, . . . , q −
1}n is typical, and write x ∈ Tn(p∗) if its type θx satisfies
D(θx||p∗) ≤ n−γ (here the Kullback-Leibler divergence is
computed in natural base). Denote by Tn(p∗; y) the set of
input vectors that are typical and such that Hx = y, mod q.
The ‘typical set decoder’ returns a vector x̂ if this is the the
unique element in Tn(p∗; y) and a standard error message
otherwise. In formulae

F̂(y) =

{
x̂ if Tn(p∗; y) = {x̂},
∗ if |Tn(p∗; y)| &= 1. (6)

2) Multi-layer: Consider now a multi-layer braid and
x ∈ NI (inputs not restricted to be smaller than q) with xi’s
distributed independently according to p. It is convenient to
write the input vector in base q

x =
∑

a≥0

x(a) qa . (7)

where x(a) = {xi(a) : i ∈ V } with xi(a) ∈ {0, . . . , q − 1}.
Notice that, for each a ≥ 0, the vector x(a) has iid entries.
Let pa be the distribution on xi(a) when xi has distribution
p.
We’ll apply typical set decoding recursively, determining

the q-ary vectors x(0), x(1), x(2), . . . in this order. Consider

first x(0). It is clear from Lemma 2 that y(1) = H1x(0) =
H1x(0) mod q. We then apply typical set decoding to the
determination of x(0). More precisely, we look for a solution
of H1x = y(1) mod q that is typical under distribution p0.
If there is a unique such solution, we declare it our estimate
of x(0) and denote by x̂(0). Otherwise we declare an error.
Consider now the determination of x(l) and assume the

lower order terms in the expansion (7) have already been
estimated to be x̂(0), x̂(1), . . . , x̂(l − 1). Let ẑ(0) ≡∑l−1

a=0 x̂(a) qa, and ẑ(a), a ≥ 1 be determined through the
same recursion as in Eq. (5). Further let ŷ(a) = Haẑ(a−1)

mod q (this are nothing but the register values on input ẑ(0)).
Assume the estimates x̂(0), x̂(1), . . . , x̂(l − 1) to be

correct. It is then easy to realize that ŷ(a) = y(a) for
a = 1, . . . l. Further z(l) = ẑ(l) + Hlx(l) mod q, hence

y(l+1) = ŷ(l+1) + H
l+1x(l) mod q . (8)

We therefore proceed to compute y(l+1)− ŷ(l+1) mod q. If
the linear system Hl+1x(l) = y(l+1)−ŷ(l+1) mod q admits
more than one or no solution that is typical with respect to
the distribution pl, an error is returned. Otherwise, the next
term in the expansion (7) is estimated through the unique
typical solution of such linear system.
The recovery algorithm is summarized below, with one

improvement with respect to the description above. Instead
of recomputing ẑ(0), . . . , ẑ(l), at stage l we only compute
the vector that ẑ(l) that is needed at the present stage.

RECOVERY (INPUT: register values y)

1: Initialize ẑ(a) = 0 for a ≥ 0;
2: for l ∈ {0, . . . L}
3: Set ŷ(l + 1) = Hl+1ẑ(l) mod q;
4: Let Tl be the set of pl-typical

solutions of Hl+1x̂ = y(l+1) − ŷ(l+1), mod q;
5: If Tl = {x̂} let x̂(l) = x̂

otherwise if |Tl| &= 1 return error;
6: Set ẑ(l+1) = +{Hl+1ẑ(l) + Hl+1x̂(l)}/q,;
7: end
8: return x̂ =

∑
i x̂(i) qi.

