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Abstract

A geometric random graph, Gd(n, r), is formed as
follows: place n nodes uniformly at random onto the
surface of the d-dimensional unit torus and connect
nodes which are within a distance r of each other. The
Gd(n, r) has been of great interest due to its success as
a model for ad-hoc wireless networks. It is well known
that the connectivity of Gd(n, r) exhibits a threshold
property: there exists a constant αd such that for
any ε > 0, for rd < αd(1 − ε) log n/n the Gd(n, r)
is not connected with high probability1 and for rd >
αd(1 + ε) log n/n the Gd(n, r) is connected w.h.p.. In
this paper, we study mixing properties of random walks
on Gd(n, r) for rd(n) = ω(log n/n). Specifically, we
study the scaling of mixing times of the fastest-mixing
reversible random walk, and the natural random walk.
We find that the mixing time of both of these random
walks have the same scaling laws and scale proportional
to r−2 (for all d). These results hold for Gd(n, r) when
distance is defined using any Lp norm. Though the
results of this paper are not so surprising, they are non-
trivial and require new methods.

To obtain the scaling law for the fastest-mixing
reversible random walk, we first explicitly characterize
the fastest-mixing reversible random walk on a regular
(grid-type) graph in d dimensions. We subsequently
use this to bound the mixing time of the fastest-mixing
random walk on Gd(n, r). In the course of our analysis,
we obtain a tight relation between the mixing time
of the fastest-mixing symmetric random walk and the
fastest-mixing reversible random walk with a specified
equilibrium distribution on an arbitrary graph.

∗Author names appear in alphabetical order.
†This work is supported in part by a Stanford Graduate

Fellowship, and by C2S2, the MARCO Focus Center for Circuit
and System Solution, under MARCO contract 2003-CT-888.

1In this paper, with high probability (w.h.p.) means with
probability at least 1 − 1/n2.

To study the natural random walk, we first gener-
alize a method of [DS91] to bound eigenvalues based on
Poincare’s inequality and then apply it to the Gd(n, r)
graph.

We note that the methods utilized in this paper are
novel and general enough to be useful in the context of
other graphs.

1 Introduction

A d-dimensional geometric random graph is obtained by
placing n nodes uniformly at random on the surface of a
d-dimensional unit torus, and connecting nodes within
Euclidean distance r of each other. Such a graph is
denoted by Gd(n, r)[Pen03]. Geometric random graphs
have been used successfully in applications where the
existence of an edge between two nodes depends on the
distance between the nodes. Classically, they have been
very useful in percolation, statistical physics, hypothesis
testing, cluster analysis, etc. [Pen03]. More recently,
the G2(n, r) graph has been used to model the network
connectivity graph for wireless ad-hoc networks and
sensor networks [GK00].

In this paper, we study the mixing times of random
walks on Gd(n, r). In addition to being of theoretical in-
terest, the mixing time on a graph is directly related to
the convergence time of iterative averaging algorithms
on that graph, as shown recently in [BGPS04]. In par-
ticular, the mixing time of a random walk on Gd(n, r)
is connected to the averaging time on a wireless sensor
network (modeled as Gd(n, r)). This strongly motivates
the study of mixing times of random walks on Gd(n, r).
As noted in [BGPS04], the natural random walk cor-
responds to a very simple distributed averaging algo-
rithm. The goal is to compare the performance of this
algorithm with the optimal averaging algorithm. This
is equivalent to comparing the mixing time of the natu-
ral random walk and the fastest-mixing reversible ran-
dom walk with a uniform stationary distribution. Thus,



in this paper, we study the mixing time of the natural
random walk and fastest-mixing reversible random walk
with uniform stationary distribution.

For completeness, we first state the following defi-
nition:

Definition 1. (Reversible random walk) A ran-
dom walk on a connected graph with n nodes is defined
by the n×n transition matrix P = [Pij ], where Pij is the
probability of going from node i to node j. Let Π = [Πi]
be the stationary distribution, that is, ΠP = Π. The
random walk is called reversible iff ΠiPij = PjiΠj for
all i, j.

Definition 2. (Mixing time) The mixing time of
such a random walk is defined as follows: for any node
i define ∆i(t) = 1

2

∑n
j=1 |P t

ij − Πj |. Then, the mixing
time is

Tmix(ε) = sup
i

inf{t : ∆i(t′) ≤ ε for all t′ ≥ t}.(1.1)

It is well-known that the mixing time of a reversible
random walk is related to the second largest eigenvalue
in absolute value of P ; the following result quantifies
this relationship (see survey [Gur00])2.

Lemma 1.1. The mixing time of a random walk with
transition matrix P is bounded as follows:

λmax(P ) log(2ε)−1

2(1 − λmax(P ))
≤ Tmix(ε) ≤

log n + log ε−1

1 − λmax(P )
,(1.2)

where λmax(P ) is defined as follows: let 1 = λ1(P ) ≥
· · ·λn(P ) ≥ −1 be ordered eigenvalues of reversible
matrix P , then λmax(P ) = max{λ2(P ),−λn(P )}.

