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SHRINK: A Method for Enabling Scaleable
Performance Prediction and Efficient
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Rong Pan, Balaji Prabhakar, Senior Member, IEEE, Konstantinos Psounis, Member, IEEE, and Damon Wischik

Abstract—As the Internet grows, it is becoming increasingly dif-
ficult to collect performance measurements, to monitor its state,
and to perform simulations efficiently. This is because the size and
the heterogeneity of the Internet makes it time-consuming and dif-
ficult to devise traffic models and analytic tools which would allow
us to work with summary statistics.

We explore a method to side step these problems by combining
sampling, modeling, and simulation. Our hypothesis is this: if we
take a sample of the input traffic and feed it into a suitably scaled
version of the system, we can extrapolate from the performance of
the scaled system to that of the original.

Our main findings are as follows. When we scale an IP network
which is shared by short- and long-lived TCP-like and UDP flows
and which is controlled by a variety of active queue management
schemes, then performance measures such as queueing delay and
drop probability are left virtually unchanged. We show this in
theory and in simulations. This makes it possible to capture the
performance of large networks quite faithfully using smaller scale
replicas.

Index Terms—Network downscaling, performance extrapola-
tion, small-scale network replica, traffic sampling.

I. INTRODUCTION

EASURING the performance of the Internet and pre-
dicting its behavior under novel protocols and architec-
tures are important research problems. These problems are made
difficult by the sheer size and heterogeneity of the Internet: it
is very hard to simulate large networks and to pinpoint aspects
of algorithms and protocols relevant to their behavior. This has
prompted work on traffic sampling [6], [7]. Sampling certainly
reduces the volume of data, but it can be hard to work back-
ward—to infer the performance of the original system.
A direct way to measure and predict performance is with
exhaustive simulation. If we record the primitive inputs to the
system, such as session arrival times and flow types, we can in
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principle compute the full state of the system. Further, through
simulation, we can test the behavior of the network under new
protocols and architectures. But such large-scale simulation re-
quires massive computing power.

Reduced-order models can go some way in reducing the
burden of simulation. In some cases [12], [30], one can re-
duce the dimensionality of the data, for example, by working
with traffic matrices rather than full traces, while retaining
enough information to estimate the state of the network. The
trouble is that this requires careful traffic characterization
and model-building. The heterogeneity of the Internet makes
this time-consuming and difficult, since each scenario might
potentially require a different model.

In this paper, we explore a way to reduce the computational
requirements of simulations and the cost of experiments and
hence simplify network measurement and performance predic-
tion. We do this by combining simulations with sampling and
analysis. Our basic hypothesis, which we call SHRiNK (Small-
scale Hi-fidelity Reproduction of Network Kinetics), is this: if
we take a sample of the traffic and feed it into a suitably scaled
version of the system, we can extrapolate from the performance
of the scaled system to that of the original.

This has two benefits. First, by relying only on a sample of
the traffic, SHRiNK reduces the amount of data we need to work
with. Second, by using samples of actual traffic, it short-cuts the
traffic characterization and model-building process while en-
suring the relevance of the results.

This approach also presents challenges. At first sight, it ap-
pears optimistic. Might not the behavior of a large network with
many users and higher link speeds be intrinsically different from
that of a smaller network? Somewhat surprisingly, we find that,
in several essential ways, one can mimic a large network using
a suitably scaled-down version. The key is to find suitable ways
to scale down the network and extrapolate performance.

Our main results are as follows.

1) For networks in which flows arrive at random times and
whose sizes are heavy-tailed, performance measures
such as the distribution of the number of active flows
and of their normalized transfer times are left virtually
unchanged in the scaled system. In Section II, we verify
this using a theoretical argument. This argument reveals
that the method we suggest for “SHRiNKing” networks
in which flows arrive at random times will be widely
applicable (i.e., for a variety of topologies, flow transfer
protocols, and queue management schemes). These net-
works are representative of the Internet.
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2) For networks which carry long-lived TCP-like flows ar-
riving in clusters and which are controlled by a variety
of active queue management schemes, we find a different
scaling from that in Section II which leaves the queueing
delay and drop probability unchanged as a function of
time. In Section III, we verify this using the differential-
equation-type models developed in [20]. (Such models
have been widely used in designing control algorithms
and for conducting control-theoretic analyses of network
behavior.) These networks are widely used in simulations,
e.g., [17], [18], and [29].

3) Finally, we apply SHRiINK to web server farms. Ex-
perimental results with multiple machines reveal that
a number of performance metrics remain virtually un-
changed.

A motivating example: before continuing, we consider a
simple example which illustrates the key points—the M /M /1
queue. Suppose jobs arrive at a queue according to a Poisson
process of rate A and that service times are independent and
exponential with rate ;1 > A. Let Q() be the number of jobs in
the system at time ¢.

Now scale the system as follows. Sample the arriving jobs,
keeping each job with probability «, independent of the others,
so that the sampled arrivals form a Poisson process of rate a\.
Consider feeding the sampled arrivals to a separate queue whose
server runs slower than the first by a factor «. This is equivalent
to multiplying the service times by a factor 1/« (so that they are
rate arp exponentials), and the second queue is also M /M /1. If
Q(t) is the number of jobs in the slower queue at time ¢, then
it is not hard to see that Q(t) = Q(«t) in distribution. That
is, the evolution of the slower queue is statistically equivalent
to that of the original queue slowed down in time by a factor
«. This is because the queue-size process in an M/M/1 queue
is a birth—death chain. The birth and death rates in the original
queue are A and p, respectively, while they are oA and ayu in
the slower queue.