C. Sparse graph ensemble and choice of the parameters
The optimal compression rate in Theorem 1 is achieved

with the following random sparse graph construction. Fix
the registers capacity q and an integer k ≥ 2. Then for l =
1, . . . , L0 the graph induced by vertices Rl−1 ∪ Rl has a
random edge set that is sampled by connecting each i ∈ Rl−1

to k iid uniformly random vertices in Rl (all edges being
directed from Rl−1 to Rl). In other words, the ml × ml−1,
0− 1 matrix Hl has independent columns, each sampled by
incrementing k iid positions.
The choice of this ensemble is motivated by implementa-

tion concerns. In the flow counting problem, we do not know
a priori the exact number of flows that needs to be stored.
The above structure, this number can be changed without
modifying existing links. Further, for each new flow, the

subset of k registers it is connected to can be chosen through
a simple hash function.
To these L0 stages, we add further L1 stages, all of the

same size mL0+1 = · · · = mL0+L1
= m∗, with edges

connecting each node in Rl−1 to a different node in Rl.
Equivalently, we take Hl to be the identity matrix in these
stages.
It remains to specify the number of stages L0, L1 and

their sizes m1,. . . , mL0
. Let pl be the distribution of the l-th

least significant digit in the q-ary expansion of Xi. Recall
that we defined hl to be the q-ary entropy of the distribution
pl, i.e.

hl ≡ −
q−1∑

x=0

pl(x) logq pl(x) . (9)

Finally, in the achievability proof, we shall assume that q
is a prime number, large enough for hl to be monotonically
decreasing.

Lemma 3. Assume P{X1 ≥ x} ≤ Ax−ε. Then there exists
constants B, C that only depend on A, ε, such that for all
l ≥ 1, and all q large enough

hl ≤ B l q−lε , (10)∣∣∣h2(p) −
∑

l≥0

hl log2 q
∣∣∣ ≤ C q−ε(log2 q)2 . (11)

The proof of this simple Lemma is deferred to Section VI.

Lemma 4. Let p∗ be a distribution over {0, . . . , q}, with
q-ary entropy H(p∗), and Tn(p∗) be the set of p∗-typical
vectors defined as in Sec . Let |Tn(p∗)| be the size of
this set. Recall that x ∈ Tn(p∗) if its type θx satisfies
D(θx||p∗) ≤ n−γ . Then, for any β ∈ (1 − γ/2, 1), there
exists A = A(β, γ, q) such that

|Tn(p∗)| ≤ qnH(p∗)+A nβ

, .

Further, if X = (X1, . . . , Xn) is a vector with iid entries
with common distribution p∗

P {X &∈ Tn(p∗)} ≤ (n + 1)q e−n1−γ

. (12)

In the following we will consider γ and β fixed once and
for all, for instance by γ = 1/2 and β = 7/8.
Fix some δ > 0, and let A(q) be a suitably large constant,

we let, for l = 1, . . . , L0,

ml ≡ max{ml, /δ ml−10} , (13)
ml ≡ (1 + δ)

⌈
nhl−1(1 + δ) + A(q)nβ

⌉
. (14)

The number of stages is such that

ml ≤ n(log n)−2 for any l ≥ L0 . (15)

This implies, by Lemma 3, L0 = O(log log n). To this we
add L1 = (log n)3/2 stages within the second group, of size
m∗ = mL0

≤ n(log n)−2. The total number of registers
is therefore upper bounded as |R| ≤ n(1 + δ)

∑
l≥0(hl +

Anβ−1)(
∑

i≥0 δ
i)+n(log n)−1/2, and therefore the asymp-

totic rate of this architecture

r ≤
1 + δ

1 − δ

∑

l≥0

hl log2 q . (16)

Since the right hand side can be made arbitrarily close to
h(p) by Lemma 3, Theorem 1 follows from the following.

Theorem 2. For any input distribution p with at most power-
law tails and any choice of q ≥ 2 and δ > 0, there exists
k ≥ 2 such that the multi-layer braid described above is
reliable.