Later in the paper, we will sometimes refer to λmax as
the mixing rate of the random walk and 1 − λmax(P )
as the spectral gap of P . The fastest-mixing or optimal
(reversible) random walk for a given stationary distri-
bution is the one which has the smallest λmax of all re-
versible random walks with that stationary distribution
[BDX04].

Throughout this paper, when we state results for
the mixing time Tmix, we will mean Tmix(ε) for ε = 1/nα,
α > 0.

In order to discuss mixing time of a random walk
with unique stationary distribution, it is necessary that
the graph Gd(n, r) be connected. The following is a well-
known result about connectivity of Gd(n, r) [GK00]:

2For clarity we have stated the result for a uniform stationary
distribution; since we are working with the order notation, the
results do not change for the stationary distributions we encounter
in this paper.

Theorem 1.1. Let rc(d) be such that nrc(d)d = 4 log n.
Then Gd(n, r) is connected with high probability if r ≥
rc(d), and it is not connected with positive probability if
r = o(rc(d)).

For connected Gd(n, r), for r = Θ(rc(d)), the graph
does not have a regular structure, making it hard to
study the mixing properties of random walks. Hence, we
study mixing times of random walks for r = ω(rc(d));
for such r, the structure of the graph becomes regular, as
shown in Lemma 2.1. Throughout this paper, we only
are interested in random walks which are reversible3,
and have uniform stationary distribution. Also, to
remove edge effects, we consider Gd(n, r) on the d-
dimensional unit torus. The results of this paper also
hold if Gd(n, r) is defined on a square or a sphere. The
following is the main result of this paper:

Theorem 1.2. For Gd(n, r) with r = ω(rc(d)), with
high probability,

(a) the mixing time of the fastest mixing reversible
random walk with uniform stationary distribution
is Θ

(
r−2 log n

)
, and

(b) the mixing time of the modified natural random
walk, where a node jumps to any of its neighbors
(other than itself) with equal probability, and has a
self loop of probability 1/2, is also Θ

(
r−2 log n

)
.

The rest of the paper is organized as follows: In
Section 2 we obtain the regularity property of Gd(n, r)
for r = ω(rc(d)) (Lemma 2.1). We prove Theorem
1.2(a) in Section 3 and Theorem 1.2(b) in Section 4.
Within Section 3, we first prove the results for d = 1
and then extend them to d ≥ 2. To prove Theorem
1.2(a), given Theorem 1.2(b), we only need to show a
lower bound of Ω

(
r−2 log n

)
.

1.1 Related Work There is a large body of litera-
ture on properties of random geometric graphs. Connec-
tivity properties for the G(n, r) were derived in [GK00],
where the G2(n, r) graph was used to model wireless
ad-hoc networks as well as sensor networks. The re-
cent book by Penrose [Pen03] contains comprehensive
discussions about connectivity, vertex degree distribu-
tions, percolation, and many other graph properties for
the G(n, r) graph. Recently, sharp thresholds for mono-
tone properties of G(n, r) graphs have been obtained in

3Let P = [Pij ] be the transition matrix corresponding to
a random walk and Π = [Πi] be the corresponding stationary
distribution. Then P is reversible iff ΠiPij = ΠjPji, ∀i, j.



[GRK04]. For some results on covering algorithms for
these graphs, see [BBFM03].

Another popular kind of random graph is the
Bernoulli random graph G(n, p), which is a graph on n
nodes formed by placing a edge between two nodes in-
dependently with probability p. Such graphs have been
studied extensively; [Bol01] contains a comprehensive
treatment of this subject.

2 Regularity of Gd(n, r)

In this section, we state a (possibly known) relatively
straightforward regularity property of Gd(n, r), which
makes the analysis of the mixing time of random walks
tractable.

Lemma 2.1. For Gd(n, r) with r = ω(rc(d)), the degree
of every node is αdnrd(1 + o(1)) w.h.p., where αd =

πd/2

Γ(1+d/2) .

Proof. Let nodes be numbered i = 1, · · · , n. Consider a
particular node, say 1. Let random variable Xj be 1 if
node j is within distance r of node 1 and 0 otherwise.
The Xjs are IID Bernoulli with probability pd = αdrd

of success (the volume of a d−dimensional sphere with
radius r is αdrd). The degree of node 1 is

d1 =
n∑

j=2

Xj .(2.3)

By application of the Chernoff bound we obtain :

P (|
∑n

j=2 Xj − (n − 1)pd| ≥ δ(n − 1)pd) ≤
2 exp(− δ2(n−1)pd

2 ).
(2.4)

If we choose δ =
√

8 log n
pd(n−1) , then the right-hand

side in (2.4) becomes 2 exp(−4 log n) = 2/n4. So, for
pd = ω(log n/n)), node 1 has degree

d1 = (n − 1)pd ±
√

8(n − 1)pd log n
% npd(1 ± o(1)), w.p. ≥ 1 − 2

n4 .
(2.5)

Using the union bound, we see that

P (any node has degree &= npd(1 ± o(1))) ≤ n 2
n4

= 2
n3 .