As a consequence, in equilibrium, the marginal distributions
of the two queues are equal, i.e., P(Q > n) = (A/p)" =
(aX/ap)™ = P(Q > n). Thus, we have inferred the distribu-
tion of queue-size, and hence of delay, in the original high-speed
system by looking at a smaller scale version.

It is natural to be skeptical of the relevance of these results.
After all, they assume Poisson input traffic, whereas Internet
packet traffic exhibits long-range dependence. Even more, these
are open networks (the rate of arrivals is independent of current
network congestion), which is quite different from the window
flow-controlled Internet.

Nevertheless, we find in the coming sections that the
SHRINK approach can be applied to IP networks, because
it relies on factors other than packet level statistics; indeed,
we shall see that it relies on certain fundamental scalability
properties of networks.

II. TP NETWORKS WITH SHORT AND LONG FLOWS

It has been shown that the size distribution of flows on the
Internet is heavy-tailed [31]. Hence, Internet traffic consists of
a large fraction of short flows and a small fraction of long flows
that carry most of the traffic. Also, it has been recently argued
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arrival rate: 60flows/sec
propagation delay: 50msec
# of packets/flow ~ Pareto

arrival rate: 60flows/sec
propagation delay: 100msec
# of packets/flow ~ Pareto

Fig. 1. Basic network topology and flow information.

that, since network sessions arrive as a Poisson process [9], [22],
[26], network flows are as if they were Poisson [15]. (In par-
ticular, the equilibrium distribution of the number of flows in
progress at any time can be obtained by assuming that flows
arrive as a Poisson process.) We take these observations into ac-
count and study the scaling behavior of IP networks carrying
heavy-tail distributed, Poisson flows. Such networks are a plau-
sible representation of the Internet.

A. Sampling and Scaling

Due to the tremendous increase in the volume and speed of
network traffic, it is very expensive to sample packets. At the
other end of the spectrum, one may sample network sessions.
Here is an exmaple of a network session: an end user is browsing
the web to download pictures; a network session starts when
he/she starts web browsing and terminates when he/she stops.
Each download during this session corresponds to a flow. It is
hard to sample sessions in practice, because only end users have
enough information to distinguish different sessions. Hence, we
choose to sample network flows.! This reduces the traffic we
have to deal with and is easy to implement in practice.

A second issue related to sampling is how and where are the
network flows sampled? Each flows is chosen with probability
«, all choices being independent. Flows are sampled at network
entry points, e.g., at edge routers.

We shall now describe scaling—the procedure of obtaining a
small-scale replica of the original network. This is done as fol-
lows: 1) link capacities are reduced by a factor «; 2) propagation
delays are scaled up by a factor 1/«; and 3) protocol timeouts
are also scaled up by the same factor. Informally, these steps aim
to slow down the speed of the network, which is a notion that
will be made more clear and precise in Section II-C.

B. Simulation Results

In this section, we use simulations to investigate the accu-
racy with which SHRiNK can predict the performance of IP net-
works using the network simulator ns [21].

To begin with, we consider the simple topology in Fig. 1.
There are three routers, R1, R2, and R3, two links in tandem,
and three groups of flows, grpl, grp2, and grp3. The link speeds

In accordance with the usual practice [8], [13], [14], we say that packets
belong to the same flow if they have the same source and destination IP address
and source and destination port number. A flow is said to be “on” if its packets
arrive more frequently than a certain “timeout” number of some seconds. The
timeout is usually set to something less than 60 s in practice.
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Fig. 2. Distribution of number of active flows on the first link (uncongested
case).

are 10 Mb/s. Routers use either the random early detection
(RED) or the DropTail queue management schemes. The RED
parameters are ming, = 100, max, = 250, and w = 0.000 05.
When using DropTail, the buffer can hold 200 packets.

Within each group, flows arrive as a Poisson process with rate
A. We vary A to study both congested and uncongested network
scenarios. (We use built-in routines in ns to generate web ses-
sions consisting of a single object each. This is what we call a
“flow” in the simulations.) Each flow consists of a Pareto-dis-
tributed number of packets with average size 12 packets and
shape parameter equal to 1.2. The packet size is set to 1000
bytes. The propagation delay of each flow of grpl, grp2, and
grp3, is 50, 100, and 150 ms, respectively.

We run the experiments for scale factors « = 1 and 0.1 and
compare the distribution of the number of active flows as well as
the histogram of the normalized delays of the flows in the orig-
inal and the scaled system. (The normalized delays are the flow
transfer times multiplied by a..) We also compare more detailed
performance measures such as the distribution of active flows
that are less than some size and belong to a particular group
and the distribution of the packet buffer occupancies. As will be
shown in Section II-C, the method can predict the marginal and
joint distributions of a large number of performance measures.

We start with the simple case of an uncongested network,
i.e., very few packet drops occur. The flow arrival rate is set to
45 flows/s within each group. Fig. 2 plots the distribution of the
number of active flows in the first link. The distributions at the
two different scales match. A similar result and conclusion is
obtained at the second link.

Fig. 3 plots the histogram of the normalized delays of the
flows of grpl. To generate the histogram, we use normalized
delay chunks of 10 ms each. There are 100 such delay chunks
in the plot, corresponding to flows having a normalized delay
of 0 —10 ms, 10-20 ms, and so on. The last delay chunk is for
flows that have a normalized delay of at least 1 s. The plot shows
that the distribution of the normalized delays at the two scales
match. The results for the other two groups of flows lead to the
same conclusion regarding the scalability of SHRiNK.