IV. ANALYSIS OF ONE-LAYER ARCHITECTURES

In order to prove our main Theorem or, equivalently,
Theorem 2, we need first to prove a few preliminary results
concerning a one-layer architecture. The proof here follows
the technique of [9], the main tool being an estimate of
the distance enumerator as in [4], [10], [11]. Distance enu-
merators for non-binary LDPC codes have been estimated
in [12]. Unhappily we cannot here limit ourselves to citing
these works, because the graph ensemble is different from
the regular ones treated there.
Throughout this Section the source is a vector X =

(X1, . . . , Xn) with iid entries taking values in {0, . . . , q−1}
and distribution p∗ (in the application to multi-layer schemes
p∗ will coincide with pl for some l ≥ 0). We let H be
an m × n matrix whose columns are independent vectors
with integer entries. Each column is obtained by choosing k
positions independently and uniformly at random (eventually
with repetition) and incrementing the corresponding entry by
one. In other words, H is distributed as the adjacency matrix
of a given layer in the multi-layer architecture.
Our first result is a simple combinatorial calculation. Let

'λ = {λz : z = 1, . . . , q − 1} be a vector in R
q−1
+ .

It is convenient to introduce the random variable 'W =
{Wz : z = 1, . . . , q − 1} taking values in Nq−1. The
joint distribution of (W1, . . . , Wq−1) (to be denoted by P$λ)
is the one of q − 1 Poisson random variables with means
(respectively) λ1, . . . , λq−1, conditioned on

∑q−1
z=1 zWz = 0,

mod q.

Lemma 5. Let x ∈ {0, . . . , q − 1}n be an input vector with
nz entries equal to z, for z = 0, . . . , q − 1, and H be a
random matrix as above. Define 'n = {nz : z = 1, . . . , q−1}.
For any 'λ ∈ R

q−1
+ , let 'W1,. . . 'Wm be m iid vectors with

distribution P$λ. Then the probability that Hx = 0 mod q
is

P{Hx = 0} =
q−1∏

z=1

(knz)! emλz

(mλz)knz
Q('λ)m

P$λ

{
m∑

i=1

'Wi = k'n

}

,

(17)

where Q('λ) is the probability that
∑q−1

z=1 z Uz = 0, mod q
for independent Poisson random variables with means λz .

Further, for some universal constant C, and Dq = 1 −
cos 2π/q, and n∗ =

∑
z nz

P{Hx = 0} ≤ (Ckn∗)
q−1

2 Q(k'n/m)mR(m,
k

q

q−1∑

z=1

znz)

(18)

Q(k'n/m) ≤
1

q

[
1 + (q − 1) e−Dq

kn∗

m

]
, (19)

R(m, N) = min
{
1, (Cq2N/m)N

}
(20)

Proof. Due to the symmetry of the distribution of H with
respect to permutation in its columns, P{Hx = 0} does
depend on x only through the number of ones, twos, etc.
Without loss of generality we can assume the first n1

coordinates to be ones, the next n2 to be twos, and so on, and
neglect the last n−

∑
z nz columns, corresponding to zeros.

Think now of filling the matrix, by choosing its non-zero
entries (edges in the associated graph). If we associate to
each such entry the value of the corresponding coordinate in
x, we want the probability for the sum of labels on each row
to be 0 mod q. Since entries are independent and uniformly
random, this is equal to the probability that each of m urns
is filled with balls whose labels add to 0, when we throw
kn1 balls labeled with 1, kn2 labeled with 2, and so on. It
is an exercise in combinatorics to show that this is
q−1∏

z=1

(knz)!

mknz
coeff

{
P (ξ1, . . . , ξq−1)

m, ξkn1

1 · · · ξknq−1

q−1

}
,

P (· · ·) ≡
∑

l1...lq−1

ξl1
1

l1!
. . .

ξlq−1

q−1

lq−1!
I

{
q−1∑

z=1

z lz = 0

}

.

Equation (17) is then obtained by evaluating P$λ and showing
that it yields the above combinatorial expression.
In order to get Eq. (18), we denote P$λ{· · · } by R, and

use λz = knz/m, thus leading to

P{Hx = 0} =
q−1∏

z=1

(knz)! eknz

(knz)knz
Q(k'n/m)mR .