(2.6)
So for large n, w.h.p., all nodes in the Gd(n, r) have
degree npd(1 ± o(1)).

3 Fastest mixing random walk on Gd(n, r)

In this section, we characterize the scaling of the
fastest mixing random walk on Gd(n, r) with uniform

stationary distribution. We first consider the case of
d = 1, i.e. G1(n, r). This is much easier than the
higher dimensional Gd(n, r) with d ≥ 2. We completely
characterize G1(n, r) with the help of one-dimensional
regular graphs. For Gd(n, r) with d ≥ 2, we obtain
a lower bound on the fastest-mixing reversible random
walk. Note that since we are interested in reversible
random walks with uniform stationary distribution, the
transition matrix corresponding to the random walk
must be symmetric. (The upper bound of the same
order is implied by the natural random walk as in
Theorem 2(b).) The remainder of the section is a proof
of Theorem 2(a).

3.1 Fastest mixing random walk on G1(n, r) Let
Gk denote the regular graph on n nodes with every node
of degree 2k: place the n nodes on the circumference of
a circle, and connect every node to k neighbors on the
left, and k on the right. From the regularity lemma,
we have that w.h.p., every node in G1(n, r) has degree
2nr(1±o(1)). Also, observe that the same technique can
be used to show that w.h.p. the number of neighbors to
the right (ditto left) is nr(1 ± o(1)). Hence, w.h.p.the
G1(n, r) is a subgraph of Gk for k = 4nr, since for
any mapping of the nodes of G1(n, r) to Gk, an edge
between nodes i and j in G1(n, r) is also present in Gk.
Similarly, G1(n, r) also contains Gl, for l = (1/2)nr.
Given this, we can now study the problem of finding
the optimal random walk on Gk with uniform stationary
distribution. We have the following lemma:

Lemma 3.1. For k, n such that k ≤ n/4, the mixing
rate of the fastest-mixing symmetric random walk on
Gk cannot be smaller than cos(2πk/n).

Proof. It can be shown using symmetry arguments
[PXBD03] that the fastest mixing random walk on
Gk with uniform stationary distribution will have a
symmetric and circulant transition matrix. (For this
simple graph, this can be easily seen using convexity of
the second eigenvalue). So we can restrict our attention
to the (circulant symmetric) transition matrices

P =





p0 p1 . . . pk 0 0 . . . 0 pk . . . p2 p1

p1 p0 p1 . . . pk 0 . . . 0 0 pk . . . p2
...

...
...

...
p1 . . . pk 0 0 . . . 0 pk . . . p2 p1 p0




(3.7)



The eigenvalues of this matrix are

µm =
k∑

j=0

pje
−2πijm/n +

k∑

j=1

pje
−2πi(n−j)m/n)

= p0 + 2
k∑

j=1

pj cos(2πjm/n), m = 0, . . . , n − 1.

For m = 0, µm = 1, which is the largest eigenvalue. Let
p = (p0, p1, . . . , pk, pk, . . . , p1). We are interested in the
smallest possible second largest eigenvalue in absolute
value, i.e.,

minp maxm={1,...,n−1} |µm|
subject to 1T p = 1,

p ' 0.
(3.8)

We can obtain a lower bound for the optimal value of
(3.8). Now,

µ2 ≤ maxm={1,...,n−1} |(µm)|
⇒ minp µ2 ≤ minp maxm={1,...,n−1} |(µm)|.(3.9)

The right hand side is the solution of the following linear
program with a single total sum constraint:

minp p0 + 2
∑k

j=1 pj cos(2πj/n)
s.t. 1T p = 1

p ' 0.
(3.10)

For k such that each of the coefficients cos(2πj/n) is
positive, i.e., for k ≤ n/4, the smallest coefficient is
cos(2πk/n), and so for all such k and n, the minimum
value is cos(2πk/n), obtained at pk = 1/2, pj = 0
for all other j. 4 So the fastest mixing random walk
on this graph cannot have a mixing rate smaller than
cos(2πk/n).

The above result was proved for all k ≤ n/4;
however, we will be interested only in those cases where
k = o(n), i.e., the graph is not too well connected. For
such k, the following lemma allows us to find a ’nearly
optimal’ transition matrix:

Lemma 3.2. For k = o(n), there is a random walk on
Gk for which the mixing rate is λmax = cos(2πk/n) +
Θ(k4/n4).

The proof of the lemma is included in the Appendix.

4Note that this is only a lower bound: for this p, if k divides
n, the second largest eigenvalue is also 1, attained at m = n/k.