It is worth elaborating upon the specific nature of the plot. The
peaks are due to the TCP slow-start mechanism. The left-most
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Fig. 3. Histogram of normalized delays of grpl flows (uncongested case).
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Fig. 4. Distribution of number of active flows on the first and second links
(RED).

peak corresponds to flows which send only one packet and face
no congestion. These flows only have to wait for the setup of the
TCP connection. (Hence, for example, in Fig. 3, where propa-
gation delays are 50 ms, the normalized delay for these flows
is a bit more than 200 ms accounting for SYN, SYN-ACK, the
data packet, the ACK for the packet, and insignificant transmis-
sion and queueing delays.) The portion of the curve between
the first and second peaks corresponds to flows which send only
one packet and face some congestion (but no drops). The next
peak corresponds to flows which send two or three packets and
face no congestion. These flows have to wait for an additional
round-trip time for the acknowledgment for the first packet to
arrive. The third peak corresponds to flows which send between
four and seven packets and face no congestion, and so on.2

We now present results for the more realistic case of con-
gested networks. Accordingly, flow arrival rates are set to
60 flows/s within each group. Flows experience drops that
account for up to 5% of the total traffic. We first present simu-
lations where all three routers use RED.

2Recall that, during the slow-start phase of TCP, senders double their window
sizes upon receiving acknowledgment.
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Fig. 4 plots the distribution of the number of active flows in
the first and second links. The two distributions match in both
links.

Fig. 5 plots the histogram of the normalized delays of the
flows of grpl and grp2. Notice that we use 150 and 200 delay
chunks for the grpl and grp2 flows, respectively. Fig. 6 plots the
histogram of the normalized delays of the flows of grp3. Three
hundred delay chunks are used in this plot. In all three cases, the
delay histograms match.

What about more detailed performance measures? As an ex-
ample, we compare the distribution of active flows belonging
to grp3 that are less than 12 packets long. Fig. 7 compares the
two distributions from the original and scaled system. Again,
the plots match.

We now present results when DropTail is used instead of
RED. Fig. 8 plots the distribution of the number of concurrently
active flows in the second link between routers 22 and R3 when
all routers use DropTail. It is evident from the plot that the two
distributions match as before. A similar scaling holds for the
other link.

Fig. 9 plots the histogram of the normalized delays of the
flows of grp2 when DropTail is employed. The distributions
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Fig. 7. Distribution of number of active grp3 flows with size less than 12
packets (RED).
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match as before. A similar scaling holds for the other two groups
of flows.

So far, the method has successfully predicted the distribution
of various performance measures at the flow level. Fig. 10 com-
pares the distribution of the number of packets at the first queue,
which uses RED, in the original and scaled networks. As evident
from the plot, the method can also predict the distribution of the
queue occupancies.

C. Theory

Recall that flows arrive as a Poisson process, bearing sizes
drawn independently from a common (Pareto) distribution.3

By the state of the network at time t, we mean the total
information that is needed to resume the evolution of the
network from time ¢ onwards, given input data (flow arrival
times and sizes) after time ¢. For example, the state consists
of information about currently active flows, e.g., the number
of packets they have already transfered and where the packets
that are in transit are in the network. Write S(t) for the state

3Note that, whereas flow sizes are independent, their delays (equal to their
total transfer times) are usually dependent.
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at time ¢. If I(¢) denotes the input data to the system, then
S(t) is some function F of the input until time ¢. Symbol-
ically, S(t) = F[I(s),s < t]. We shall abbreviate this to
S(t) = F[I(-)]. Note that F is some complicated function
depending on transport protocols, queue management schemes,
and other network- and user-specific details.

Theorem 1: Consider a network where flows arrive as a
Poission process bearing sizes drawn independently from an ar-
bitrary distribution. Let S() be the state of the original network
at time ¢ and S(t) be the state of the scaled network at time ¢.

Then S(at)gg(t), i.e., they are equal in distribution.

Proof: Let I(-) and I( -) be the inputs to the original and
scaled systems, respectively. Let 7° and F° denote the func-
tions corresponding to the original and scaled (slowed-down)
networks. Therefore, S(t) = F°[I(-)] and S(t) = F*[I(-)].
Our method of proof consists of constructing a third system,
the “time-stretched system,” which is obtained by applying the
input I(£) = I(at) to the scaled system. That is, the input to
the time-stretched system is the same as the input to the orig-
inal system stretched out in time by a factor a. To elaborate
this point, suppose that a flow f of size s arrives to the original
system at time ¢. Then, it arrives at time ¢ / v (still possessing size
s) to the time-stretched system. The converse is true as well.

source f_kt_‘

B\

destination

ﬁa a<1

NN\ VA VA \ V4
A\ W

Fig. 11. Time evolution of (i) the original, (ii) the time-stretched, and (iii) the
scaled system.

It is a simple but far-reaching property of the Poisson process
that I( - )gf (-), since sampling a proportion « of the points of
a rate A Poisson process will yield a rate oA Poisson process.
Also, the independent nature of the sampling process does not
destroy the i.i.d. nature of the flow sizes.

Let S(t) = F*[I(-)] denote the state of the time-stretched
system at time ¢. We shall show that the following identity is
satisfied at every time ¢:

S(t) =
Establishing this will complete our proof, since S(at) =
S(t) = FHI()EF ()] = S(8).