Equation (18) follows from the observation that N ! ≤√
CN (N/e)N for some universal constant C.
In order to prove Eq. (19), notice that, by discrete Fourier

transform

Q('λ) =
1

q

q−1∑

&=0

E

{
e

2πi$
q

Pq−1

z=1
zUz

}

=
1

q

q−1∑

&=0

exp

{

−
q−1∑

z=1

λz(1 − e
2πi$z

q)

}

.

The claim is proved by singling out the + = 0 term and
bounding the others using Re(1 − e

2πi$z
q) ≥ Dq .

Let us finally prove Eq. (20). Obviously R ≤ 1 since
it is an upper bound on the probability P$λ{· · · }. If we let
N ≡ k

q

∑q−1
z=1 znz, we can therefore assume, without loss

of generality, that N is an integer with N/m ≤ 1/q. Let Vi

be distributed as
∑q−1

z=1 Wi,zz/q conditioned on Vi being an
integer. Then the probability P$λ{· · · } is upper bounded by

P

{
m∑

i=1

Vi ≥ N

}

≤
(

m

N

)
P{Vi ≥ 1}N

≤
(

Cm

N
P{Vi ≥ 1}

)N

.

Recalling the definition of Vi, we have

P{Vi ≥ 1} = P

{ q−1∑

z=1

zUz ≥ q
∣∣∣

q−1∑

z=1

zUz = 0 mod q
}

≤ e
Pq−1

z=1
λzP

{ q−1∑

z=1

zUz ≥ q
}

.

But
∑q−1

z=1 λz = kn∗/m ≤ Nq/m ≤ 1. Further,∑q−1
z=1 zUz ≥ q only if

∑q−1
z=1 Uz ≥ 2. Therefore we get

P{Vi ≥ 1} ≤ eP

{ q−1∑

z=1

Uz ≥ 2
}

≤ C
(q−1∑

z=1

λz

)2
≤ C(kn∗/m)2 .

The proof is completed by noticing that (kn∗/m) ≤
(Nq/m).

In the following, given a vector x = (x1, . . . , xn), we
shall denote by ||x||0 is number of non-zero entries.

Lemma 6. Let H be a random m× n matrix distributed as
above, with column weight k. Assume k not to be a multiple
of q, m ≤ n, (m/nk)1/k ≥ ∆ > 0 and 3 ≤ k ≤ m/ logm.
Then, there exists a constant B = B(q, ∆), C = C(q, ∆),
such that, if

E ≤
C m

log(nk/m)
, (21)

then

P

{
∃||z||0 ≤ E : Hz = 0 mod q

}
≤ n2

(
Bk

m

) k
q

(22)

(where it is understood that z ∈ {0, . . . , q − 1}n.)

Proof. Throughout the proof, A will denote a generic con-
stant depending only on q that can be chosen large enough
to make the inequalities below hold.
Let z ∈ {0, . . . , q − 1}n be such that ||z||0 = +. We will

upper bound the probability that Hz = 0 mod q in different
ways depending whether + ≤ E0 or + >E 0, where

E0 = ρ(q)
m

k

(m

nk

)2/(k−2)
, (23)

with ρ(q) a function to be determined. Notice that, under our
hypotheses,

kE0

m
≥ ρ(q) ∆2k/(k−2) (24)

is bounded away from 0 (as 2 < 2k/(k− 2) ≤ 6 for k ≥ 3.)