3.2 Fastest mixing random walk on G2(n, r) We
present the lower bound on the fastest-mixing reversible
random walk on G2(n, r) in this section. The same
method can be easily extended to d ≥ 3. First we
characterize the fastest-mixing reversible random walk
on a two-dimensional regular graph, Gkk, defined as
follows: form a lattice on the unit torus, where lattice
points are located at (i/

√
n, j/

√
n), −

√
n/2 ≤ i, j ≤

+
√

n/2, and place the n nodes at these points. An edge
between two vertices exists if the L∞ distance between
them is at most k/

√
n. For such Gkk the fastest-mixing

time scales as follows:

Lemma 3.3. The mixing rate of the fastest-mixing
reversible random walk on Gkk is no smaller than
cos2(2πk/

√
n), that is, the mixing time of the fastest-

mixing random walk is such that Tmix = Ω(n log n/k2).

Proof. As in the one-dimensional case, by symmetry,
the optimal transition probability between nodes i and
j will depend only on the distance between these
nodes. Using this, we can write the transition matrix
corresponding to such a symmetric random walk on Gkk

as the Kronecker (or tensor) product Pk ⊗ Pk, where
Pk ∈ Rn×n is as in (3.7). This is not difficult to
visualize: for i, j = 0, . . . , n − 1, a, b = 1, . . . , n,

(P ⊗ P )ni+a,nj+b = Pi+1,j+1Pab.(3.11)

Now the eigenvalues of A ⊗ B are all products of
eigenvalues of A and B, so that for 0 ≤ i, j ≤ n − 1,

λij(P ⊗ P ) = λi(P )λj(P )

= (p0 + 2
k∑

m=1

pm cos(2π
im√

n
)

· (p0 + 2
k∑

m=1

pm cos(2π
jm√

n
).

The eigenvalue 1 is obtained by setting i = j = 0; all
other eigenvalues will have absolute value less equal 1.
We want to find a lower bound for the second largest
eigenvalue in absolute value, call it λ$

max.
As before, choose i = j = 1. Then

λ11 ≤ max
i,j %=0

|λij |

⇒ min
p

λ11 ≤ min
p

max
i,j %=0

|λij |,

so that minp λ11 is a lower bound for λ$
max. Making

the assumption again that k ≤
√

n/4, the minimizing



p is the one with pk = 1/2 and pi = 0, i &= k (which
corresponds to transition probabilities of 1/4 for each of
the 4 farthest diagonal nodes, and 0 everywhere else).
The value of λ11 corresponding to this distribution
is cos2(2π k√

n
). This is of order 1 − Θ( k2

n ), since

cos2(2π k√
n
) = 1

2 + 1
2 cos(2 2πk√

n
) = 1 −Θ(k2

n ).

Thus, (1−λmax) = O(k2/n). Hence by Lemma 1.1,
the corresponding mixing time Tmix = Ω(n log n/k2). 5

The Gkk graph was constructed using the L∞
distance between vertices. Therefore, the graph formed
by placing edges between vertices based on distance
measured in any Lp norm (for the same k) is a subgraph
of Gkk, and has a mixing time lower bounded by the
mixing time of Gkk. Thus our bounds will be valid
for the G(n, r) graph constructed according to any Lp

norm.
Now we’ll use the bound on the fastest mixing

walk on G11 to obtain a bound for G2(n, r). First we
create a new graph G̃2(n, r) as follows: place a square
grid with squares of side r on the unit torus. Using
arguments similar to that used in the proof of Lemma
2.1, each square of area r2 contains nr2(1 + o(1)) nodes
for r = ω(rc(d)). For each of these r−2 squares do
the following: connect every node in a square to all
the nodes in the neighboring 8 squares, as well as the
nodes in the same square. Thus, each node is connected
to 9nr2(1 + o(1)) nodes in G̃2(n, r). By definition, all
edges in G2(n, r) are present in G̃2(n, r) and therefore,
the fastest-mixing random walk on G̃2(n, r) is at least
as fast as that of G2(n, r). Thus, lower-bounding the
fastest-mixing random walk on G̃2(n, r) is sufficient to
obtain lower bound on the fastest mixing random walk
on G2(n, r).

Now, construct a graph G of r−2 nodes as follows:
for each square in the square grid used in G̃2(n, r),
create a node in G. Thus, G has r−2 nodes. Two
nodes are connected in G if the corresponding squares in
the grid are adjacent. Thus, each node is connected to
8 other nodes. Thus, G is a regular graph G11 with
r−2 nodes. In order to use the lower bound on the
fastest mixing random walk on G11 of r−2 nodes (i.e.G)
as a lower bound on G̃2(n, r), we need to show that
the fastest-mixing symmetric random walk on G̃2(n, r)
induces a time-homogeneous reversible random walk on
G. This will be implied by the following Lemma.

Lemma 3.4. There exists a fastest-mixing symmetric
random walk on G̃2(n, r), whose transition matrix P

5It is easy to see that a result similar to Lemma 3.2 can be
obtained for d ≥ 2 using the same method.

has the following property: for any two nodes i and j
belonging to the same square, Pik = Pjk for k &= i, j,
and Pii = Pjj.

Proof. We prove this by contradiction. Suppose the
claimed statement is not true, i.e., there is no transition
matrix achieving the smallest λmax with the above
property. Since the optimal value of λmax must be
attained ([BDX04]), consider such an optimizing P1,
and let i and j be two nodes in the same square for
which the above property is not true.