We now establish the identity at (1). Consider the conse-
quences of our method of scaling (slowing down) the original
network: reducing link speeds by a factor o will increase
queueing delays and transmission times by factor 1/« and
increasing progagation delays by a factor 1/« will increase
propagation times by 1/«. Since the total delay of a packet is
the sum of its queueing, transmission, and propagation times,
we have effectively increased the delay of every packet by 1/a.
This in turn increases the delay of every flow transfer time by a
factor 1/c. It is now quite easy to see that much more is true:
since the networks are all discrete-event systems, clocked by
transmissions and acknowledgments of packets, every event
that occured in the original system at time ¢ will occur in the
time-stretched system at time ¢/«. Therefore S(at) = S(t),
and the theorem is proved.

Remark 1: 1t is instructive to consider an illustration of the
three systems, as in Fig. 11. The time evolution of each of the
three systems is shown between an arbitrary source—destina-
tion pair. In each subfigure, the corresponding input process
is shown on the top line. The graph of an input process de-
notes flow arrival times and their corresponding sizes. The lines
going upwards denote acknowledgments. Finally, the big “X”’s
denote packet drops. The original system has an input process
of I(t). For the time-stretched system, packets have larger trans-
mission and propagation delays, denoted by “fatter” parallelo-
grams and larger slopes, respectively; the input process I (t) is
a time-stretched version of 7(¢). Notice that the time-stretched
system is just a device for the proof, and it does not exist. The
input of the scaled system I (t) is just a subsample of the flows
of I(t). The unsampled flows of I(t) are denoted by tiny “x”’s
on the top line of Fig. 11(iii).

S(at). ()
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Remark 2: The theorem explains why the distributions of
various performance measures match in distribution. Further, it
shows that performance scaling involves speeding up the time,
and this is why we compare normalized delays rather than de-
lays. The proof of the theorem only relies on the assumptions
about inputs (Poisson flow arrivals and i.i.d. sizes) and the fact
that the network evolves as a discrete-event system. Therefore,
when these assumptions are met,* SHRiNK is widely appli-
cable for marginal, joint, steady-state, and transient distributions
of a large family of performance measures, for any network
topology, transport protocol, and queue mechanism. Another
consequence of Theorem 1 is that SHRiNK works for any value
of a. Thus, networks can be slowed down arbitrarily. However,
the smaller « is, the slower the network is, and the longer it takes
for distributions to converge.

D. Applications

Since the method provides a way to deduce the performance
of a fast network from a slowed-down replica, it can be used to
reduce the cost of experiments. Imagine a test network with slow
network interfaces, slow switches and routers, and cheap links
that is fed with a sample of the actual network traffic.5 In this
network, one may experiment with new algorithms, protocols,
and architectures and extrapolate performance.

Another use of the method is the following. There has been
a recent development of research prototypes and products [5]
that record partial information about the network by sampling
incoming traffic. SHRiNK offers a systematic way to reproduce
offline the behavior of the network using this sample.

III. IP NETWORKS WITH LONG-LIVED FLOWS

In this section, we explore how SHRiNK can be applied to
IP networks used by long-lived TCP-like flows that arrive in
clusters and are controlled by queue management schemes like
RED. These networks are widely used to study the performance
of TCP and of various AQM schemes; see, for example, [17],
[18], and [29].

First, we explain in general terms how we sample traffic, scale
the network, and extrapolate performance.

Sampling is simple. We sample a proportion « of the flows,
independently and without replacement.

We scale the network as follows: link speeds and buffer sizes
are multiplied by «.. The various AQM-specific parameters are
also scaled, as we will explain in Section III-A. The network
topology is unchanged during scaling. In the cases we study, we
find that performance measures such as average queueing delay
are virtually the same in the scaled and the unscaled systems.

Our main theoretical tool is the recent work on fluid models
for TCP networks [20]. While [20] shows these models to be
reasonably accurate in most scenarios, the range of their appli-
cability is not yet fully understood. However, in some cases the
SHRIiNK hypothesis holds even when the fluid model is not ac-
curate, as shown in Section III-A3.

4We refer the reader to [15] and [4] for an interesting discussion of the M/GI
models and their role in generating the well-documented self-similar nature of
network traffic.

SThis network should also have larger propagation delay than the original.
This can be achieved in software or with delay-loops.
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Fig. 12. Basic network topology and flow information.

A. RED

The key features of RED are the following two equations,
which together specify the drop (or marking) probability. RED
maintains a moving average q, of the instantaneous queue size
q and ¢, is updated whenever a packet arrives, according to
the rule

da = (1 — w)qa + wq

where the w parameter determines the averaging window.
The average queue size determines the drop probability p,
according to

PRED(%)
0, if g, < mingy,
= Pmax (%) ’ if rninth S Ga < maxgp (2)
1, if ¢, > maxyy.

We now explain how we scale the parameters pmax,
mingp,, maxgy, and w. We will multiply minty, and maxgy, by a.
Recall that we are multiplying the buffer size by «; thus, mingy,
and maxy}, are fixed to be a constant fraction of the buffer size.
(This is in accord with the recommendations in [11].) We will
keep pmax fixed at 10%, so that the drop probability is kept
under 10% as long as the buffer is slightly congested. The
averaging parameter w takes more thought. We shall multiply it
by a~ 1. The intuition is this: when the network is scaled down,
packets arrive less frequently, so g, is updated less often; in
turn, this requires us to make the updates larger in magnitude.
We shall see that both simulation and theory show that this
choice of scaling is natural for extrapolating performance.