For ||z||0 = + ≤ E0 (and z &= 0) we use Lemma 5,
Eq. (18), where we set Q(· · ·) ≤ 1, n∗ = + and k&

q ≤
k
q

∑q−1
z=1 znz ≤ k+. Further we assumed Ak+/m ≤ 1, which

holds without loss of generality if we take ρ(q) ≤ 1/A∆6 ≤
1/A∆2k/(k−2) in Eq. (23), thus getting

P{Hz = 0} ≤ (Ak+)
q−1

2 (Ak+/m)k&/q . (25)
Since (k+)(q−1)/2 ≤ Ak&/q , we have (by properly adjust-

ing A)

P{Hz = 0} ≤ (Ak+/m)k&/q . (26)
For ||z|| > E0, we use Eq. (18) with R(· · ·) ≤ 1. Since

k+/m > kE0/m is bounded away from 0 by Eq. (24),
we have Q(· · ·) ≤ e−C for some C = C(∆, q) > 0 and
therefore

P{Hz = 0} ≤ (Ak+)(q−1)/2 e−Cm . (27)

There are at most
(
n
&

)
(q − 1)& ≤

(
An
&

)& vectors z with
||z||0 = +. If we denote by PE1,E2

the probability of the event{
∃z : E1 ≤ ||z||0 ≤ E2 , Hz = 0 mod q

}
, the probability

in Eq. (22) is upper bounded by P2,E0
+PE0,E (notice that if

k is not a multiple of q, Hz = 0 is impossible for ||z||0 = 1).
By union bound we have

P2,E0
≤

E0∑

&=2

(
An

+

)& (
Ak+

m

)k&/q

≤
(

An

2

)2 (
2Ak

m

)2k/q E0∑

&=2

ξ(+)&−2 ,

where (using (+/2)2k/q−2 ≤ Ak(&−2)/q and eventually ad-
justing the constant A)

ξ(+) ≡
n

+

(
Ak+

m

)k/q

.

For + ≤ E0, and choosing ρ(q) small enough in Eq. (23), we
obtain ξ(+) ≤ 1/2 thus leading to P2,E0

≤ n2(Ak/m)k/q .
Finally consider the contribution of vectors ||z||0 ≥ E0.

Proceeding as above, we have

PE0,E ≤
E∑

&=E0

(
An

+

)&

(Ak+)(q−1)/2 e−Cm

≤ E

(
An

E

)E

(AkE)(q−1)/2 e−Cm .

Here we bounded (An/+)& = [(An/+)&/An]An ≤ (An/E)E ,
using the fact that x−x is an increasing function of x for
x ≤ e−1, and that E/An = Cm/An log(nk/m) ≤ Cm/An
is smaller than e−1 for C small enough.
Finally we bound E(q+1)/2 ≤ AE and k(q−1)/2 ≤ kE

(which holds for m large enough), thus getting

PE0,E ≤
(

nkA

m

)E

e−Cm .

If we take E = Cm/2 log(nkA/m), we get PE0,E1
≤

e−Cm/2, which is smaller than (Bk/m)
k
q for a properly

chosen constant B and k ≤ m/ logm (indeed k ≤ mεm

would be enough for any εm ↓ 0.)

V. ANALYSIS OF MULTI-LAYER ARCHITECTURES AND
PROOF OF THEOREM 1

Proof. Let P(l)
err denote the probability that l-th term in the

q-ary expansion of x is decoded incorrectly by the decoder
in Section III-B (i.e. that x̂(l) &= x(l)) given that x(0), . . . ,
x(l − 1) have been correctly recovered. We will prove that
P(l)

err = O(n−A) for some A > 0. Since the multi-layer
architecture involves at most C(log n)

3

2 layers, this implies
the thesis. Further, we shall consider only the first L0 layers,
since it will be clear from the derivation below that the error
probability is decreasing for the last L1 layers.
Let x be the input. Since we are focusing on the l-th term

in the q-ary expansion of the input, we will drop the index
l, and take x ∈ {0, . . . , q − 1}n. This is just a vector whose
entries are iid with distribution pl.
The error probability P(l)

err is upper bounded by the prob-
ability that x &∈ Tn(pl) plus the probability that there exists
x′ &= x with Hlx′ = Hlx mod q. The first contribution
is bounded by Lemma 4, and we can therefore neglect
it. Denoting the second contribution as P(l,∗)

err , and writing
Ex, P for (respectively) expectation with respect to x and
probability with respect to the matrices H1, . . .Hl, we have
(matrix multiplications below are understood to be modulo
q)

P(l,∗)
err = ExP

{
∃x′ ∈ Tn(pl) \ {x} s.t. H

lx′ = H
lx

}

=
l∑

t=1

Q(l)
t ,

Q(l)
t ≡ ExP

{
∃x′ ∈ Tn(pl) \ {x} s.t.

