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ABSTRACT: Suppose that there are n jobs and n machines and it costs cij to execute job i on
machine j. The assignment problem concerns the determination of a one-to-one assignment of jobs
onto machines so as to minimize the cost of executing all the jobs. When the cij are independent
and identically distributed exponentials of mean 1, Parisi [Technical Report cond-mat/9801176, xxx
LANL Archive, 1998] made the beautiful conjecture that the expected cost of the minimum assignment
equals

∑n
i=1(1/i2). Coppersmith and Sorkin [Random Structures Algorithms 15 (1999), 113–144]

generalized Parisi’s conjecture to the average value of the smallest k-assignment when there are n
jobs and m machines. Building on the previous work of Sharma and Prabhakar [Proc 40th Annu
Allerton Conf Communication Control and Computing, 2002, 657–666] and Nair [Proc 40th Annu
Allerton Conf Communication Control and Computing, 2002, 667–673], we resolve the Parisi and
Coppersmith-Sorkin conjectures. In the process we obtain a number of combinatorial results which
may be of general interest. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 27, 413–444, 2005
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1. INTRODUCTION

Suppose there are n jobs and n machines and it costs cij to execute job i on machine j. An
assignment (or a matching) is a one-to-one mapping of jobs onto machines. Representing
an assignment as a permutation π : {1, . . . , n} → {1, . . . , n}, the cost of the assignment
π equals

∑n
i=1 ciπ(i). The assignment problem consists of finding the assignment with the

lowest cost. Let

Cn = min
π

n∑

i=1

ciπ(i)

represent the cost of the minimizing assignment. In the random assignment problem the
cij are i.i.d. random variables drawn from some distribution. A quantity of interest in the
random assignment problem is the expected minimum cost, IE(Cn).

When the costs cij are i.i.d. mean 1 exponentials, Parisi [19] made the following
conjecture:

IE(Cn) =
n∑

i=1

1
i2

. (1.1)

Coppersmith and Sorkin [6] proposed a larger class of conjectures which state that the
expected cost of the minimum k-assignment in an m × n matrix of i.i.d. exp(1) entries is:

C(k, m, n) =
∑

i,j ≥ 0,i + j<k

1
(m − i)(n − j)

. (1.2)

By definition, C(n, n, n) = IE(Cn), and the right-hand sides of (1.2) and (1.1) are equal
when k = m = n.

In this paper, we prove Parisi’s conjecture by two different but related strategies. The
first builds on the work of Sharma and Prabhakar [20] and establishes Parisi’s conjecture by
showing that certain increments of weights of matchings are exponentially distributed with
a given rate and are independent. The second method builds on Nair [17] and establishes the
Parisi and the Coppersmith-Sorkin conjectures. It does this by showing that certain other
increments are exponentials with given rates; the increments are not required to be (and, in
fact, aren’t) independent.

The two methods mentioned above use a common set of combinatorial and probabilistic
arguments. For ease of exposition, we choose to present the proof of the conjectures in [20]
first. We then show how those arguments also resolve the conjectures in [17].

Before surveying the literature on this problem, it is important to mention that simulta-
neously and independently of our work, Linusson and Wästlund [14] have also announced a
proof of the Parisi and Coppersmith-Sorkin conjectures based on a quite different approach.

1.1. Background and Related Work

There has been a lot of work on determining bounds for the expected minimum cost and on
calculating its asymptotic value. Historically much of this work has been done for the case
when the entries were uniformly distributed between 0 and 1. However, [1] shows that the
asymptotic results carry over for exponential random variables as well.

Assuming that limn IE(Cn) exists, let us denote it by C∗. We survey some of the work;
more details can be found in [21, 6]. Early work used feasible solutions to the dual linear
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programming (LP) formulation of the assignment problem for obtaining the following lower
bounds for C∗: (1+1/e) by Lazarus [12], 1.441 by Goemans and Kodialam [8], and 1.51 by
Olin [18]. The first upper bound of 3 was given by Walkup [23], who thus demonstrated that
lim supn E(Cn) is finite. Walkup’s argument was later made constructive by Karp, Rinnooy
Kan, and Vohra, [11]. Karp [10] made a subtle use of LP duality to obtain a better upper
bound of 2. Coppersmith and Sorkin [6] further improved the bound to 1.94.

Meanwhile, it had been observed through simulations that for large n, E(Cn) ≈ 1.642
(Brunetti, Krauth, M. Mézard, and G. Parisi [4]). Mézard and Parisi [15] used the nonrig-
orous replica method [16] of statistical physics to argue that C∗ = π 2/6. [Thus, Parisi’s
conjecture for the finite random assignment problem with i.i.d. exp(1) costs is an elegant
restriction to the first n terms of the expansion: π 2/6 = ∑∞

i=1(1/i2).] More interestingly,
their method allowed them to determine the density of the edge-cost distribution of the
limiting optimal matching. These sharp (but nonrigorous) asymptotic results, and others of
a similar flavor that they obtained in several combinatorial optimization problems, sparked
interest in the replica method and in the random assignment problem.

Aldous [1] proved that C∗ exists by identifying the limit as the average value of a
minimum-cost matching on a certain random weighted infinite tree. In the same work he
also established that the distribution of cij affects C∗ only through the value of its density
function at 0 (provided it exists and is strictly positive). Thus, as far as the value of C∗ is
concerned, the distributions U[0, 1] and exp(1) are equivalent. More recently, Aldous [2]
established that C∗ = π 2/6, and obtained the same limiting optimal edge-cost distribution
as [15]. He also obtained a number of other interesting results such as the asymptotic
essential uniqueness (AEU) property—which roughly states that almost-optimal matchings
have almost all their edges equal to those of the optimal matching.

Generalizations of Parisi’s conjecture have also been made in several ways. Linusson
and Wästlund [13] conjectured an expression for the expected cost of the minimum k-
assignment in an m × n matrix consisting of zeroes at some specified positions and exp(1)

entries at all other places. Indeed, it is by proving this conjecture in their recent work [14]
that they obtain proofs of the Parisi and Coppersmith-Sorkin conjectures. Buck, Chan, and
Robbins [5] generalized the Coppersmith-Sorkin conjecture to the case where the cij are
distributed according to exp(aibj) for ai, bj > 0. In other words, if we let a = [ai] and
b = [bj] be column vectors, then the rate matrix for the costs is of rank 1 and is of the
form abT. This conjecture has been subsequently established in [24] by Wästlund using a
modification of the argument in [14].

Alm and Sorkin [3], and Linusson and Wästlund [13] verified the conjectures of Parisi
and Coppersmith-Sorkin for small values of k, m and n. Coppersmith and Sorkin [7] studied
the expected incremental cost, under certain hypotheses, of going from the smallest (m−1)-
assignment in an (m−1)×n matrix to the smallest m-assignment in a row-augmented m×n
matrix. However, as they note, their hypotheses are too restrictive and their approach fails
to prove their conjecture.

An outline of the paper is as follows: In Section 2 we recall some previous work from
[20] and state Theorem 2.4, whose proof implies a proof of Parisi’s conjecture. In Section
3 we describe an induction procedure for proving Theorem 2.4. We then state and prove
some combinatorial properties of matchings in Section 4 that will be useful for the rest
of the paper. Section 5 contains a proof of Theorem 2.4. Section 6 builds on the work of
[17] and contains a proof of Theorem 6.3. This implies a proof of the Coppersmith-Sorkin
conjecture. We conclude in Section 7. We now present some conventions that are observed
in the rest of the paper.
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1.2. Conventions

1. The words “cost” and “weight” are used interchangeably and mean the same
thing; the cost (or weight) of a collection entries is the sum of the values of the
entries.

2. The symbol “∼” stands for “is distributed as”, and “ ⊥⊥ ” stands for “is independent
of”.

3. By X ∼ exp(λ) we mean that X is exponentially distributed with mean 1/λ; i.e.,
IP(X > x) = e−λx for x, λ ≥ 0.

4. We use the term “rectangular matrices” to refer to m × n matrices with m < n.
5. We employ the following notation:

— Boldface capital letters such as A, C, M represent matrices.
— Calligraphic characters such as R, S, T , V denote matchings.
— The plain non-boldface version of a matching’s name, e.g., R, S, T , V represent

the weight of that matching.

6. Col(S) to represent the set of columns used by the matching S.
7. Throughout this paper, we shall assume that the costs are drawn from some continuous

distribution. Hence, with probability 1, no two matchings will have the same weight.
This makes the “smallest matching” in a collection unique; tie-breaking rules will
not be needed.

Remark 1.1. Note that all of our claims in Section 4 will go through even if we do not
assume uniqueness. However, when there is a tie, the claims must be reworded as “there
exists a matching with the smallest weight satisfying,” instead of “the smallest matching
satisfies.” The general statements when uniqueness is not assumed are stated in Section
4.11. However, we omit the proofs as it is similar to the case, but slightly more cumbersome
than, when uniqueness is assumed.

2. PRELIMINARIES

Let C = [cij] be an m × n (m < n) cost matrix with i.i.d. exp(1) entries. Let T0 denote
the smallest matching of size m in this matrix. Without loss of generality, assume that
Col(T0) = {1, 2, . . . , m}. For i = 1, . . . , n, let Si denote the smallest matching of size m in
the m × (n − 1) submatrix of C obtained by removing its ith column. Note that Si = T0 for
i ≥ m + 1. Therefore, the Si’s are at most m + 1 distinct matchings.

Definition 2.1 (S-matchings). The collection of matchings {S1, . . . , Sm, Sm+1(= T0)} is
called the S-matchings of C and is denoted by S(C).

Definition 2.2 (T-matchings). Let {T1, . . . , Tm} be a permutation of {S1, . . . , Sm} such
that T1 < T2 < · · · < Tm; that is, the Ti’s are a rearrangement of the Si’s in order of
increasing weight. The collection of matchings {T0, T1, . . . , Tm} is called the T-matchings
of C and is denoted by T (C).

Remark 2.3. Nothing in the definition of the S-matchings prevents any two of the
Si’s from being identical; however, we will show in Corollary 4.2 that they are all
distinct.
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These quantities are illustrated below by taking C to be the following 2 × 3 matrix:

C:
3 6 11

9 2 20

6 11

2 20
⇒ S1 = 13;

3 11

9 20
⇒ S2 = 20;

3 6

9 2
⇒ S3 = 5 = T0.