1) Basic Setup: We consider two congested links in tandem,
as shown in Fig. 12. There are three routers: R1, R2, and R3,
and three groups of flows: grpl, grp2, and grp3. The link
speeds are 100 Mb/s and the buffers can hold 8000 packets.
The RED parameters are miny;, = 1000, maxs, = 2500, and
w = 0.000 005. For the flows: grp0 consists of 1200 TCP flows
each having a propagation delay of 150 ms, grpl consists of
1200 TCP flows each having a propagation delay of 200 ms,
and grp2 consists of 600 TCP flows each having a propagation
delay of 250 ms. The flows switch on and off as shown in the
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Fig. 14. Basic setup: average queueing delay at Q2.

timing diagram in Fig. 12. Note that 75% of grp0O flows switch
off at time 150 s.

This network is scaled down by factors & = 0.1 and 0.02,
and the parameters are modified as described above.

We plot the average queueing delay at Q1 and Q2 as a func-
tion of time in Figs. 13 and 14. The drop probability at QI is
shown in Fig. 15. Due to limited space, we omit the plot of drop
probability for Q2 since its behavior is similar to that of QI.
We see that the queueing delay is almost identical at different
scales. (It is worth noting that it is the queueing delay which is
unchanged during scaling, whereas in the M /M /1 model it was
the queue size distribution.)

Since the drop probability is also the same in the scaled and
unscaled systems, the dynamics of the TCP flows are the same.
In other words, an individual flow which survives the sampling
process essentially cannot tell whether it is in the scaled or un-
scaled system.

2) Theory: We now show that these simulation results are
supported by the recently proposed theoretical fluid model of
TCP/RED [20].

Consider N flows sharing a link of capacity C. Let W;(t)
and R;(t) be the window size and round-trip time of flow ¢ at

0.08

Drop Probability
o
o
S
T

0 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Simulation Time (Sec)

Fig. 15. Basic setup: drop probability at Q1.

time ¢. Here, R;(t) = T; + q(t)/C, where T; is the propagation
delay and ¢(¢) is the queue size at time ¢. Let p(t) be the drop
probability at time ¢ and g,(t) the average queue size used by
RED.

The fluid model describes how these quantities evolve or,
rather, since these quantities are random, the fluid model de-
scribes how their expected values evolve. Let X be the expected
value of random variable X . Then the fluid model equations are

dWZ(t) _ 1 z(t) i(t—ﬁ)f
T T R Rttt @
_ N
W) S Wi Riats ~ 7)) ~ @
1=1
dq_;t(t) _ log(lé— w) G(t) — log(lé— w) a) 5)
P(t) = preD(Ga(t)) (6)

where 7; = 7;(t) solves 7;(t) = R;(q(t — 7:(t))), 6 is the
average packet inter-arrival time, and prgp is the same as in
2).

Remarks: While the applicability of these equations is not
yet fully understood, [20] indicates that empirically they are
reasonably accurate. Also, note that we have the constant 1.5
in (3) and not 2 as in [20]. This change improves the accuracy
of the fluid model for reasons elaborated in [24]. Finally, note
that, while these equations describe a single link, the extension
to networks is straightforward and is given in [20].

Returning to the differential equations, suppose we have a
solution to these equations

Now, suppose the network is scaled and denote by C’, N’, etc.,
the parameters of the scaled system. When the network is scaled,
the fluid model equations change, and so the solution changes.
Let (W/(-),q'(-),q.(-),p'(-)) be the solution of the scaled
system. In fact, we claim that

(WLI( ) )7 ql( ’ )7 (Z/z( : )7ﬁl( ) )) = (WL( ) )7 aq( : )7 a(ja( : )/ﬁ( ) ))
If our claim is established, we will obtain that the queueing delay
7 /C" = ag/aC is identical to that in the unscaled system.
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Note also that the drop probability is the same in each case
(p(t) = p'(¢)). Thus, we will have theoretical support for the
observations in the previous section.

Establishing the claim. We will proceed through the fluid model
equations one by one. First consider (3). Note that R (7 (t)) =
T, +7/C" =T, + ag/aC = R;(q(t)), so that 7/(¢t) = 7(t).
Hence

AW (t) 1 WiBWit—1)

a R(7'(¢)) B L5R(q(t — T/))p (t—7').

Next consider (4). Suppose for simplicity that all flows have
identical routes. "[hen the W; are statistically identical, hence
the expectations W; are all equal. So, we can rewrite the equa-
tion as

dg(t) _ NWi(t)

dt - Ri(q(t 1))

It is then easy to see that

dg'(t) _ dq(t)

d dt  R(7({t—1T))

NI

This extends to the case of multiple groups of flows with dif-
ferent routes, provided we sample a proportion « from each
group.

Now consider (5). Recall that w’ = w/« and note that the av-
erage packet inter-arrival time increases as the number of flows
and the capacity decrease, in proportion 6’ = §/«. Making the
approximation log(1 — w/«a) ~ log(1l — w)/«, which is good
for small w, we see that log(1 — w')/§’ = log(1 — w)/6 and
hence that

dq., (¢ log(1 —w') _ log(1 —w')
alt) o T80 =) gy - B0 =g,

In fact, we chose w’ = w/a so that this equation would be
satisfied, allowing us to scale properly.¢

Finally, consider (6). Recall that p] .. = pmax and that
min'th = aming}, and maxfch = amaxyy. It is then clear that

5 .
_ q, (1) — mingy,
(0 = (L2 =200 ).