H
tx′ = H

tx, H
t−1x′ &= H

t−1x
}

.

Since, l ≤ L = O(log n), it is sufficient to show Q(l)
t =

O(n−A). In Q(l)
t we can separate error events due to input

x′ such that dt ≡ d(Ht−1x′, Ht−1x) ≤ E and the other ones.
As a consequence Q(l)

t is upper bounded by

ExP
{
∃x′ ∈ Tn(pl), s.t. 1 ≤ dt ≤ E, H

tx′ = H
tx

}
+

+ExP
{
∃x′ ∈ Tn(pl) s.t. E < dt, H

lx′ = H
lx

}
≤

≤ P{∃z s.t. ||z||0 ≤ E , Htz = 0}+
+ |Tn(pl)| sup

{
P{Htz = 0} : ||z||0 > E

}
.

Here z is understood to be a mt−1 dimensional vector with
entries in {0, . . . , q − 1}.
Notice that (mt/kmt−1)1/k ≥ (δ/k)1/k ≥ δ. Next we

choose E = C(q, ∆ = δ)mt/ log(mt−1k/mt) with C(q, ∆)
as in the statement of Lemma 6. As a consequence the first
term above is upper bounded by

m2
t−1

(
Bk

mt

) k
q

≤ (Bk)
k
q δ−2m

− k
q +2

t ≤ C(log n)
k
q −2n−k

q +2 ,

where we used mt−1 ≤ mt/δ and mt ≥ n/(logn)2. The
constant C that depends uniquely on q, k, δ, but not on n.
It remains to bound the second contribution, due to inputs

x′ with d(x′, x) > E. Using Lemma 4 (to bound Tn(pl))

and 5 (to bound P{Htz = 0} for ||z||0 > E)

ExP
{
∃x′ ∈ Tn(pl) s.t. E < dt, H

lx′ = H
lx

}
≤

≤ qnhl+Anβ

(Ckn)
q−1

2

{
1

q
[1 + (q − 1)e−DkE/mt]

}mt

,

By eventually enlarging the constant A (in a way that
depends on q), we can get rid of the term (Cn)

q−1

2 . By
further using (1 + x) ≤ qx/ log q we can upper bound the
above by kq−1/2qΦ where

Φ = nhl + A(q)nβ − mt + A′(q)mte
−D(q)kE/mt

with A′(q) = (q − 1)/ log q. Notice that kE/mt =
C(q, δ)k/ log(kmt−1/mt) can be made arbitrarily large by
taking k large enough. In particular, we can choose k∗(q, δ)
such that A′(q)e−D(q)kE/mt ≤ δ/3 for any k ≥ k∗. For such
k, and using the fact that mt ≥ ml = [nhl +A(q)nβ](1+ δ)

Φ ≤ nhl + A(q)nβ − ml(1 − δ/3) ≤ −
1

3
δ[nhl + A(q)nβ] .

Summing the various contributions, we obtain, for any k ≥
k∗(q, δ)

Q(l)
t ≤ C(q, k, δ)(log n)

k
q −2n− k

q +2 + k
q−1

2 q−δ(A(q)nβ+nhl)/3 , (28)

which proves the thesis.

VI. SOME AUXILIARY RESULTS

Proof: Lemma 3. First consider Eq. (10). Let X1 be an
integer random variable with distribution p, X1(l) its l-th
least significant q-ary digit and Z the indicator function on
X1(l) ≥ 0. From H(X1(l)) = H(Z) + H(X1(l)|Z) it
follows that, for pl = P{X1 > ql}:

hl ≤ pl logq(q − 1) − pl logq pl − (1 − pl) logq(1 − pl) .