In the above example, T0 = 5, T1 = 13, and T2 = 20.
We now state the main result that will establish Parisi’s Conjecture.

Theorem 2.4. Consider an m × n (m < n) matrix, A, with i.i.d. exp(1) entries. Let
{T0, T1, . . . , Tm} denote the weights of the T-matchings of A. Then the following hold:

• Tj − Tj−1 ∼ exp(m − j + 1)(n − m + j − 1), for j = 1, . . . , m.
• T1 − T0 ⊥⊥ T2 − T1 ⊥⊥ · · · ⊥⊥ Tm − Tm−1.

The proof of this theorem will be presented later. For completeness, we now reproduce
the arguments from [20] which show how Theorem 2.4 implies Parisi’s conjecture.

Corollary 2.5. Let C be an n × n cost matrix with i.i.d. exp(1) entries. Let Cn denote the
cost of the minimum assignment. Then

IE(Cn) =
n∑

i=1

1
i2

.

Proof. The proof is by induction. The induction hypothesis is trivially true when n = 1
since IE(C1) = 1. Let us assume that we have

IE(Cn−1) =
n−1∑

i=1

1
i2

.

Delete the top row of C ≡ [cij] to obtain the rectangular matrix A of dimensions
(n − 1) × n. Let {S1, . . . , Sn} and {T0, . . . , Tn−1} be the weights of the matchings in S(A)

and T (A) respectively.
The relationship Cn = minn

j=1{c1j + Sj} allows us to evaluate IE(Cn) as follows:

IE(Cn) =
∫ ∞

0
P(Cn > x) dx

=
∫ ∞

0
P(c1j > x − Sj, j = 1, . . . , n) dx

=
∫ ∞

0
P(c1σ (j) > x − Tj, j = 0, . . . , n − 1) dx, (2.1)
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where σ (·) is a 1–1 map from {0, 1, . . . , n − 1} to {1, 2, . . . , n} such that c1σ (j) is the entry
in the first row of C that lies outside the columns occupied by the matching Tj in A. Now,
since the first row is independent of the matrix A and σ (·) is a bijection, the entries c1σ (j)

are i.i.d. exp(1) random variables. We therefore have from (2.1) that

IE(Cn) = IEA

(∫ ∞

0
P(c1σ (j) > x − tj, j = 0, . . . , n − 1) dx

∣∣∣ A
)

.

We proceed by evaluating the expression inside the integral. Thus,
∫ ∞

0
P(c1σ (j) > x − tj, j = 0, . . . , n − 1) dx

=
∫ ∞

0

n−1∏

j=0

P(c1σ (j) > x − tj) dx (independence of c1σ (j))

=
∫ t0

0
dx +

∫ t1

t0

e−(x−t0) dx + · · · +
∫ tn−1

tn−2

e−((n−1)x−t0−···−tn−2) dx

+
∫ ∞

tn−1

e−(nx−t0−···−tn−1) dx (since the ti’s are increasing)

= t0 +
(
1 − e−(t1−t0)

)
+ 1

2

(
e−(t1−t0) − e−(2t2−t0−t1)

)
+ · · ·

+ 1
n − 1

(
e−((n−2)tn−2−t0−···−tn−3) − e−((n−1)tn−1−t0−···−tn−2)

)
+ 1

n
e−((n−1)tn−1−t0−···−tn−2)

= t0 + 1 − 1
2

e−(t1−t0) − 1
6

e−(2t2−t0−t1) − · · · − 1
n(n − 1)

e−((n−1)tn−1−t0−···−tn−2).

Therefore,

IE(Cn) = IE(T0) + 1 −
n−1∑

i=1

1
i(i + 1)

IE
(
e−(iTi−T0−···−Ti−1)

)

= IE(T0) + 1 −
n−1∑

i=1

1
i(i + 1)

IE
(
e

∑i
j=1 −j(Tj−Tj−1)). (2.2)

However, from Theorem 2.4 (setting m = n − 1), we obtain

IE
(
e

∑i
j=1 −j(Tj−Tj−1)) =

i∏

j=1

IE
(
e−j(Tj−Tj−1)

)
=

i∏

j=1

n − j
n − j + 1

= n − i
n

.

Substituting this in (2.2) gives

IE(Cn) = IE(T0) + 1
n2

+ 1
n

n−1∑

i=1

1
i

. (2.3)

We are left with having to evaluate IE(T0). First, for j = 1, . . . , n − 1,

IE(Tj) = IE(T0) +
j∑

k=1

IE(Tk − Tk−1) = IE(T0) +
j∑

k=1

1
k(n − k)

(by Theorem 2.4).

(2.4)
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Now, the random variable S1 is the cost of the smallest matching of an (n−1)×(n−1) matrix
of i.i.d. exp(1) random variables obtained by removing the first column of A. Hence S1 is
distributed as Cn−1. However, by symmetry, S1 is equally likely to be any of {T0, . . . , Tn−1}.
Hence we get that

IE(S1) = 1
n

n−1∑

j=0

IE(Tj) = 1
n

IE(T0) + 1
n

n−1∑

j=1

(

IE(T0) +
j∑

k=1

1
k(n − k)

)

= IE(T0) + 1
n

n−1∑

k=1

1
k

. (2.5)

By the induction assumption, IE(Cn−1) = ∑n−1
k=1

1
k2 = IE(S1). Substituting this into (2.5),

we obtain

IE(T0) =
n−1∑

k=1

(
1
k2

− 1
nk

)
. (2.6)

Using this at (2.3), we get

IE(Cn) =
n−1∑

i=1

(
1
i2

− 1
ni

)
+ 1

n2
+ 1

n

n−1∑

i=1

1
i

=
n∑

i=1

1
i2

. (2.7)

3. A SKETCH OF THE PROOF OF THEOREM 2.4

The proof uses induction and follows the steps below.

1. First, we prove that for any rectangular m × n matrix, A, T1 − T0 ∼ exp m(n − m).
2. The distribution of the higher increments is determined by an inductive procedure.

We remove a suitably chosen row of A to obtain an m − 1 × n matrix, B, which has
the following property: Let {T0, . . . , Tm} and {U0, . . . , Um−1} be the weights of the
T-matchings in T (A) and T (B) respectively. Then

Uj − Uj−1 = Tj+1 − Tj for j = 1, 2, . . . , m − 1.

Establishing this combinatorial property is one major thrust of the paper.
3. We will then show that B possesses a useful probabilistic property: Its entries are

i.i.d. exp(1) random variables, independent of T1 − T0. This property, in conjunction
with the results in 1 and 2 above, allows us to conclude (i) T2 − T1 = U1 − U0 ∼
exp(m − 1)(n − m + 1) and (ii) Tj+1 − Tj ⊥⊥ T1 − T0 for j = 1, 2, . . . , m − 1; in
particular, T2 − T1 ⊥⊥ T1 − T0. We use the matrix B as the starting point in the next
step of the induction and proceed.

Remark 3.1. We have seen above that T1 − T0 is independent of B and hence of all higher
increments Tj+1 − Tj, j = 1, 2, . . . , m − 1. This argument, when applied in the subsequent
stages of the induction, establishes the independence of all the increments of A.
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The diagram below encapsulates our method of proof. We shall show that the first
increments T1 − T0, U1 − U0, . . . , V1 − V0, . . . , and W1 − W0 are mutually independent,
that they are exponentially distributed with appropriate rates, and that they are each equal
to a particular original increment Tj+1 − Tj.

Matrix T-matchings

A : T1 − T0 T2 − T1 . . . Tj+1 − Tj . . . Tm − Tm−1

‖ ‖ ‖
B : U1 − U0 . . . Uj − Uj−1 . . . Um−1 − Um−2

‖ ‖
...

...
...

D : V1 − V0 . . . Vk − Vk−1

...
...

‖
F : W1 − W0

In summary, the proof of Theorem 2.4 involves a combinatorial and a probabilistic part.
We develop a number of combinatorial lemmas in the next section. The lemmas and their
proofs can be stated using conventional language; e.g., symmetric differences, alternating
cycles and paths, or as linear optimizations over Birkhoff polytopes. However, given the
straightforward nature of the statements, presenting the proofs in plain language as we have
chosen to do seems natural. The probabilistic arguments and the proof of Theorem 2.4 are
presented in Section 5.

4. SOME COMBINATORIAL PROPERTIES OF MATCHINGS

To execute some of the proofs in this section, we will use the alternate representation of an
arbitrary m × n matrix C as a complete bipartite graph Km,n, with m vertices on the left and
n vertices on the right corresponding to the rows and columns of C, respectively. The edges
are assigned weights cij with the obvious numbering.

In a number of these combinatorial lemmas we are interested in properties of “near
optimal matchings.” That is, suppose M is the smallest matching of size k in the matrix
C. Near optimal matchings of interest include (i) M′: the smallest matching of size k
which doesn’t use all the columns of M, or (ii) M′′: the smallest matching of size k + 1. A
generic conclusion of the combinatorial lemmas is that near-optimal matchings are “closely
related” to the optimal matching M. For example, we will find that M′ uses all but one of
the columns of Col(M), and that the rows and columns used by M′′ are a superset of those
used by M.

Lemma 4.1. Consider an m × n matrix C. For every j ∈ Col(T0), we have |Col(Sj) ∩
Col(T0)| = m − 1.
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Fig. 1. Subgraph formed by two matchings depicting an even-length path and a 2-cycle.

Proof. We represent the matrix C as a complete bipartite graph Km,n. Without loss of
generality, let Col(T0) be the first m columns of C, and let j = 1. Focus on the subgraph
consisting of only those edges which are present in T0 and S1. For example, the subgraph
is shown in Fig. 1 where the bold edges belong to T0 and the dashed edges belong to S1.

In general, a subgraph formed using two matchings in a bipartite graph can consist
of the following components: cycles, and paths of even or odd lengths. We claim that it
is impossible for the subgraph induced by the edges of T0 and S1 to have cycles of length
greater than two, or paths of odd length. (Cycles of length two represent the entries common
to T0 and S1.)

A cycle of length greater than two is impossible because it would correspond to two
different submatchings being chosen by T0 and S1 on a common subset of rows and columns.
This would contradict the minimality of either T0 or of S1.