/ s
maxg, — Mingy

This establishes the claim.

Fig. 16 presents the solution of the fluid model for the
queueing delay at Q1 under the scenario of Fig. 1 for the scale
parameters « = 1 and 0.1. As can be seen, both of the solutions
are virtually identical, providing a numerical illustration of the
scaling property of the differential equations established above.

Remarks: 1Tt is worth remarking on a theoretical nicety re-
lated to the scaling property of these differential equations. If
they had been derived from a limiting procedure in which the
number of users, link capacities, and buffer sizes all increase
proportionally with N, then the scaling behavior would have
been entirely expected (one has only to set N equal to /N be-
fore taking limits). However, they have been derived via a dif-
ferent route in [20]: by assuming that packet drops occur as a
Poisson process. Therefore, the scaling property they exhibit is

®Itis true that w’ needs to be less than 1. However, this would not be a limiting
factor for the magnitude of scaling since w is generally set to a small value for
high-speed links: for example, 10~ for a 1-Gb/s link.
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Fig. 17. With faster links: average queueing delay at Q1 (zoomed in).

rather stunning. It strongly suggests that, in fact, they describe
the behavior of the network in a large-N limit.

We also draw attention to some interesting features of all of
the performance-related figures in this section. Note that tran-
sients are pretty well mimicked at the smaller scales. Also note
that the smaller scale plots look more jagged, as if they are a
noisy version of the original plots. The last point would be an
easy consequence of a limit theorem: if in the large- NV limit the
behavior of the network is describable using deterministic dif-
ferential equations, then away from the limit (at smaller and
smaller scales) a corresponding central limit theorem would
suggest that the noise would be proportional to 1//c.

3) With Faster and Slower Links: Suppose we alter the basic
setup, by increasing the link speeds to 500 Mb/s, while keeping
all other parameters the same. Fig. 17 (zoomed in to emphasize
the point) illustrates that, once again, scaling the network does
not alter the queueing delay. Note that, under these conditions,
the queue oscillates. There have been various proposals for sta-
bilizing RED [18], [23]. We are not concerned with stabilizing
RED here: we mention this case to show that SHRiNK can work
whether or not the queue oscillates.
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Suppose we instead alter the basic setup by decreasing the
link speeds to 50 Mb/s, while keeping all other parameters
the same. Once again, scaling the network does not alter the
queueing delay. For such a simulation scenario, especially in
the time frame 100-150 s, the fluid model is not a good fit (see
Fig. 18). This is not unexpected [28]: actual window and queue
sizes are integer-valued whereas fluid solutions are real-valued;
rounding errors are nonnegligible when window sizes are small,
as is the case here. The range of applicability of the fluid model
is not our primary concern in this paper: we mention this case
to show that SHRiNK can work whether or not the fluid model
is appropriate.

4) With Web Traffic: So far, we have only considered long-
lived flows to which fluid models can be applied. We now in-
troduce short-lived web flows to each flow group in the basic
setup. Each session consists of multiple requests, each request
being for a single file. The number of requests within a session
is random (we use the standard ns settings), and file sizes are
Pareto-distributed with an average of 12 packets and a shape
parameter of 1.2. In our experiment on the unscaled network,
20000 web sessions were generated. In the scaled version, we
sample a proportion « of these sessions independently. We also
sample a proportion « of the original long-lived TCP flows, as
before.

Fig. 19 shows that scaling the network does not affect the
queueing delay much, even in the presence of web traffic. Note
that here the queueing delay is dominated by the behavior of
long-lived TCP flows which have reached steady state.

5) In a More Complex Network: As a further validation, we
test SHRiNK in a more complex network, shown in Fig. 20.
There are seven routers R1-R7. Links R1-R2, R2-R3, R1-R5,
R3-R5, and R4-R5 run at 150 Mb/s, links R1-R4 and R5-R6
run at 100 Mb/s, and all other links run at 50 Mb/s. The trafficis a
mixture of UDP and web flows and long-lived TCP, AIMD, and
Binomial [2] flows. These last types have the following common
form: on receiving an acknowledgment, increase the congestion
window w by aw™ ! (TCP uses & = 1,n = 0) and, upon
incurring a mark/drop, decrease w by bw™ (TCP uses b = w/2,
m = 1). The parameters (a, n;b, m) describe each class.
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Fig. 19. With web traffic: average queueing delay at Q1.

end host

Fig. 20. More complex topology.

We omit a detailed description of all of the flows, except those
traversing link R5-R6 whose queueing dynamics are shown in
Fig. 21. Link R1—R5 carries 1000 long-lived flows, divided
into five groups: 200 normal TCP, 200 AIMD (1, 0;.1, 1), 200
AIMD (2, 0;.5, 1), 200 Binomial (1, 1;.5, 1), and 200 Binomial
(1.5, —1;.5, 1). The links are controlled by RED with ming, =
1000, maxg, = 2000 and w = 0.000005. As before, we see
that scaling the network does not affect the queueing delay.

B. Proportional-Integral (PI) Controller

A different AQM scheme is the PI controller [17], which
attempts to stabilize the queue size around a given target value.
The PI controller drops/marks packets with a probability p
which is updated periodically by

p(t"i'&t) = p(t)+a(Q(t+6t)_qtarget) _b(q(t)_qtarget)~ (7)

Here, ¢ is the instantaneous queue size, Gearget 15 the target queue
size, Ot is the update timestep (fixed here at 0.01 s), and @ and
b are arbitrary parameters.