Let A be the permutation matrix with Aij = Aji =
1, Aii = Ajj = 0, and all other diagonal entries 1 and all
other non-diagonal entries 0. Note that A is a symmetric
permutation matrix, and therefore A−1 = AT = A.
Consider the matrix P2 = AP1A; since A = A−1, P1

and P2 are similar, and so have the same eigenvalues.
Note that since i and j belong to the same square in G̃,
they have exactly the same neighbors, and therefore P2

also respects the graph structure (i.e., P2ab &= 0 only if
a and b have an edge between them).

Now, λmax(P ) is a convex function of P for sym-
metric stochastic P ([BDX04]), so

λmax(
P1 + P2

2
) ≤ 1

2
λmax(P1) +

1
2
λmax(P2) = λmax(P1).

(3.12)
But P = (P2 + P1)/2 has the property claimed in the
lemma for nodes i and j: Pik = Pjk for all k &= i, j,
Pii = Pjj = (P1ii + P1jj )/2, and λmax(P ) ≤ λmax(P1).
We can apply the above procedure recursively (even for
multiple rows) to construct a matrix P ∗ with smallest
λmax and the property claimed in the Lemma. This
contradicts our assumption and completes the proof.

From Lemma 3.4, we see that under the fastest mixing
random walk, the probability of transiting from a node
in a square, say S1, to some neighboring square, say S2,
is the same for all nodes in S1 and S2. Thus, essentially
we can view the random walk evolving over squares.
That is, the fastest random walk on G̃2(n, r) induces
a random walk on the graph G. By definition of mix-
ing time, the mixing time for this induced random walk
on G (with induced equilibrium distribution) certainly
lower bounds the mixing time for the random walk on
G̃2(n, r). Further, the induced random walk is reversible
as the random walk was symmetric on G̃2(n, r). There-
fore, we obtain that the lower bound on mixing time for
the fastest-mixing random walk on G implies a lower
bound on the mixing time for the fastest-mixing ran-
dom walk on G̃2(n, r). From Lemma 3.3 we have a
lower bound of Ω(r−2 log n) on the mixing time of the
fastest-mixing symmetric random walk (i.e. with uni-
form stationary distribution). From Lemma 3.5 given



below, this in turn implies lower bound of Ω(r−2 log n)
on mixing time of the fastest mixing reversible random
walk on G2(n, r). This completes the proof of 2(a) for
G2(n, r). It is easy to see that the arguments presented
above can be readily extended to the case of d ≥ 3.

Lemma 3.5. Consider a connected graph G =
({1, . . . , n}, E). Let T ∗

mix(π) be the mixing time
(with ε = 1/nα for some α > 0 as in definition 1) of
the fastest mixing reversible random walk on G with
stationary distribution π. Let β(π) = maxi,j

π(i)
π(j) ≤ C,

where C is a constant. Then,

T ∗
mix(π) = Ω

(
T ∗

mix

(
1
n
1
))

,(3.13)

i.e., the fastest mixing time for π is no faster than that
of the uniform distribution.

Proof. Consider a reversible random walk with station-
ary distribution π on G and let its transition matrix
be R. We will prove the following claim, which in turn
implies the statement of the Lemma.
Claim I. There exists a symmetric random walk on
graph G with transition matrix S such that

Tmix(S) = O(Tmix(R)).

Proof of Claim I. For a reversible matrix R, by
definition,

π(i)R(i, j) = π(j)R(j, i), ∀ i, j.

Define matrix P = [P (i, j)], where for i &= j,

P (i, j) =

{
R(i, j) if π(i) ≥ π(j)

π(i)
π(j)R(j, i) if π(i) < π(j)

and P (i, i) = 1 −
∑

j %=i P (i, j).
By definition and reversibility of R, P is a sym-

metric doubly stochastic matrix. Further, for i &= j,
P (i, j) > 0 if and only if R(i, j) > 0. Hence, P can be
viewed as a transition matrix of a symmetric random
walk on G, whose stationary distribution is uniform.

Define QR = [QR(i, j)], where

QR(i, j) = π(i)R(i, j) = π(j)R(j, i).

Similarly, define QP = 1
nP . Let φ : {1, . . . , n} → R be

a non-constant function. Define two quadratic forms,
ER and EP , of φ, as

ER(φ,φ) =
1
2

∑

i,j

(φ(i) − φ(j))2QR(i, j);

EP (φ,φ) =
1
2

∑

i,j

(φ(i) − φ(j))2QP (i, j).

Let the variance of φ with respect to two different
random walks be

V R(φ) =
1
2

∑

i,j

(φ(i) − φ(j))2π(i)π(j);

V P (φ) =
1
2

∑

i,j

(φ(i) − φ(j))2
1
n2

.