An odd-length path is not possible because every vertex on the left has degree 2. Thus,
any path will have to be of even length.

We now show that the only component (other than cycles of length 2) that can be present
in the subgraph is a single path of even length whose degree-1 vertices are on the right.
Every node on the left has degree 2 and hence even paths with two degree-1 nodes on the
left are not possible. Now we rule out the possibility of more than one even length path.
Suppose to the contrary that there are two or more paths of even length. Consider any two of
them and note that at least one of them will not be incident on column 1. Now the edges of
T0 along this path have smaller combined weight than the edges of S1 by the minimality
of T0. Thus, we can append these bold edges to the dashed edges not on this path to obtain
a new matching S ′

1 which would be smaller than S1. This contradicts the minimality of S1

amongst all matchings that do not use column 1.
Therefore, the subgraph formed by the edges of T0 and S1 can only consist of 2-cycles

and one even length path. To complete the proof, observe that an even length path with two
degree-1 vertices on the right implies that the edges of S1 in the path use exactly one column
that is not used by the edges of T0 in the path (and vice-versa). This proves the lemma.

Corollary 4.2. The cardinality of S(C) is m + 1.

Proof. From the definition of Si it is clear that for i ≤ m, Si 1= T0. We need to show that
Si 1= Sj for i 1= j, i, j ≤ m. From Lemma 4.1, Si uses all the columns of T0 except column
i. In particular, it uses column j and therefore is different from Sj.

Corollary 4.3. For any 1 ≤ k ≤ m, taking i ∈ Col(T0) ∩ Col(T1) · · · Col(Tk), an arrange-
ment of Si in increasing order gives the sequence Tk+1, Tk+2, . . . , Tm.
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Proof. The proof follows in a straightforward fashion from Lemma 4.1 and the definition
of S-matchings.

We can use Lemma 4.1 and Corollary 4.3 to give an alternate characterization of the
T-matchings that does not explicitly consider the S-matchings.

Lemma 4.4 (Alternate Characterization of the T-Matchings). Consider an m × n rect-
angular matrix, C. Let T0 be the smallest matching of size m in this matrix. The rest of the
T-matchings T1, . . . , Tm, can be defined recursively as follows: T1 is the smallest match-
ing in the set R1 = {M : Col(M) ! Col(T0)}, T2 is the smallest matching in the set
R2 = {M : Col(M) ! (Col(T0) ∩ Col(T1))},…, and Tm is the smallest matching in the
set Rm = {M : Col(M) ! (Col(T0)∩ Col(T1)∩ ···∩ Col(Tm−1))}. Then {T0, . . . , Tm} are
the T-matchings of C.

Proof. The proof is straightforward and is omitted. (Note that the alternate characterization
was used in the definition of the T-matchings in [17].)

Remark 4.5. The next lemma captures the following statement. If a matching is locally
minimal, then it is also globally minimal. The local neighborhood of a matchings is defined
by the set of matchings whose columns differ from the matching under consideration by at
most one column. That is, the lemma asserts that if a matching is the smallest among the
matchings in its local neighborhood then it is also globally minimal.

Lemma 4.6. Consider an m×n rectangular matrix, C. Suppose there is a size-m matching
M with the following property: M < M ′ for all size-m matchings M′( 1= M) such that
|Col(M′) ∩ Col(M)| ≥ m − 1. Then M = T0.

Proof. Without loss of generality, assume Col(M) = {1, 2, . . . , m}. The lemma is trivially
true for n = m+1. Let k ≥ 2 be the first value such that there is a matrix, C, of size m×(m+k)

which violates the lemma. We will show that this leads to a contradiction and hence prove
the lemma.

Clearly, Col(T0) must contain all the columns {m + 1, . . . , m + k}. If not, there is a
smaller value of k for which the lemma is violated. For any j ∈ {m +1, . . . , m + k} consider
Col(Sj), where Sj is the smallest matching that does not contain column j.

The fact that k is the smallest number for which Lemma 4.6 is violated implies Sj = M.
Hence |Col(Sj) ∩ Col(T0)| ≤ m − k ≤ m − 2. This contradicts Lemma 4.1, proving the
lemma.

Lemma 4.7. Consider a m × n cost matrix C. Let D be an extension of C formed by
adding r additional rows (r < n − m). Then Col(T0(C)) ⊂ Col(T0(D)).

Proof. As before, we represent the augmented matrix D as a complete bipartite graph
Km+r,n and focus on the subgraph (see Fig. 2) consisting of only those edges that are part of
T0(C) (bold edges) and T0(D) (dashed edges).

We proceed by eliminating the possibilities for components of this subgraph. As in
Lemma 4.1, the minimality of the two matchings under consideration prevents cycles of
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Fig. 2. Subgraph depicting odd-length paths and a 2-cycle.

length greater than 2 from being present. Note that 2-cycles (or common edges) are possible,
and these do not violate the statement of the lemma.

Next we show that paths of even length cannot exist. Consider even-length paths with
degree-1 vertices on the left. If such a path exists, then it implies that there is a vertex on
the left on which a lone bold edge is incident. This is not possible since the edges of T0(D)

are incident on every vertex on the left.
Now consider even-length paths with degree-1 vertices on the right. These have the

property that the solid and dashed edges use the same vertices on the left (i.e. same set of
rows). Now, we have two matchings on the same set of rows and therefore by choosing the
lighter one, we can contradict the minimality of either T0(C) or T0(D).

Consider odd-length paths. Since every vertex corresponding to rows in C must have
degree 2, the only type of odd-length paths possible are those in which the number of edges
from T0(D) is one more than the number of edges from T0(C). But in such an odd-length
path, the vertices on the right (columns) used by T0(C) are also used by T0(D). Since the
only components possible for the subgraph are odd length paths as above and common
edges, Col(T0(C)) ⊂ Col(T0(D)).

Lemma 4.8. Let C be an m × n rectangular matrix. Let Sk(i) denote the entry of Sk in
row i. Consider three arbitrary columns k1, k2, k3. For every row i, at least two of Sk1(i),
Sk2(i), and Sk3(i) must be the same.

Proof. We first establish this claim for m = n − 1. Consider the subgraph formed by the
edges in Sk1 and Sk2 . This subgraph cannot have the following components:

• Cycles of length more than 2, since that would contradict the minimality of either Sk1
or Sk2 .

• Odd length paths, since every vertex on the left has degree 2.
• Even length paths with degree-1 vertices on the left, since every vertex on left has

degree 2.

Thus, the only possible components are even length paths with degree-1 vertices on the
right, and common edges.

Now we use the fact that m = n − 1 to claim that there can only be one even length
path. If there were two even length paths with degree-1 vertices on the right, then the edges
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in Sk1 will avoid at least two columns (one from each even length path). But m = n − 1
implies the edges in Sk1 can avoid only column k1. Similarly the edges of Sk2 can avoid only
column k2. Thus, the single even length alternating path must have k1 and k2 as its degree-1
vertices. Let us call this path P12. Arguing as above, we conclude that the subgraph formed
by Sk1 and Sk3 consists only of common edges and one even length alternating path, P13,
connecting k1 and k3.

We now prove the lemma by contradiction. Suppose that Sk1(i), Sk2(i), and Sk3(i) are all
distinct for some row i. Our method of proof will be to construct a size (n − 1) matching in
C\k3, say S̃k3 , using only edges belonging to Sk1 , Sk2 , and possibly some from Sk3 , which
has a cost smaller than the cost of Sk3 . This will contradict the minimality of Sk3 and hence
prove the lemma. We need to consider two cases for the construction of S̃k3 .

Case 1: The vertex k3 does not lie on the alternating path P12: Consider the alternating path,
P13, from k3 to k1 consisting of edges from Sk1 and Sk3 . Start traversing the path from k3

along the edge belonging to Sk1 . Observe that one takes the edge belonging to Sk1 when
going from a right vertex to a left vertex and a Sk3 -edge when going from a left vertex to a
right vertex. Let v be the first vertex along this path that also belongs to P12.

We claim that v must be on the right. Suppose that v is on the left. Since v is the first
node common to P13 and P12, it must be that there are two distinct edges belonging to Sk1
(belonging to each of P13 and P12) incident on v. But this is impossible, since these edges
belong to the same matching Sk1 . Hence, v must be on the right.

Now form the matching S̃k3 by taking the following edges:

• edges from Sk3 along P13 starting from k3 until v,
• edges from Sk1 along P12 starting from v until k2,
• edges from Sk2 along P12 starting from v until k1,
• edges belonging to Sk1 from all the uncovered vertices on left.

Case 2: The vertex k3 lies on P12: We can construct S̃k3 using the procedure stated in Case
1 if we take v = k3. Then the matching S̃k3 is formed by taking the following edges:

• edges from Sk1 along P12 starting from k3 until k2,
• edges from Sk2 along P12 starting from k3 until k1,
• edges belonging to Sk1 from all the uncovered vertices on left.

Observe that in both cases, by construction, the subgraph formed by the edges of Sk1 , Sk2

and S̃k3 is such that the vertices on left have at most degree 2.
To show that the cost of S̃k3 is less than Sk3 , we cancel edges that are common to the two

matchings and thus obtain matchings S̃ ′
k3

and S ′
k3

on C′, a (possibly smaller) submatrix of

C\k3. Now S̃ ′
k3

consists of edges from either Sk1 or Sk2 ; denote these edges by E1 and E2

respectively. We have to show

sum of edges in S ′
k3

> sum of edges in {E1, E2} = sum of edges in S̃ ′
k3

. (4.1)

Let Ec
1 = Sk1\E1 and Ec

2 = Sk2\E2. Adding the weights of these edges to both sides of (4.1),
we are now required to show

sum of edges in {S ′
k3

, Ec
1, Ec

2} > Sk1 + Sk2 . (4.2)
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We establish (4.2) by showing that the left hand side splits into the weights of two matchings,
one each in C\k1 and C\k2. The minimality of Sk1 and Sk2 will then complete the proof.

But the decomposition into two appropriate matchings is immediate once we observe
that in {S ′

k3
, Ec

1, Ec
2}, every vertex on the left has degree 2, and so does every vertex on

the right, except k1 and k2. This splitting into the two matchings establishes (4.1) and thus
shows that Sk3 > S̃k3 . This contradiction proves the lemma when m = n − 1.