We first explain how we will scale the network. As usual, let
a’, etc., denote the scaled parameters. We will sample a frac-
tion o of the flows and set a’ = a/a, b’ = b/ and ¢{,, 40 =
A(target -

(This is in accordance with the design rules in [17].)
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Fig. 22. PI controller: average queueing delay at Q1.

We simulated the basic setup of Section III-A, replacing RED
by the PI controller. We use a = 8.8681 x 10~7 and b =
8.7427 x 1077, as suggested in [17]. We set Gtarget to be 1750
packets, which is half way between our mint;, and maxyy, pa-
rameters from the last section.

Fig. 22 shows the average queueing delay at different scales
for Q1. We see that scaling the network does not affect queueing
delay, at least in steady state. There are some spikes when the
load changes abruptly, and the small-scale network shows
slightly larger spikes. Fig. 23 shows that the drop probability is
also not affected by scaling the network.

We can again use the fluid model to understand this behavior.
To obtain the fluid model for the PI controller, we simply replace
(5) and (6) in the fluid model by the fluid analog of (7): the
expected drop probability p evolves according to

dp dq

E = —bE (b - a)((j(t) - qtarget)-
As before, by our choice of scaling
dp dp’ _ ,d7 N, /
E = E = —b i + (b )(q (t) - qtarget)'

Thus, the fluid model also scales.
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C. Adaptive Virtual Queue (AVQ)

Another type of active queue management scheme is the AVQ
[19], an extension of the virtual queue algorithm [16]. The idea
of AVQ is to adapt the marking probability to reach some given
target utilization. It does this by running a virtual queue in par-
allel with the actual queue and marking packets which arrive
when the virtual queue is full.

The easiest way to give more details about the algorithm is
via the fluid equations suggested in [19]. Let v be the target
utilization, let C be the actual service rate of the queue, and
the service rate of the virtual queue C is dynamically adjusted
according to

O e 10) ®
where \(t) is the arrival rate at time ¢ and & is an arbitrary gain
parameter.

How should the parameters y and « be scaled? Since + is the
target link utilization which is independent of any specific link
speed, it is left unchanged. As a result, & is also left unchanged
in order to properly scale (8).

The basic setup of Section III-A is simulated, replacing RED
by AVQ. The parameters v = 90% and x = 0.1 are used at
both links. Figs. 24 and 25 show that scaling the network does
not affect essentially the link utilization or the virtual queueing
delay. Similar results hold for the marking probability.

This is also reflected in the fluid model for AVQ, which con-
sists of (8) and the following equations:

p(t) = % (10)
é W}Et) (11)

The first equation is a modified version of (3), modified to re-
move queueing delay, as AVQ should keep the (actual) buffer
empty. The last two equations are from [19]. Recall that T} is
the propagation delay for user i.
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Now, suppose that W;( - ), (- ), A(- ) and C( - ) are a solution
to the fluid equations. Consider the fluid equations for the scaled
network. It is not difficult to check that W;( - ), p( - ), @A( - ), and
aC/(-) solve these scaled equations.

D. DropTail

In all of the examples we have studied in this section—with
heterogeneous end-systems, with different of active queue man-
agement policies, and with a range of system parameters—we
have found that basic performance measures such as queueing
delay are left unchanged, when we sample the input traffic and
scale the network parameters in proportion. This conclusion is
supported by the theory of fluid models and even holds where
the fluid models fail. A notable exception is provided by the
queue management scheme DropTail, as described next.

Consider the basic network setup of Section III-A and sup-
pose that the routers use DropTail instead of RED. Fig. 26 shows
the average queueing delay at Q2. Clearly, the queueing delays
at different scales do not match. DropTail drops all of the packets
that arrive at a full buffer. As a result, it could cause a number
of consecutive packets to be lost. These bursty drops underlie
the failure of the scaling hypothesis in this case, as explained
in [25]. Separately, note that, when packet drops are bursty and
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Fig. 26. DropTail: average queueing delay at Q2.
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correlated, the assumption that packet drops occur as a Poisson
process (see [20]) is violated and the differential equations be-
come invalid. The connection between these two phenomena
(the failure of the scaling hypothesis and the invalidation of the
differential equation models) is explored in [25].

E. Applications

In this section, we find that, for certain IP networks sup-
porting flows that arrive in clusters, SHRiNK can predict the
time-wise performance of a high-speed network using its prop-
erly scaled-down replica. Although in reality flows do not arrive
in clusters, this type of flow arrivals has been used extensively
in the design of AQM schemes and in the analysis of TCP’s per-
formance [17], [10], [18]-[20], [29]. Most of this work demands
time-consuming ns simulations, especially for high-speed links.
Under these scenarios, the SHRiNK method offers an efficient
way of conducting packet-level simulations by drastically re-
ducing the simulation time.

To illustrate the potential savings in resources, we report
the CPU time to run the simulations in Section III-A1 and
Section II-A3. As shown in Fig. 27, the CPU time rises
monotonically as « increases. The reason behind this is the
fact that, for an event-driven simulator like ns, to simulate a
network with more packet arrivals would mean processing
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more events. Naturally, one would expect that the simulation
time for & = 0.5 would be half the simulation time for o« = 1.
Surprisingly, we find that the reductions of the CPU time are
slightly more than half in all three cases shown in Fig. 27.
Generally, the slopes of increase are greater than a=1.7

IV. WEB SERVER FARMS

In this section, we briefly outline how SHRiNK may apply
to web server farms. Since a rapid growth in the size and ca-
pacity of web server farms makes it increasingly difficult to take
performance measurements and to evaluate new algorithms and
architectures, if SHRiNK applies to web server farms, it would
help reduce this difficulty significantly.