Let λ2(P ) and λ2(R) denote the second largest eigen-
value of matrices P and R respectively. The minimax
characterization of eigenvalues ([HJ85], page 176), gives
a bound on the second largest eigenvalue of a reversible
matrix X(= P,R) as

(1−λ2(X)) = inf{E
X(φ,φ)
V X(φ)

: φ non-constant}.(3.14)

For any π,
∑

i π(i) = 1, hence maxi π(i) ≥ 1/n and
minj π(j) ≤ 1/n. Further, by the property of π,
maxi,j

π(i)
π(j) = maxi π(i)

minj π(j) < C. Hence, for any k,

π(k) ≥ min
i

π(i) ≥ maxi π(i)
C

≥ 1
nC

, similarly,

π(k) ≤ max
i

π(i) ≤ C min
j

π(j) ≤ C

n
.

Thus, for any k,

π(k)
1/n

∈
(

1
C

,C

)
.

This implies that

ER(φ)
EP (φ)

∈
(

1
C2

, C2

)
;

V R(φ)
V P (φ)

∈
(

1
C2

, C2

)
.

Hence, from (3.14) we obtain (1 − λ2(P )) = Θ(1 −
λ2(R)). Now, we are considering Tmix(ε) for ε =
1/nα,α > 0. Hence, from Lemma 1.1,

Tmix(R) = Θ
(

log n

1 − λmax(R)

)
.

By definition, (1 − λmax(R)) ≤ (1 − λ2(R)). Hence,

Tmix(R) = Ω
(

log n

1 − λ2(R)

)
.

It is easy to see that random walk on G with
symmetric transition matrix S = (I + P )/2 has mixing
time given by

Tmix(S) = Θ
(

log n

1 − λ2(P )

)
.

Thus, Tmix(S) = O(Tmix(R)). This completes the proof
of Claim I and the proof of Lemma 3.5.



Remark: In fact, a stronger result can be proved,
which is

T ∗
mix(π) = Θ

(
T ∗

mix

(
1
n
1
))

.

One part of this has already been proved in the Lemma.
The reverse direction is obtained similarly, as follows.
Consider any symmetric random walk with transition
matrix P , and suppose a stationary distribution π is
specified, satisfying β(π) = maxi,j

π(i)
π(j) ≤ C, where C is

some constant. Then there is a reversible random walk
R̄ with stationary distribution π, such that Tmix(R̄) =
O(Tmix(P )). R̄ is obtained as follows. Construct a
matrix R from P as:

R(i, j) =

{
P (i, j) if π(i) ≤ π(j)

π(j)
π(i) P (i, j) if π(i) > π(j),

for i &= j, and Rii = 1 −
∑

j %=i Rij . R is a stochastic
reversible matrix, with stationary distribution π, since
π(i)R(i, j) = π(j)R(j, i). Following the same steps as
above, we can conclude that

1 − λ2(R) = Θ(1 − λ2(P )).

The matrix R̄ = (I + R)/2 has the same stationary
distribution π and the second largest eigenvalue is
(1 + λ2(R))/2. Therefore, using Lemma 1.1,

Tmix(R̄) = Θ
(

log n

1 − λ2(R)

)
.

As before,

Tmix(P ) = Θ
(

log n

1 − λmax(P )

)

= Ω
(

log n

1 − λ2(P )

)
.

Therefore, Tmix(R̄) = O(Tmix(P )), and we have the
stronger result as claimed in the Remark.

4 Natural random walk on Gd(n, r)

In this section, we study the mixing properties of the
natural random walk on Gd(n, r). Recall that under the
natural random walk, the next node is equally likely to
be any of the neighboring nodes. It is well known that
under the stationary distribution, the probability of the
walk being at node i is proportional to the degree of
node i. By Lemma 2.1, all nodes have almost equal
degree. Hence the stationary distribution is almost
uniform (it is uniform asymptotically). The rest of this
section is the proof of Theorem 1.2(b).

Consider a symmetric random walk with transition
matrix P as follows: let d∗ be the maximum degree of
any node in Gd(n, r), then

Pij =






1/d∗ if i &= j are connected
0 if i &= j are not connected

1 −
∑

j %=i Pij if i = j.

By definition, P is a doubly stochastic symmetric matrix
on Gd(n, r). Further, d∗ = αdnrd(1 + o(1)) w.h.p. It
will be clear to the reader at the end of this section,
that using the proof technique of this section, it follows
that Tmix(P ) = O(r−2 log n). This will imply the upper
bound for the proof of Theorem 1.2(a).

4.1 Proof of Theorem 1.2(b): We use a modifica-
tion of a method developed by Diaconis-Stroock [DS91]
to obtain bounds on the second largest eigenvalue using
the geometry of the Gd(n, r).

Note that for d = 1, the proof is rather straightfor-
ward. The difficulty arises in the case of d ≥ 2. For
ease of exposition in the rest of the section, we consider
d = 2. Exactly the same argument can be used for
d > 2. We begin with some initial setup and notation.
Square Grid: Divide the unit torus into a square grid
where each square is of area r2/16, i.e. of side length
r/4. Consider a node in a square. By definition of
G2(n, r), this node is connected to all nodes in the same
square and all 8 neighboring squares.
Paths and Distribution: A path between two nodes
i and j, denoted by γij , is a sequence of nodes
(i, v1, · · · , vl−1, j), l ≥ 1, such that (i, v1), · · · , (vl−1, j)
are edges in G2(n, r). Let γ = (γij)1≤i%=j≤n denote a
collection of paths for all

(n
2

)
node pairs. Let Γ be the

collection of all possible γ. Consider the probability
distribution induced on Γ by selecting paths between
all node-pairs in the following manner:

• Paths are chosen independently for different node
pairs.