If m < n−1, append an (n−m−1)×n matrix to C to form an (n−1)×n matrix D. The
entries in D\C are i.i.d. random variables uniformly distributed on [0, ε/2(n − m)], where
ε < min{|M − M ′| : M and M′ are size-m matchings in C}. Then it is easy to see that for
each i, Si(D) contains Si(C) since the combined weight of the additional edges from the
appended part is too small to change the ordering between the matchings in C.

Now apply the lemma to D to infer that at least two of Sk1(i), Sk2(i) and Sk3(i) must
be the same, where the Skj are size-m matchings of C and row i is in C. This proves the
lemma.

Definition 4.9 (Marked elements). An element of an m × n matrix C is said to be marked
if it belongs to at least one of its T-matchings.

Lemma 4.10. An m × n matrix C has exactly two elements marked in each row.

Proof. It is obvious that at least two such elements are present in each row. If there is any
row that has three or more elements, by considering the S-matchings that give rise to any
three of these elements we obtain a contradiction to Lemma 4.8.

4.1. General Form of the Lemmas

In this section, we state the lemmas for the case when the cost matrix C has nonunique ele-
ments or subset sums. Thus T0, the smallest matching (in weight), is potentially nonunique.
Choose any one of the equal weight matchings as T0. Since each Sj is defined as the smallest
matching obtained by the removal of column j of T0, there may exist a set of matchings, Sj,
that have the same weight.

Claim 4.11. There exists Sj ∈ Sj for j = 1, . . . , m such that Lemmas 4.1, 4.8, and 4.10
remain valid when the cost matrix C

¯
has nonunique elements or subset sums.

By following the arguments of the proof of the Lemmas 4.1, 4.8 and 4.10, one can show
that it is always possible to define a set of matchings Sj ∈ Sj such that Lemmas 4.1, 4.8,
and 4.10 remain valid. The details are omitted.

For Lemma 4.4, similarly one can recursively choose a set of smallest-weight match-
ings Tj ∈ Rj such that these are precisely the T-matchings alternately defined via the
S-matchings.

Lemma 4.6 and its proof carries over without any change to the general case that we
are considering. Note that the contradiction now is based on the modified Lemma 4.1;
modification caused by the set of the S-matchings chosen according to Claim 4.11.

For Lemma 4.7 to be valid, we need to state that one can choose one among the several
smallest-weight matchings T0(C) [and similarly T0(D)] such that the lemma remains valid.

Remark 4.12. Note that though the lemmas are valid for general matrices, unless explicitly
stated, we will assume in the rest of the paper that all subset sums are unique.
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5. PROOF OF THEOREM 2.4

We shall now execute the three steps mentioned in Section 3.

Step 1: T1 −T0 ∼ exp m(n−m). We will show that if A is an m×n rectangular matrix with
i.i.d. exp(1) entries, then T1−T0 ∼ exp m(n−m). We begin by the following characterization
of Col(T0). Let M be any matching that satisfies the property that it is the smallest size-m
matching in the columns Col(M) of A. Consider any element, v, lying outside Col(M).
Let Nv = min{N : v ∈ N , |Col(N ) ∩ Col(M)| = m − 1}. We make the following claim.

Claim 5.1. Nv > M for all v ∈ A\Col(M) iff Col(M) = Col(T0).

Proof. One of the directions of the implication is clear. If Col(M) = Col(T0), then
M = T0, and by the minimality of T0 we have Nv > M for all v lying outside Col(T0).

The reverse direction has already been established in Lemma 4.6.

Theorem 5.2. For an m × n matrix, A, containing i.i.d. exp(1) entries, T1 − T0 ∼
exp(m(n − m)).

Proof. Let v ∈ A\Col(T0) and let Mv be the submatching of Nv (defined in Claim 5.1)
such that Nv = v ∪ Mv. Suppose v > T0 − Mv, ∀v ∈ A\Col(T0). Then Claim 5.1 implies
that this is a necessary and sufficient condition to characterize the columns of T0.

We recall a well-known fact regarding exponentially distributed random variables.

Fact 5.3. Suppose Xi, i = 1, . . . , l, are i.i.d. exp(1) random variables. Let Yi ≥ 0, i =
1, . . . , l, be random variables such that σ (Y1, . . . , Yl) ⊂ F for some σ -algebra F . If
Xi ⊥⊥ F ∀ i, then on the event {Xi > Yi, i = 1, . . . , l}, Xi − Yi are i.i.d. exp(1) random
variables and independent of F .

The above fact implies that the random variables {v − (T0 − Mv), v ∈ A\Col(T0)} are
i.i.d. exp(1).

From Lemma 4.1, T1 has exactly one entry outside Col(T0). Hence T1 −T0 = minv Nv −
T0 = minv(v − (T0 − Mv)). Since the minimization is over m(n − m) independent exp(1)

random variables v − (T0 − Mv), we have that T1 − T0 ∼ exp m(n − m).

Remark 5.4. A theorem in [17] considers a slightly more general setting of matchings
of size k in an m × n matrix. The argument used in Theorem 5.2 is an extension of the
argument in [20] for an (n − 1) × n matrix. A similar argument was also used by Janson in
[9] for a problem regarding shortest paths in exponentially weighted complete graphs.

We note the following positivity condition that follows immediately from the proof of
Theorem 5.2.

Remark 5.5. For any v /∈ Col(T0), v − (T1 − T0) > 0.

Proof. We know from the proof of Theorem 5.2 that, for any v /∈ Col(T0),

v − (T0 − Mv) ≥ min
v

(v − (T0 − Mv)) = min
v

Nv − T0 = T1 − T0.
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This implies that v − (T1 − T0) ≥ (T0 − Mv). Now, let v0 be the entry of T0 in the same
row as v. Consider the set of all matchings of size m − 1 in Col(T0) that do not contain
an element in the same row as v. Then, both T0\v0 and Mv are members of this set. But
Mv has the smallest weight in this set. Hence Mv ≤ T0 − v0 < T0 which finally implies
v − (T1 − T0) ≥ (T0 − Mv) > 0.

Step 2: From m × n matrices to (m − 1) × n matrices We will now demonstrate the
existence of a matrix with one less row that preserves the higher increments as described in
Section 3. The matrix B is obtained from A by applying the two operations % and & (which
we will shortly define), as depicted below:

A
%−→ A∗ &−→ B.

To prevent an unnecessary clutter of symbols, we shall employ the following notation in
this section:

• T (A) = {T0, . . . , Tm},
• T (A∗) = {T ∗

0 , . . . , T ∗
m },

• T (B) = {U0, . . . , Um−1}.

From Lemma 4.1 we know that the matchings T0 and T1 have m − 1 columns in common.
Hence there are two well-defined entries, e ∈ T0 and f ∈ T1, that lie outside these common
columns. We now specify the operations % and &.

% : Subtract T1 − T0 from each entry in A\Col(T0) to get the m × n matrix A∗. [Note
that in the matrix A∗ the entry f becomes f ∗ = f − (T1 − T0).]
& : Generate a random variable X, independent of all other random variables, with
IP(X = 0) = IP(X = 1) = 1

2 . If X = 0, then remove the row of A∗ containing e,
else remove the row containing f ∗. Denote the resulting matrix of size (m − 1) × n
by B.

Remark 5.6. The random variable X is used to break the tie between the two matchings
T ∗

0 and T ∗
1 , both of which have the same weight (this shall be shown in Lemma 5.8). This

randomized tie-breaking is essential for ensuring that B has i.i.d. exp(1) entries; indeed, if
we were to choose e (or f ∗) with probability 1, then the corresponding B would not have
i.i.d. exp(1) entries.

Claim 5.7. The entries of A∗ are all positive.

Proof. The entries in Col(T0) are left unchanged by %; hence they are positive. Corollary
5.5 establishes the positivity of the entries in the other columns.

Lemma 5.8. The following statements hold:

(i) T ∗
1 = T ∗

0 = T0.
(ii) For i ≥ 1, T ∗

i+1 − T ∗
i = Ti+1 − Ti.
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Proof. Since T0 is entirely contained in the submatrix Col(T0), its weight remains the same
in A∗. Let R(A∗) be the set of all matchings of size m in A∗ that contain exactly one element
outside Col(T0). Then, every matching in R(A∗) is lighter by exactly T1 − T0 compared to
its weight in A.

Thus, by the definition of T1, every matching in R(A∗) has a weight larger than (or equal
to) T1 − (T1 − T0) = T0. In other words, every size-m matching in A∗ that has exactly one
element outside Col(T0) has a weight larger than (or equal to) T0. Therefore, from Lemma
4.6 it follows that T0 is also the smallest matching in A∗. Thus, we have T ∗

0 = T0, and
T ∗

0 = T0.
From Lemma 4.1 we know that T ∗

i , i ≥ 1, has exactly one element outside the columns
of Col(T ∗

0 ) (= Col(T0)). Hence, it follows that

T ∗
i = Ti − (T1 − T0) for i ≥ 1.

Substituting i = 1, we obtain T ∗
1 = T0. This proves part (i). And considering the

differences T ∗
i+1 − T ∗

i completes the proof of part (ii).

To complete Step 2 of the induction we need to establish that B has the following
properties.

Lemma 5.9. Ui − Ui−1 = Ti+1 − Ti, i = 1, 2, . . . , m − 1.

Proof. The proof of the lemma consists of establishing the following: For i ≥ 1

Ti+1 − Ti
(a)= T ∗

i+1 − T ∗
i

(b)= Ui − Ui−1.

Observe that (a) follows from Lemma 5.8. We shall prove (b) by showing that

T ∗
i = Ui−1 + v, i = 1, . . . , m. (5.1)

for some appropriately defined value v.

Remark 5.10. Since T ∗
1 = T ∗

0 , Eq. (5.1) additionally shows that T ∗
0 = U0 + v.

Two cases arise when applying the operation &: (1) e and f ∗ are in the same row, and
(2) they lie in different rows. (Note that in Case 1, irrespective of the outcome of X, the
common row will be removed.) As observed before, since f is in some column outside
Col(T0), its value is modified by the operation % to f ∗ = f − (T1 − T0). The value of e,
however, is left unchanged by the operation %. For simplicity, we will use the symbols e
and f ∗ for both the names and the values of these entries.