How should server farms be scaled? Consider a web server
farm with NV servers each having speed s, as in Fig. 28.8 Sample
the requests for the original farm, retaining each independently
with probability «. Feed the sampled traffic into a scaled-down
farm consisting of either: 1) a fraction « of the original web
servers or 2) the same number of servers each having speed as
[see (i) and (ii) of Fig. 28]. Of interest is the closeness of the av-
erage response time, the server throughput, and capacity (max-
imum throughput) in the scaled system to that in the original
system.

We conducted some preliminary experiments using eight
Linux machines configured with a Pentium III at 550 MHz and
384 MB of RAM, connected to a 100-Mb/s switch. A number
of the machines constitute the web farm and each hosts one
Apache 1.3.9 [1] web server. The rest of the machines act as
clients, each of which run Surge [3] to generate HTTP requests.
We report experimental results for the case where one scales
the number of servers [as illustrated in Fig. 28(i)]. This scaling
is very useful in practice since it reduces the size of the system.

In the first experiment, the original farm consists of four
machines. The clients use HTTP1.1, load-balancing is a simple

7We believe that the extra time saving comes from machine-related issues
such as memory requirements. This deserves to be investigated further.

8This is a simplified picture of a farm, since the application servers, the
databases, and the switches used to interconnect the various components are
absent.
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round-robin scheme, and both load-balancing and sampling
take place at the user-equivalent level. (Surge uses the notion
of “user-equivalents” to generate sequences of requests similar
to those generated by web sessions that stay “on” throughout
the experiment.) The scaled system consists of a stand-alone
server.

Figs. 29 and 30 show the average response time and the
normalized server throughput as a function of the normalized
load. (Normalized quantities are quantities multiplied by a™1.)
Scaling the system leaves these quantities virtually unchanged.
Note that we treat the farm of the four servers as a single entity.
The normalized load is the total normalized load directed into
the farm, and the normalized throughput is the sum of the
normalized throughputs of the servers of the farm.

In the second experiment, the original farm consists of two
machines. The clients use HTTP1.0, load-balancing is again
achieved using a round-robin scheme that takes place at the user-
equivalent level, while sampling takes place at the HTTP re-
quest level. (We do not sample embedded requests but rather re-
quests for whole documents.) The scaled system is a stand-alone
server.
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Figs. 31 and 32 show the average response time and the nor-
malized server throughput as a function of the load.®

Again, these quantities remain virtually unchanged after
scaling. More experimental results can be found in [27].

The results of this section are encouraging. In paricular, we
have shown via experiments that a web farm consisting of a
round-robin load balancer and a number of web servers attached
to it can be scaled down when traffic sampling and load bal-
ancing occurs at the HTTP request or the web session level.
However, it should be noted that large web farms can have com-
plex architectures whose topological scaling might be more in-
volved than simply scaling the number of servers. More work
is needed to draw firm conclusions regarding the scalability of
server farms.

9The number of user-equivalents sending requests at the two systems is now
the same, hence the horizontal axis is not multiplied with a—" as before. It is
the number of requests directed at the two systems that differ due to document
sampling.

TABLE 1
SHRINKING NETWORKS

0 [ Section IT | Section ITT I
flow sizes heavy-tailed [ long-lived
flow arrivals at Poisson-like times | in clumps
physical scaling sample flows and reduce link capacities
increase propagation delays reduce buffer sizes
performance scaling in distribution in time
applicability general not valid for DropTail
usage experimentation simulations
the smaller the o the longer to converge the noisier the results

V. CONCLUSION

In this paper, we have described an approach, called
SHRINK, for scaleable performance prediction and efficient
simulation of large networks.

Our first example concerned a network in which TCP flows
arrive at Poisson-like times and are heavy-tailed distributed.
This is a plausible representation of the Internet.!* To construct
the network replica, in addition to sampling flows and reducing
link speeds, we increased propagation delays and protocol time-
outs. We showed that the distribution of a large number of per-
formance measures of the original network can be accurately
predicted by the replica, irrespective of the network topology,
the protocols, and the AQM schemes used. This type of scaling
can be used to reduce the cost of experiments since all of the
hardware components will run slower. The cost to pay is time;
one needs to wait longer, in real time, for the distribution of the
various metrics to converge on the scaled system.

Our second example was a congested network of long-lived
TCP-like flows that arrive in clusters. This is a popular network
model for designing and testing new algorithms. To construct
the network replica, in addition to sampling flows and reducing
link speeds, we scaled down buffer sizes and AQM parameters.
We showed that various performance measures can be predicted
as a function of time, for a large class of networks. A notable ex-
ception is networks that use DropTail as an AQM scheme. This
type of scaling can be used in simulations to reduce execution
time. The cost to pay is accuracy; the smaller the scaling factor
the more noisy the predictions are. The above points are sum-
marized in Table I.

Finally, we have proposed a way to apply SHRiNK to web
server farms. Our experimental testbed consisted of tens of ma-
chines; some generated HTTP traffic and some were organized
in a web farm replying to these requests. While the applica-
tion of SHRiINK to networks leaves the network topology un-
changed, in the web farm case we experimented with scaling
the topology too. Our results were encouraging.
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