• Consider a particular node pair (i, j). We select γij

as follows: let i belong to square C0 and j belong
to square Cl.

– If C0 = Cl or i and j are in the neighboring
cells then the path between i and j is (i, j).

– Else, let C1, . . . , Cl−1, l ≥ 2 be other squares
lying on the straight line joining i and j.
Select a node vk ∈ Ck, k = 1, . . . , l − 1
uniformly at random. Then the path between
i and j is (i, v1, . . . , vl−1, j).



Under the above setup, we claim the following lemma:

Lemma 4.1. Under the probability distribution on Γ as
described above, the average number of paths passing
through an edge is O(1/r3) w.h.p., where r = ω(rc(d)).

Proof. We will compute the average number of paths
passing through each square in the order notation.
Similar to the arguments of Lemma 2.1, it can be shown
that each of the 16/r2 squares contains nr2(1+o(1))

16 nodes
and each node has degree πnr2(1 + o(1)) w.h.p.. We
restrict our consideration to such instances of G2(n, r).

Now the total number of paths are Θ(n2) since there
are

(n
2

)
node pairs. Each path contains O(1/r) edges,

as O(1/r) squares can be lying on a straight line joining
two nodes. The total number of squares is Θ(1/r2).
Hence, by symmetry and regularity, the number of paths
passing through each square is Θ(n2r). Consider a
particular square C. For C, at least 1 − Θ(r2)(≈ 1)
fraction of paths passing through it have endpoints lying
in squares other than C. That is, most of the paths
passing through C have C as an intermediate square,
and not an originating square. Such paths are equally
likely to select any of the nodes in C. Hence the average
number of paths containing a node, say 1, in C, is
Θ(n2r/nr2) = Θ(n/r). The number of edges between 1
and neighboring squares is Θ(nr2). By symmetry, the
average load on an edge incident on 1 will be Θ(1/r3).
This is true for all nodes. Hence, the average load on
an edge is O(1/r3).

Next we will use this setup and Lemma 4.1 to
obtain a bound on the second largest eigenvalue using a
modified version of Poincare’s inequality stated below.

Lemma 4.2. Consider a natural random walk on a
graph G = ({1, . . . , n}, E) with Γ as the set of all
possible paths on all node pairs. Let γ∗ be the maximum
path length (among all paths and over all node pairs), d∗
be the maximum node degree, and |E| be total number
of edges. Let, according to some probability distribution
on Γ, the maximum average load on any of the edges
be b, i.e. on average no edge belongs to more than
b paths. Then, the second largest eigenvalue, λ2, is
bounded above as

λ2 ≤ 1 −
(

2|E|
d2
∗γ∗b

)
(4.15)

The proof of this Lemma can be found in the
Appendix.

From Lemmas 2.1, 4.1, 4.2 and the fact that all
paths are of length at most Θ(1/r), we obtain that the

second largest eigenvalue corresponding to the natural
random walk on G2(n, r) is bounded above as:

λ2 ≤ 1 −Θ
(

n2r2

n2r4r−4

)

= 1 −Θ(r2)(4.16)

We would like to note that, for mixing time, we
need to show that the smallest eigenvalue (which can
be negative), is also Θ(r2) away from −1. One well-
known way to avoid this difficulty is the following:
modify transition probabilities as Q = 1

2 (I + P ). Q
and P have the same stationary distribution. By
definition, Q has all non-negative eigenvalues, and
λ2(Q) = 1

2 (1 + λ2(P )). Thus, the mixing time of the
random walk corresponding to Q is governed by λ2(P ),
and is therefore Θ(r−2 log n). This random walk Q is
the modified natural random walk in Theorem 1.2(b).

Thus, from Lemma 1.1 and (4.16), the proof of
Theorem 1.2(b) for G2(n, r) follows. In general, the
above argument can be carried out similarly for d > 2
completing the proof of Theorem 1.2(b).

5 Conclusion

We studied the scaling of mixing times for the fastest
mixing reversible random walk and modified natural
random walks for Gd(n, r). We found that both of them
have mixing time of the same order, Θ(r−2 log n) for
all d. In fact these scaling results apply not just for
Gd(n, r) constructed with the Euclidean norm, but for
any Lp norm.

The methods used in this paper to compute mixing
times are novel and we strongly believe that they will
be useful in other contexts.
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6 Appendix

Here we present the proofs of Lemma 3.2 and 4.2.

Lemma 6.1. For k = o(n), there is a random walk on
Gk for which the mixing rate is λmax = cos(2πk/n) +
Θ(k4/n4).