Case 1: In this case, we claim that e = f ∗ (as values). To see this, let M be the smallest
matching of size m − 1 in the columns Col(T0) ∩ Col(T1) which does not have an entry
in the same row as e and f ∗. Then, clearly, e ∪ M = T0 and f ∪ M = T1. Hence, we
obtain e + M = T0 = T1 − (T1 − T0) = f + M − (T1 − T0) = f ∗ + M. Therefore, in
value, e = f ∗; call this value v. From Lemma 5.8 we know that T ∗

0 = T0 and this implies
e + M = T ∗

0 = f ∗ + M.
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Now consider any matching, M′ 1= M, of size m − 1 in B that has exactly one entry
outside Col(T0) ∩ Col(T1). Clearly, one (or both) of the entries e and f ∗ could have chosen
M′ to form a candidate for T ∗

0 . Since v + M ′ > T ∗
0 = v + M, we infer that M ′ > M

for all matchings M′. Thus, from Lemma 4.6, we have that M equals U0. Therefore,
T0 = T ∗

0 = T ∗
1 = U0 + v. This also implies that Col(U0) = Col(T0) ∩ Col(T1).

Next consider S∗
' , the smallest matching in A∗ obtained by deleting column ' ∈ Col(U0).

Since this is T ∗
k for some k ≥ 2, S∗

' must use one of the entries e or f ∗ by Lemma 4.10.
Hence S∗

' = v+V', where V' is a matching of size m−1 in B that doesn’t use the column '.
Therefore, S∗

' ≥ v + W', where W' is the smallest matching of size m − 1 in B that doesn’t
use column '.

Remark 5.11. The nonuniqueness amongst the weights of matchings introduced by forcing
T ∗

1 = T ∗
0 does not affect the applicability of Lemma 4.10. Though we could resort to

the generalized definition of S-matchings as defined by Claim 4.11; in this case, it is not
necessary as with probability 1, it is easy to see that there is a unique matching Sj in every Sj.

We will now show that for S∗
' ≤ v +W'. Applying Lemma 4.1 to B, we have that W' has

exactly one element outside Col(U0). Therefore, W' can pick either e or f ∗, since both lie
outside Col(U0), to form a candidate for S∗

' , with weight v + W'. This implies S∗
' ≤ v + W'.

Hence,
S∗

' = v + W'. (5.2)

But from Corollary 4.3 we know that arranging the matchings {S∗
' , ' ∈ Col(T0) ∩

Col(T1)}, in increasing order gives us T ∗
2 , . . . , T ∗

m. And arranging the {W', ' ∈ Col(U0) =
Col(T0) ∩ Col(T1)} in increasing order gives us U1, . . . , Um−1. Therefore,

T ∗
i = Ui−1 + v for i = 1, . . . , m. (5.3)

This proves the lemma under Case 1, i.e., when both the entries e and f are in the same row.

Case 2: In this case, the entries e and f ∗ are in different rows and depending on the outcome
of X, one of these two rows is removed. Let us denote by v the entry e or f ∗ (depending on
X), that is in the row of A∗ removed by &. Further, let c be the column in which v lies. Let
M denote the matching of size m − 1 in Col(T0) ∩ Col(T1) that v goes with to form T ∗

0 or
T ∗

1 (depending on which of the two entries e or f ∗ is removed). Let us denote the entry, e or
f ∗, that was not removed by u. Let d be the column in which u lies. Let w denote the entry
in the column of u and the row of v. These are represented in Fig. 3, where the entries of T0

and T1 are depicted by stars and circles, respectively. In the figure we assume that the row
containing e was chosen to be removed by X (that is, v = e and u = f ∗).

Fig. 3. The entries e, f ∗, w.
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As in Case 1, let M be the smallest matching of size m − 1 in B that is contained in the
columns Col(T0)∩Col(T1). Arguing as in the previous case yields v+M = T0 = T ∗

0 = T ∗
1 .

This also implies that w + M > T ∗
0 = T0. (In general, the definition of T ∗

0 only implies
w + M ≥ T0. However, since the matchings in A have distinct weights, it is not hard to see
that strict inequality holds when w is different from e and f .) Therefore, let w = v + x for
some x > 0.

Remark 5.12. In the claim that follows, we will use a slightly unconventional method
to prove a combinatorial fact implied by Eq. (5.1). We believe it will be helpful to preface
the proof by a brief description of the steps involved. Consider the elements v and w as
defined above. First, we will reduce the value of w from v + x to v + ε, x > ε > 0, and
show that this does not alter the values of the matchings T ∗

i , i ≥ 0. Next, we will perturb
the value of both v and w slightly to v − ε. By invoking Lemma 4.10 we will show that
every matching T ∗

i for the new matrix must use one of v or w. Moreover, we will also show
that the matchings {T ∗

i } are formed by combining v or w with the matchings {Ui}. Since the
values of the T-matchings are continuous in the entries of the matrix, we let ε tend to zero
to conclude Eq. (5.1) for Case 2. A purely combinatorial argument also exists for this case
which goes along the lines of Lemma 4.8. However, we feel that this approach is simpler.

Returning to the proof: Given any 0 < ε < x, let Cε be a matrix identical to A∗ in
every entry except w. The value of w is changed from v + x to v + ε. Let {Pi} denote the
T-matchings of Cε . Also recall that c is the column of v, and d is the column of both u
and w.

Claim 5.13. Pi = T ∗
i for every i.

Proof. Since the only entry that was modified was w, it is clearly sufficient to show that
w is not used by any of the matchings {T ∗

i } or {Pi}. From Lemma 4.10 we know that the
matchings {T ∗

i } have only two marked elements in the row of w and one of them is v. The
matching T ∗

0 or T ∗
1 (depending on the outcome of X) contains u and cannot use any entry

from the column of v. Hence it must use another entry from the row of v (distinct also from
w, as w lies in the column of u). Thus, since w is not one of the two marked elements in its
row, it is not part of any T ∗

i .
Now we have to show that w is not present in any of the {Pi}. To establish this, we exhibit

two distinct marked elements in the row of w that are different from w. Consider Sd: the
smallest size m matching in Cε\d. But the removal of column d in both Cε and A∗ leads
to the same m × n − 1 matrix. Hence, Sd is formed by the entry v and M, where M is the
matching defined earlier. This implies v is a marked element.

Since v + M = T ∗
0 , it is clear that M is also the smallest matching of size m − 1 in

the matrix B\c. Otherwise, v will pick a smaller matching and contradict the minimality
of T ∗

0 .
Consider next the matching Sc, the smallest matching in Cε obtained by deleting column

c. The only candidates we have to consider are the matchings involving w and the matching
of weight T ∗

0 involving the element u. The smallest matching of size m − 1 in the matrix
B\c is M, which implies that the best candidate for Sc involving w is the matching formed
by w and M. However, this has weight v+ε +M > v+M = T ∗

0 . Hence Sc is the matching
of weight T ∗

0 involving the element u. As before, this matching marks another element in
the row of w which is different from either v or w. Since there are two marked elements in
the row of w which are different from w, w cannot be in any of the matchings {Pi}.
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Thus the entry w is in neither of the set of matchings {T ∗
i } or {Pi}. Since w is the only

entry that the two matrices A∗ and Cε differ in, this proves the claim.

Moving to the next step of the proof for Case 2, define a matrix Dε which is identical to
the matrix A∗ except for the entries v and w. We change the values of both v and w to v − ε.
Let the T-matchings of Dε be denoted by {Qi}.

Consider Sd, the smallest matching of size m in Dε\d. It is easy to see that since v was
the only entry that was modified in this submatrix, Sd is formed by the entry v and the
matching M, and has weight T0 − ε. Hence v is a marked element.

Next, let Sc be the smallest matching in Dε\c. The only candidates we have to consider
are the matchings involving w and the matching of weight T ∗

0 that includes the element u.
As before, the smallest matching of size m − 1 in the matrix B\c is M which implies that
the best candidate for Sc involving w is the matching formed by w and M. This has weight
v − ε +M < v +M = T ∗

0 . Hence Sc is the matching of weight T0 − ε involving the element
w. Hence w is a marked element.

Applying Lemma 4.10 to matrix Dε , it is clear that the only two marked elements in
the row of v are v and w. An argument similar to the one that proved (5.3) gives us the
following:

Qi = Ui−1 + v − ε, for i = 1, 2, . . . , m. (5.4)

As ε → 0, the matrices Cε and Dε tend to each other. Since the weights of the T-
matchings are continuous functions of the entries of the matrix, we have that in the limit
ε = 0, Pi = Qi, and hence from Claim 5.13 and Eq. (5.4) we have

T ∗
i = Ui−1 + v for i = 1, 2, . . . , m.

This proves the lemma for Case 2 and hence completes the proof of Lemma 5.9.

We now note the following consequence of our previous arguments:

v + M = T0 = T ∗
0 = T ∗

1 = U0 + v.

This gives us the following:

Remark 5.14. Let M be the smallest matching of size m−1 in A∗, contained in Col(T0)∩
Col(T1). Then M = U0.

In the next section we show that the matrix B, obtained by deleting a row of A∗ according
to the action &, contains i.i.d. exp(1) entries.

Step 3: B has i.i.d. exp(1) entries. Let B be a fixed (m − 1) × n matrix of positive entries.
We compute the joint distribution of the entries of B and verify that they are i.i.d. exp(1)

random variables. To do this, we identify the set, D, of all m × n matrices, A, that have
a positive probability of mapping to the particular realization of B under the operations %

and &. We know that the entries of A are i.i.d. exp(1) random variables. So we integrate
over D to obtain the joint distribution of the entries of B.

To simplify the exposition, we partition the set D into sets {D1, . . . , Dm} depending on
the row removed by the operation & to obtain B. We will characterize Dm, i.e., the set of
all m × n matrices in which & removes the last row. All the other sets Di, i 1= m, can be
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characterized similarly. The next few lemmas concern the complete characterization of the
set Dm.

Let B be a fixed (m − 1) × n matrix of positive entries. Let D& = &−1
m (B), i.e., the set

of all matrices m × n matrices A∗ such that when its last row is removed, one obtains the
matrix B. Now & is a random map, whose action depends on the value of X . This is related
to e and f being on the same or different rows. Therefore, we may write D& as the disjoint
union of the sets Ds

& and Dd
&, with the obvious mnemonics. Finally, Dm = %−1 ◦ &−1

m (B).