Choosing q large enough so that pl ≤ Aq−ε ≤ 1/2 for all
l ≥ 1, we can upper bound −(1 − pl) logq(1 − pl) by 2pl,
thus getting

hl ≤ 3pl − pl logq pl ,

which implies Eq. (10) for pl ≤ Aq−lε.)
In order to prove Eq. (11), first notice that H(X1) =

H({X1(l)}) ≤
∑

l≥0 H(X1(l)) whence h2(p) ≤∑
l≥0 hl log2 q. By the same argument h2(p) ≥ h0 log2 q.

The thesis follows by bounding
∑

l≥0 hl using Eq. (10).

Proof: Lemma 4.. The number of vectors with type θ is
upper bounded by qnH(θ). Since there are at most (n + 1)q

distinct types, |Tn(p∗)| ≤ qnH(p∗)+nKn where

Kn ≡ sup
θ
{H(θ) − H(p∗) : D(θ||p∗) ≤ n−γ} +

logq(n + 1)q

n
.

The bound H(θ)−H(p∗) ≤ ||θ−p∗||1 log(q/||θ−p∗||) and
||θ − p∗|| ≤

√
2D(θ||p∗) [3].

Equation (12) is just Sanov Theorem.

VII. ACKNOLEDGMENTS
Yi Lu is supported by the Cisco Stanford Graduate Fel-

lowship.

REFERENCES
[1] S. Dharmapurikar, A. Kabbani, Y. Lu, A. Montanari and B. Prabhakar.

“Passing Messages Through Counter Braids: A Novel Approach to
Traffic Measurement.” Technical Report, TR06-ISL012201, March,
2007.

[2] C. Estan and G. Varghese. “New Directions in Traffic Measurement
and Accounting: Focusing on the Elephants, Ignoring the Mice.” ACM
Trans. on Comp. Syst., 21:270–313, 2003.

[3] T. Cover and J. A. Thomas, Elements of Information Theory, Wiley
Interscience, New York, 1991

[4] Robert G. Gallager. Low-Density Parity-Check Codes. MIT Press,
Cambridge, Massachussetts, 1963.

[5] T. Richardson and R. Urbanke, Modern Coding Theory, draft available
at http://lthcwww.epfl.ch/mct/index.php

[6] G. Caire, S. Shamai, and S. Verdú. “Noiseless data compression with
low density parity check codes.” In P. Gupta and G. Kramer, editors,
Dimacs Series in Mathematics and Theoretical Computer Science,
pages 224–235. AMS, 2004.

[7] E. Berlekamp, R. J. McEliecee, and H. C.A. van Tilborg. “On the
inherent intractability of certain coding problems.” IEEE Trans. In-
form. Theory, IT-29:384–386, 1978.

[8] F. R. Kschischang, B. J. Frey and H-A. Loeliger, “Factor graphs and
the sum-product algorithm” (2001), IEEE Trans. Inform. Theory 47,
498-519.

[9] S. Aji, H. Jin, A. Khandekar, D. J.C. MacKay, and R. J. McEliece.
“BSC Thresholds For Code Ensembles Based on ‘Typical Pairs’
Decoding.” In Brian Marcus and Joachim Rosenthal, editors, Codes,
Systems and Graphical Models, pages 195–210. Springer, 2001.

[10] G. Miller and D. Burshtein, “Asymptotic enumeration method for
analyzing LDPC codes,” IEEE Trans. Inform. Theory, vol. 50, no. 6,
pp. 1115–1131, June 2004.

[11] S. L. Litsyn and V. S. Shevelev, “On ensembles of low-density parity-
check codes: asymptotic distance distributions,” IEEE Trans. Inform.
Theory, vol. IT–48, pp. 887 –908, Apr. 2002.

[12] A. Bennatan and D. Burshtein. “On the application of LDPC Codes to
Arbitrary Discrete-Memoryless Channels.” IEEE Trans. Inform. The-
ory, 50:417–438, 2004.