Remark 5.15. Since we are focusing just on Dm, the mapping &−1(B) from IRm−1×n
+ into

IRm×n
+ will consist of the introduction of an additional row below B (hence the subscript

&m). When dealing with Di, the additional row would be introduced after the (i − 1)th row
of B.

Consider a matrix M ∈ IRm×n
+ , where the row vector 6r = (r1, . . . , rm−1) ∈ IRm−1

+ denotes
the elements in Col(U0). W.l.o.g. let us assume that Col(U0) = {1, 2, . . . , m − 1}.

M =



 B

r1 r2 · · · rm−1 x1 · · xn−m+1



 .

Let d be an element in B\Col(U0). Let (d be the cost of the smallest matching of
size m − 1, say Md , with entries in Col(U0) but containing no entry from the row of d.
Clearly d ∪ Md is a matching of size m in the matrix M. Among all such choices of d, let
do ∈ B\Col(U0) be that entry which minimizes d + (d . Let J = do + (do , and denote the
column of do by j.

Given any 6r = (r1, . . . , rm−1) ∈ IRm−1
+ , the following lemma stipulates necessary and

sufficient conditions that the vector (x1, . . . , xn−m+1) must satisfy so that M ∈ D&.

Lemma 5.16. Given a (m − 1) × n positive matrix B and a 6r ∈ IRm−1
+ , let F&(6r) be the

collection of all m × n matrices M such that one of the following two conditions hold:

(i) There exist i and k such that xi = xk, xi + U0 < J and xl > xi for all l 1= i, k.
(ii) There exists xi /∈ j such that xl > xi for all l 1= i and xi + U0 = J.

Then D& = F&
7= ⋃

6r∈IRm−1
+

F&(6r).

Proof. (α) D& ⊂ F&: Let M ∈ D& be any matrix such that &m(M) = B. Therefore, B
consists of the first m−1 rows of M. By the definition of & we know that the entry v occurs
in the last row. From Corollary 5.14 we know that v chooses the matching U0 to form a
matching of weight T ∗

0 , that is, v + U0 = T ∗
0 . Hence v must be one of the xi’s. Again by

definition, u lies outside Col(U0) ∪ c, where c is the column of v.
We shall now show that M ∈ F&(6r). Two cases occur:

(a) v and u are in the last row: In this case, we know from the proof of Lemma 5.9 that
v = u (the same as e = f ∗ and this is Case 1 in the proof of Lemma 5.9). Since both
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v and u are in the last row and outside Col(U0), we know that v = xi and u = xk

for some i 1= k. Therefore, xi = xk . We know that v + U0 = T ∗
0 , hence from the

minimality of T ∗
o we have xi + U0 < J . Also, xi + U0 < xl + U0 for l 1= i, k for the

same reason. This implies M satisfies condition (i) of Lemma 5.16. Therefore, under
(a) it follows that M ∈ F&(6r).

(b) v is in the last row and u is not: Arguing as before, we conclude that u = do and
v = xi. Thus, T ∗

0 = v + U0 = d0 + (d0 = J . We also know that v and u occur in
different columns; hence v = xi for some xi /∈ j. From the minimality of T ∗

0 , we also
have that xi + U0 < xl + U0 for l 1= i. Thus, M satisfies condition (ii) of Lemma 5.16
and hence M ∈ F&(6r).

(β) F& ⊂ D&: Let M ∈ F&(6r) for some 6r. Then M satisfies condition (i) or (ii) of
Lemma 5.16. Accordingly, this gives rise to two cases:

(a) M satisfies condition (i): We claim that &(M) = B. From Lemma 4.7 we have that
T0(M) must use all the columns of U0. This implies that exactly one entry of T0(M)

lies outside Col(U0). But, condition (i) implies that xi + U0 ≤ min{xl + U0, J} =
min{xl + U0, d + (d}. Since the last minimization is over all possible choices of the
lone entry d that T0(M) could choose outside Col(U0), it follows that T0(M) = xi+U0.
Condition (i) also implies that xk = xi. Hence T0(M) = T1(M) = xk + U0.

Since xi and xk are the entries of T0(M) and T1(M) outside Col(U0), this implies
u and v are xi and xk in some order. Observe that & removes the row in which v is
present. Thus, we obtain &(M) = B and therefore M ∈ D&.

(b) M satisfies condition (ii): We claim that &(M) = B with probability 1
2 . An argument

similar to that in Case (a) yields xi + U0 = T0(M) = T1(M) = J = do + (do . Note
that v and u are decided by the outcome of X . Hence IP(v = xi, u = do) = 1

2 = IP(u =
xi, v = do).

When v = xi, by the definition of & we get that &(M) = B. When v = do the row
that is removed is the row containing do, hence &(M) 1= B in this case. Therefore,
with probability 1

2 we will obtain B as the result of the operation &(M). This implies
M ∈ D&.

Thus both cases in (β) imply that F& ⊂ D&, and this, along with (α) implies F& = D&.

Thus, Ds
& and Dd

& correspond to the matrices in D& which satisfy conditions (i) and (ii)
of Lemma 5.16, respectively. Hence, when M ∈ Ds

&, we have &(M) = B with probability
one, and when M ∈ Dd

& we have &(M) = B with probability 1
2 . We are now ready to

characterize Dm.
Consider a matrix M ∈ D& and let θ ∈ IR+. Consider the column, say k, in M which

contains xi. (Recall, from Lemma 5.16, that xi is the smallest of the xl’s in the last row
deleted by &.) Add θ to every entry in M outside Col(U0) ∪ k. Denote the resulting matrix
by F1(θ , M). Let

F1 =
⋃

θ>0,M∈D&

F1(θ , M). (5.5)
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Now consider the column, say ', in M where the entry xk or do is present (depending on
whether M satisfies condition (i) or (ii) of Lemma 5.16). Add θ to every entry in M outside
Col(U0) ∪ '. Call the resulting matrix F2(θ , M), and let

F2 =
⋃

θ>0,M∈D&

F2(θ , M). (5.6)

Remark 5.17. Note that F1 and F2 are disjoint since k 1= '. Also, θ is added to precisely
m(n − m) entries in M in each of the two cases above.

Lemma 5.18. Dm = F1 ∪ F2.

Proof. Consider M′ ∈ Dm. Subtracting θ = T1(M′) − T0(M′) from the entries of M′

outside Col(T0(M′)) leaves us with %(M′). From the proof of Lemma 5.8 we know that
under %, the locations of the entries of T-matchings do not change; only the weights of
Ti(M′), i ≥ 1, are reduced by T1(M′) − T0(M′) = θ . It is clear that if e and f are in
same row, then the last row of %(M′) satisfies condition (i) of Lemma 5.16 and hence
M′ = F1(θ , %(M′)). If e and f are in different rows then the last row of %(M′) satisfies
condition (ii) and therefore M′ = F2(θ , %(M′)). This implies M′ ∈ F1 ∪ F2.

For the converse, consider the matrix M′ = F1(θ , M) for some M ∈ D& and θ > 0. Since
T0(M) = xi ∪ U0 and M′ dominates M entry-by-entry, T0(M′) = xi ∪ U0 by construction.
Consider every size-m matching in M′ that contains exactly one element outside Col(xi∪U0).
By construction, the weight of these matchings exceeds the weight of the corresponding
matchings in M by an amount precisely equal to θ . Using Lemma 4.1, we infer that Ti(M′)−
Ti(M) = θ for i ≥ 1. Hence we have T1(M′) − T0(M′) = T1(M) − T0(M) + θ . But, for
any M ∈ D&, T1(M) = T0(M) = xi + U0. Therefore, T1(M′) − T0(M′) = θ .

Now, %(M′) is the matrix that results from subtracting θ from each entry outside the
columns containing the matching T0(M′) = xi ∪ U0. But, by the definition of F1(θ , M),
%(M′) is none other than the matrix M. Therefore, M′ ∈ Dm, and F1 ⊂ Dm.

Next, let M′ = F2(θ , M). In this case too, T0(M) = xk + U0 (or do + (do ) continues
to be the smallest matching in M′. An argument identical to the one above establishes that
%(M′) = M. Hence, M′ ∈ Dm and F2 ⊂ Dm, completing the proof of the lemma.

Remark 5.19. Note that the variable θ used in the characterization of Dm precisely equals
the value of T1(M′) − T0(M′), as shown in the proof of Lemma 5.18.

Continuing, we can partition Dm into the two sets Ds
m and Dd

m as below:

Ds
m = F1(IR+, Ds

&)∪F2(IR+, Ds
&) and Dd

m = F1(IR+, Dd
&)∪F2(IR+, Dd

&). (5.7)

Observe that whenever M ∈ Ds
m, we have %(M) ∈ Ds

& and hence & ◦ %(M) = B with
probability 1. For M ∈ Dd

m, %(M) ∈ Dd
& and & ◦ %(M) = B with probability 1

2 . Recall
also that D = ∪m

i=1Di.
Now that we have characterized D, we return to considering the matrix A (which has

the same structure as M), and “integrate out the marginals” (r1, . . . , rm−1), (x1, . . . , xn−m+1),
and θ by setting

6v = (B, 6r, θ) and 6w = (6v, 6x),
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where B ≡ [bij] ∈ IRm−1×n
+ . Let fw(6v, 6x) represent the density of an M matrix. Then the

marginal density fv(6v) is given by

fv(6v) =
∫

R1

fw(6v, 6x) d6x + 1
2

∫

R2

fw(6v, 6x) d6x. (5.8)

The regions R1 and R2 are defined by the set of all 6x’s that satisfy conditions (i) and (ii)
of Lemma 5.16, respectively. The factor 1

2 comes from the fact that on R2, e and f occur
on different rows. Therefore, A is in Dd = ∪m

i=1D
d
i and will map to the desired B with

probability 1
2 .

On R1, we have that xi = xk < J − U0 for J as in Lemma 5.16. We set H = J − U0,
and ul = xl − xi for l 1= i, k. Finally, define

sv = b1,1 + · · · + bm−1,n + r1 + · · · + rm−1 + m(n − m)θ .

Thus, sv denotes the sum of all of the entries of A except those in 6x. As noted in Remark 5.17
preceding Lemma 5.18, the value θ was added to precisely m(n − m) entries. We have

∫

R1

fw(6v, 6x) d6x (a)= 2m
(

n − m + 1
2

) ∫ H

0

∫∫∫ ∞

0
e−(sv+(n−m+1)xi+

∑
l 1=i,k ul)

∏

l 1=i,k

dul dxi

= m(n − m)e−sv
(
1 − e−(n−m+1)H

)
. (5.9)

The factor
(n−m+1

2

)
in equality (a) accounts for the choices for i and k from {1, . . . , n−m+1};

the factor m comes from the row choices available (i.e., the regions D1, . . . , Dm), and the
factor 2 comes because A belongs to either F1 or F2 defined by Eqs. (5.5) and (5.6),
respectively.

Similarly, on R2, we have that xi = J − U0
7= H and we shall set ul = xl − xi for l 1= i

to obtain

1
2

∫

R2

fw(6v, 6x) d6x (b)= 1
2



2m(n − m)

∫∫∫ ∞

0
e−(sv+(n−m+1)H+∑

l 1=i ul)
∏

l 1=i

dul





= m(n − m)e−sv e−(n−m+1)H . (5.10)

In equality (b) above, the factor n − m accounts for the choice of i from {1, . . . , n − m + 1};
the factor m comes from the row choices available and the factor 2 comes because A belongs
to either F1 or F2 defined by Eqs. (5.5) and (5.6), respectively.

Substituting (5.9) and (5.10) into (5.8), we obtain

fv(6v) = m(n − m)e−sv = e−(b1,1+···+bm−1,n) × m(n − m)e−m(n−m)θ × e−(r1+···+rm−1).

The above equation is summarized in the following lemma.

Lemma 5.20. For an i.i.d. exp(1) matrix A, the following hold:

(i) B consists of i.i.d. exp(1) variables.
(ii) θ = T1(A) − T0(A) is an exp m(n − m) random variable.
(iii) 6r consists of i.i.d. exp(1) variables.
(iv) B, T1(A) − T0(A), and 6r are independent.
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Remark 5.21. It is worth noting that part (ii) of Lemma 5.20 provides an alternate proof
of Theorem 5.2.

From Lemma 5.9 we know that the increments {Tk+1(A) − Tk(A), k > 0} are a function
of the entries of B. Given this and the independence of B and T1(A)−T0(A) from the above
lemma, we get the following:

Corollary 5.22. Tk+1(A) − Tk(A) is independent of T1(A) − T0(A) for k > 0.

Thus we have established all the three steps mentioned in Section 3 required to prove
Theorem 2.4. This completes the proof of Theorem 2.4 and hence establishes Parisi’s
conjecture.

6. THE COPPERSMITH-SORKIN CONJECTURE

As mentioned in the introduction, Coppersmith and Sorkin [5] conjectured that the expected
cost of the minimum k-assignment in an m × n rectangular matrix P of i.i.d. exp(1)

entries is

F(k, m, n) =
∑

i,j ≥ 0, i + j < k

1
(m − i)(n − j)

. (6.1)

Nair [17] has proposed a larger set of conjectures that identifies each term in Eq. (6.1)
as the expected value of an exponentially distributed random variable corresponding to an
increment of appropriately sized matchings in P. We prove this larger set of conjectures
using the machinery developed in Section 5 and therefore establish the Coppersmith-Sorkin
conjecture.

We define two classes of matchings for P, called W-matchings and V-matchings, along
the lines of the S-matchings and T-matchings. But the W- and V-matchings will be defined
for all sizes k, 1 ≤ k < m. Thus, the superscript associated with a matching will denote its
size.

We now proceed to define these matchings for a fixed size k < m. Denote the smallest
matching of size k by Vk

0 . Without loss of generality, we assume that Col(Vk
0 ) = {1, 2, . . . , k}.

Let Wk
i denote the smallest matching in the matrix P when column i is removed. Note that

for i > k, Wk
i = Vk

0 .

Definition 6.1 (W-matchings). Define the matchings {Vk
0 , Wk

1 , . . . , Wk
k } to be the W-

matchings of size k.

Definition 6.2 (V-matchings). Arrange the matchings {Vk
0 , Wk

1 , . . . , Wk
k } in order of

increasing weights. Then the resulting sequence {V k
0 , V k

1 , . . . , V k
k } is called the V-matchings

of size k.

Finally, we refer to the smallest matching of size m as V m
0 .

We now state the following theorem regarding the distributions of the increments of the
V-matchings.
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Theorem 6.3. Let P be an m × n rectangular matrix, P, of i.i.d. exp(1) entries. The
V-matchings of P satisfy the following: for each k, 1 ≤ k ≤ m − 1:

V k
i+1 − V k

i ∼ exp(m − i)(n − k + i), 0 ≤ i ≤ k − 1 (6.2)

and

V k+1
0 − V k

k ∼ exp(m − k)n. (6.3)

Remark 6.4. We have grouped the increments according to the size of the matchings; so
Eqs. (6.2) and (6.3) both concern the kth group. Equation (6.2) gives the distribution of the
differences of matchings of size k. The matching V k+1

0 is the smallest one of size k + 1, and
Eq. (6.3) concerns the distribution of its difference with V k

k .

Before we prove Theorem 6.3, we show how it implies the Coppersmith-Sorkin
conjecture.

Corollary 6.5.

F(k, m, n) =
∑

i,j≥0,i+j<k

1
(m − i)(n − j)

. (6.4)

Proof. By definition F(j + 1, m, n) − F(j, m, n) = IE(V j+1
0 − V j

0). Using Eqs. (6.2) and
(6.3) and by linearity of expectation, we obtain

F(j + 1, m, n) − F(j, m, n) =
∑

0≤i≤j

1
(m − i)(n − j + i)

. (6.5)

Now, using the fact that IE(V 1
0 ) = 1/mn and summing (6.5) over j = 0 to j = k − 1, we

obtain

F(k, m, n) = 1
mn

+
k−1∑

j=1

∑

0≤i≤j

1
(m − i)(n − j + i)

=
∑

i,j≥0,i+j<k

1
(m − i)(n − j)

. (6.6)

Thus Theorem 6.3 establishes the Coppersmith-Sorkin conjecture.

We now proceed to the proof of Theorem 6.3.

Remark 6.6. We will establish the theorem for the kth group inductively. The outline of
the induction is similar to the one in Section 3, and the details of the proof are similar to
those in Section 5. The key trick that will be used in this section is a zero-padding of the
matrices under consideration in such a way that increments of the V-matchings of the zero
padded matrix (the matrix L′ defined below) and the actual matrix (the matrix L defined
below) is identical.
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6.1. Proof of Theorem 6.3

In this section we will establish properties concerning the increments of the V-matchings
in the kth group of the cost matrix P, i.e. the increments between the matchings
{Vk

0 , . . . , Vk
k , Vk+1

0 }. Let L denote an l × n matrix with l ≤ m. Consider its V-matchings
of size γ = k − m + l and denote them as {Lγ

0 , . . . , Lγ
γ }. Let Lγ+1

0 denote the smallest
matching of size γ + 1 in L.

Inductive Hypothesis:

• The entries of L are i.i.d. exp(1) random variables.
• The increments satisfy the following combinatorial identities

Lγ
1 − Lγ

0 = V k
m−l+1 − V k

m−l,

Lγ
2 − Lγ

1 = V k
m−l+2 − V k

m−l+1,

· · · · · · · · · (6.7)

Lγ
γ − Lγ

γ−1 = V k
m−l+γ − V k

m−l+γ−1,

Lγ+1
0 − Lγ

γ = V k+1
0 − V k

k .

Induction Step:

Step 1: From L, form a matrix Q of size l − 1 × n. Let {Qγ−1
0 , . . . , Qγ−1

γ−1} denote its V-
matchings of size γ − 1 and let Qγ

0 denote the smallest matching of size γ . We require
that

Qγ−1
1 − Qγ−1

0 = Lγ
2 − Lγ

1 ,

Qγ−1
2 − Qγ−1

1 = Lγ
3 − Lγ

2 ,

· · · · · · · · ·
Qγ−1

γ−1 − Qγ−1
γ−2 = Lγ

γ − Lγ
γ−1,

Qγ
0 − Qγ−1

γ−1 = Lγ+1
0 − Lγ

γ .

Step 2: Establish that the entries of Q are i.i.d. exp(1) random variables.
This completes the induction step since Q satisfies the induction hypothesis for the next

iteration.
In Step 2 we also show that Lγ

1 − Lγ
0 ∼ exp l(n − γ ) and hence conclude from Eq. (6.7)

that V k
m−l+1 − V k

m−l ∼ exp l(n − k + m − l).
The induction starts with matrix L = P (the original m×n matrix of i.i.d. entries that we

started with) at l = m and terminates at l = m − k + 1. Observe that the matrix P satisfies
the inductive hypothesis for l = m by definition.

Proof of the Induction:

Step 1: Form the matrix L′ of size l × n + m − k by adding m − k columns of zeroes to the
left of L as below

L′ = [0 | L].
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Let {T0, . . . , Tl} denote the T -matchings of the matrix L′. Then, we make the following
claim:

Claim 6.7. Let γ = l − (m − k). Then the following hold

T0 = Lγ
0 ,

T1 = Lγ
1 ,

· · ·
Tγ = Lγ

γ ,

and
Tγ+1 = Tγ+2 = · · · = Tl = Lγ+1

0

Proof. Note that any matching of size l in L′ can have at most m − k zeroes. It is clear
that the smallest matching of size l in L′ is formed by picking m − k zeroes along with the
smallest matching of size γ in L. Thus, T0 = Lγ

0 .
By Lemma 4.1 we know that the other T-matchings in L′ drop exactly one column of T0.

We analyze two cases: First, removing a column of zeroes and, next, removing a column
containing an entry of Lγ

0 .
The removal of any column c containing zeroes leads to the smallest matching of size l

in L′\c being a combination of m − k −1 zeroes with the smallest matching of size γ +1 in
L. Hence m − k = l − γ of the Ti’s, corresponding to each column of zeroes, have weight
equal to Lγ+1

0 .
If we remove any column containing Lγ

0 , then the smallest matching of size l in L is
obtained by combining m − k zeroes with the smallest matching of size γ in L that avoids
this column. Hence, these matchings have weights Lγ

i for i ∈ {1, 2, . . . , γ }.
We claim that Lγ+1

0 is larger than Lγ
i for i ∈ {0, 1, 2, . . . , γ }. Clearly Lγ+1

0 > Lγ
0 . Further,

for i ≥ 1, we have a matching of size γ in Lγ+1
0 that avoids the same column that Lγ

i avoids.
But Lγ

i is the smallest matching of size γ that avoids this column. So we conclude that
Lγ+1

0 > Lγ
i .

Hence arranging the weights (in increasing order) of the smallest matchings of size l in
L′, obtained by removing one column of T0 at a time, establishes the claim.

From the above it is clear that the matchings T0 and T1 are formed by m − k zeroes and
the matchings Lγ

0 and Lγ
1 , respectively. Hence, as in Section 5, we have two elements, one

each of T0 and T1 that lie outside Col(T0) ∩ Col(T1).
We now perform the procedure outlined in Section 5 for obtaining Q from L by working

through the matrix L′.
Accordingly, form the matrix L∗ by subtracting the value T1 − T0 from all the entries in

L′ that lie outside Col(T0). Generate a random variable X , independent of all other random
variables, with IP(X = 0) = IP(X = 1) = 1

2 . As before, there are two well-defined entries,
e ∈ T0 and f ∈ T1, that lie outside the common columns Col(T0) ∩ Col(T1). [Note that in
the matrix, L∗, the entry f has a value f − (T1 − T0).] If X turns out to be 0, then remove the
row of L∗ containing the entry e; else remove the row containing the entry f . The resulting
matrix of size (l − 1) × n + m − k is called Q′. In matrix Q′ remove the m − k columns of
zeros to get the matrix Q of size (l − 1) × n.
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Let {U0, . . . , Ul−1} denote the T-matchings of the matrix Q′ and {Qγ−1
0 , . . . , Qγ−1

γ−1, Qγ
0 }

denote the V-matchings of the matrix Q. The following follows from Claim 6.7 applied to
the zero-padded matrix Q′.

U0 = Qγ−1
0 ,

U1 = Qγ−1
1 ,

· · ·
Uγ−1 = Qγ−1

γ−1, (6.7a)

and
Uγ = · · · = Ul−1 = Qγ

0 .

Now from Lemma 5.9 in Section 5 we know that

Ti+1 − Ti = Ui − Ui−1 for i = 1, . . . , l − 1. (6.8)

Remark 6.8. Though we have used the same notation, please bear in mind that we are
referring to two different sets of matchings here and in Section 5. However, since we adopted
the same procedure to go from one matrix to the other, the proof continues to hold.

Finally, combining Eq. (6.8), Eq. (6.7a) and Claim 6.7, we obtain

Qγ−1
1 − Qγ−1

0 = Lγ
2 − Lγ

1 ,

Qγ−1
2 − Qγ−1

1 = Lγ
3 − Lγ

2 ,

· · · · · · · · ·
Qγ−1

γ−1 − Qγ−1
γ−2 = Lγ

γ − Lγ
γ−1,

Qγ
0 − Qγ−1

γ−1 = Lγ+1
0 − Lγ

γ .

This completes Step 1 of the induction.

Step 2: Again we reduce the problem to the one in Section 5 by working with the matrices
L′ and Q′ instead of the matrices L and Q. (Note that the necessary and sufficient conditions
for L to be in the pre-image of a particular realization of Q is exactly same as the necessary
and sufficient conditions for a L′ to be in the pre-image of a particular realization of Q′.)

Let R1 denote all matrices L that map to a particular realization of Q with e and f in the
same row. Let R2 denote all matrices L that map to a particular realization of Q with e and
f in different rows. Observe that in R2, L will map to the particular realization of Q with
probability 1

2 as in Section 5. We borrow the notation from Section 5 for the rest of the proof.
(Before proceeding, it helps to make some remarks relating the quantities in this section

to their counterparts in Section 5. The matrix A had dimensions m × n; its counterpart L′

has dimensions l × (m − k + n). The number of columns in A\Col(T0) equaled n − m; now
the number of columns in L′\Col(T0) equals m − k + n − l. This implies that the value
θ = T1 − T0 = Lγ

1 − Lγ
0 will be subtracted from precisely l(m − k + n − l) elements of L′.

Note also that the vector 6r, of length l − 1, has exactly m − k zeroes and γ = k − m + l − 1
nonzero elements. The vector x is of length m − k + n − l + 1.)
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To simplify notation, set η = m − k + n − l; the number of columns from which θ is
subtracted. Thus, the vector x has length η + 1. As in Section 5, let

6v = (Q, 6r, θ) and 6w = (6v, 6x).
We will evaluate fv(6v) =

∫
R1

fw(6v, 6x) d6x + 1
2

∫
R2

fw(6v, 6x) d6x, to obtain the marginal density
of 6v. As before the factor 1

2 comes from the fact that on R2, e and f occur on different rows.
Therefore, L will map to the desired Q with probability 1

2 .
On R1, we have that xi = xj < H for H as in Section 5. (The counterparts of xa and xb

in Section 5 were xi and xk , and these were defined according to Lemma 5.16.) We shall set
ul = xl − xa for l 1= a, b. Finally, define

sv = q1,1 + · · · + ql−1,n + r1 + · · · + rk−m+l−1 + lηθ .

Thus, sv denotes the sum of all of the entries of L except those in 6x. We have
∫

R1

fw(6v, 6x) d6x (a)= 2l
(

η + 1
2

) ∫ H

0

∫∫∫ ∞

0
e−(sv+(q+1)xa+∑

l 1=a,b ul)
∏

l 1=a,b

dul dxa

= l η e−sv
(
1 − e−(q+1)H

)
.

The factor
(
η+1

2

)
in equality (a) comes from the possible choices for a, b from the set

{1, . . . , η}, the factor l comes from the row choices available as in Section 5, and the factor
2 corresponds to the partition, F1 or F2 (defined likewise), that L belongs to.

Similarly, on R2, we have that xa = H and we shall set ul = xl − xa for l 1= a to obtain

1
2

∫

R2

fw(6v, 6x) d6x (b)= 1
2



2 l η
∫∫∫ ∞

0
e−(sv+(q+1)H+∑

l 1=a ul)
∏

l 1=a

dul





= l η e−sv e−(q+1)H .

In equality (b) above, the factor η comes from the choice of positions available to xa (note
that xa cannot occur in the same column as the entry do which was defined in Lemma 5.16).
The factor l comes from the row choices available, and the factor 2 is due to the partition,
F1 or F2, that L belongs to.

Substituting η = n − k + m − l and adding (6.1) and (6.1), we obtain

fv(6v) = l(n − k + m − l) e−sv

= e−(q1,1+···+ql−1,n)l(n − k + m − l)e−l(n−k+m−l)θe−(r1+···+rl+k−m−1).

We summarize the above in the following lemma.

Lemma 6.9. The following hold:

(i) Q consists of i.i.d. exp(1) variables.
(ii) θ = Lγ

1 − Lγ
0 is an exp l(n − k + m − l) random variable.

(iii) 6r consists of i.i.d. exp(1) variables and m − k zeroes.
(iv) Q, Lγ

1 − Lγ
0 , and 6r are independent.

This completes Step 2 of the induction.
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From the inductive hypothesis we have Lγ
1 −Lγ

0 = V k
m−l+1−V k

m−l. Further let us substitute
m − l = i. Hence we have the following corollary.

Corollary 6.10. V k
i+1 − V k

i ∼ exp(m − i)(n − k + i) for i = 0, 2, . . . , k − 1.

To complete the proof of Theorem 6.3, we need to compute the distribution of the “level-
change” increment V k+1

0 − V k
k . At the last step of the induction, i.e., l = m − k + 1, we have

a matrix K of size m − k + 1 × n consisting of i.i.d. exp(1) random variables. Let {K1
0, K1

1}
denote the V-matchings of size 1. Let K2

0 denote the smallest matching of size 2. From the
induction carried out starting from the matrix P to the matrix K, we have random variables
K1

0 , K1
1 , K2

0 that satisfy the following: K1
1 − K1

0 = V k
k − V k

k−1 and K2
0 − K1

1 = V k+1
0 − V k

k .
The following lemma completes the proof of Theorem 6.3.

Lemma 6.11. The following holds: K2
0 − K1

1 ∼ exp(m − k)n.

Proof. This can be easily deduced from the memoryless property of the exponential
distribution; equally, one can refer to Lemma 1 in [17] for the argument.

Remark 6.12. There is a row and column interchange in the definitions of the V-matchings
in [17].

Thus, we have fully established Theorem 6.3 and hence the Coppersmith-Sorkin
conjecture.

This also gives an alternate proof to Parisi’s conjecture since [6] shows that En =
F(n, n, n) = ∑n

i=1(1/i2).

7. CONCLUDING REMARKS

This paper provides a proof of the conjectures by Parisi [19] and Coppersmith-Sorkin [6]. In
the process of proving these conjectures, we have discovered some interesting combinatorial
and probabilistic properties of matchings that could be of general interest. Those related
to the resolution of the conjectures have been presented in the paper. Others will appear in
forthcoming publications. We mention one particularly interesting property below.

Let Q be an (n−1)×n matrix of i.i.d. exp(1) entries and let {Ti} denote its T -matchings.
Let ϒ denote the set of all possible configurations of the row-wise minimum entries of Q;
for example, all the row-wise minima lie in the same column, all lie in distinct columns,
etc. Consider any fixed configuration ξ ∈ ϒ and let T ξ

i denote the T -matchings conditioned
on the event that Q has its row-wise minima placement according to ξ . Then the following
statement holds:

Property 1: The joint distribution of the vector {T ξ
i − T ξ

i−1}n−1
i=1 is the same for all

placements of the row-wise minima, ξ ∈ ϒ .

On the event, ξ1, where all the row-wise minima lie in different columns, it is quite easy
to show that T ξ1

i − T ξ1
i−1 ∼ exp i(n − i) for i = 1, . . . , n − 1 and that these increments are
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independent. Combining this with Property 1 above, one can obtain an alternate proof of
Theorem 2.4 and hence of Parisi’s conjecture.

However, the argument we currently have for proving Property 1 uses the machinery in
this paper for proving Theorem 2.4. It would be nice if another, simpler, argument could be
advanced for proving Property 1 since this would not only yield a simpler proof of Theorem
2.4 but would give some interesting new insight into the problem.
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