Proof. For simplicity let us assume that 2k divides n;
it is not difficult to obtain the same results when this is
not the case.

Consider the Markov chain with transition prob-
abilities p0 = 0, pi = δ, i = 1, . . . , k − 1, pk =
1/2− (k − 1)δ. We will show that for a certain δ, small
enough, µ1 is indeed λmax, and is away from cos(2πk/n)
by Θ(k4/n4).

For the transition matrix P ∗ corresponding to these
probabilities, the eigenvalues are, for m = 0, . . . , n − 1,

µm = 2
∑k−1

i=1 δ cos( 2πim
n ) + 2( 1

2 − (k − 1)δ) cos( 2πkm
n )

= cos( 2πkm
n ) + 2δ

∑k−1
i=1 (cos( 2πim

n ) − cos( 2πkm
n ))

(6.17)
We want to find the smallest positive δ such that µ1 is
λmax (this is not true, for example, for δ = 0). However,
we need δ to be small enough so that the residual term,
2δ

∑k−1
i=1 (cos(2πi/n) − cos(2πk/n)), is small compared

to cos(2πk/n).
Since k = o(n) and we hope that δ is small (o(1)),

we see that the values of m for which |µm| is comparable
to µ1 are those values of m for which | cos(2πkm/n)| =

1. This happens for m = n
2k , n

k , 3n
2k , . . . , n

2 . (We only
need consider values of m until n/2, since λi = λn−i.)
At all odd multiples of n/2k, cos(2πkm/n) = −1, and
for the even multiples, cos(2πkm/n) = 1. For δ to
satisfy |µm| ≤ µ1, we must have for m an even multiple
of n/2k,

1 + 2δ
∑k−1

i=1 (cos( 2πim
n ) − 1) ≤

cos( 2πk
n ) + 2δ

∑k−1
i=1 (cos 2πi

n − cos 2πk
n );

(6.18)

and for m an odd multiple of n/2k

|− 1 + 2δ
∑k−1

i=1 (cos( 2πim
n ) + 1)| ≤ cos( 2πk

n ) +
2δ

∑k−1
i=1 (cos 2πi

n − cos 2πk
n ),

⇒ 1 − 2δ
∑k−1

i=1 (cos( 2πim
n ) + 1) ≤ cos( 2πk

n ) +
2δ

∑k−1
i=1 (cos 2πi

n − cos 2πk
n ).

(6.19)

From (6.18), we see that δ must satisfy

δ ≥
1
2 (1 − cos( 2πk

n )

(k − 1)(1 − cos( 2πk
n )) +

∑k−1
i=1 cos( 2πi

n ) + cos( 2πim
n )

(6.20)
for m an odd multiple of n/2k, and from (6.19),

δ ≥
1
2 (1 − cos( 2πk

n )

(k − 1)(1 − cos( 2πk
n )) +

∑k−1
i=1 cos( 2πi

n ) − cos( 2πim
n ))

(6.21)
for m a multiple of n/k. So δ can be only as small as the
maximum over the specified m of all of these right-hand
sides.

Note that the only term dependent on m in each
of these expressions is

∑k−1
i=1 cos(2πim/n). For m =

pn/2k, p odd,

k−1∑

i=1

cos(2πim/n) =
k−1∑

i=1

cos(πip/k) = 0,(6.22)

since cos(πip/k) = − cos(π(k − i)p/k) for odd p, and if
k is even, cos(πkp/2k) = 0 also. For m = qn/k,

k−1∑

i=1

cos(2πim/n) =
k∑

i=1

cos(2πiq/k) − 1 = −1(6.23)

since
∑k

i=1 cos(2πiq/k) = 0 (sum of real parts of the
kth roots of unity).

So δ = Θ(k/n2), and returning to (6.17), we see
that the residual term in µ1 is of order (k/n2)(k3/n2),
i.e., k4/n4, while cos(2πk/n) ≈ 1 − 2π2k2/n2. So the
difference between λmax and cos(2πk/n) is Θ(k4/n4).

Lemma 6.2. Consider a natural random walk on a
graph G = ({1, . . . , n}, E) with Γ as the set of all



possible paths on all node pairs. Let γ∗ be the maximum
path length (among all paths and over all node pairs), d∗
be the maximum node degree, and |E| be total number
of edges. Let, according to some probability distribution
on Γ, the maximum average load on any of the edges
be b, i.e. on average no edge belongs to more than
b paths. Then, the second largest eigenvalue, λ2, is
bounded above as

λ2 ≤ 1 −
(

2|E|
d2
∗γ∗b

)
(6.24)

Proof. The proof follows from a modification of
Poincare’s inequality (Proposition 1 [DS91]). Before
proceeding to the proof, we introduce some notation.

Let φ : {1, . . . , n} → R be a real valued function
on the n nodes. Let π = (π(i)){1≤i≤n} denote the
equilibrium distribution of the random walk. Let di

be the degree of node i, then it is well known that
π(i) = di

2|E| ≤
d∗

2|E| . For node pair (i, j), let

Q(i, j) = π(i)Pij = π(j)Pji = 1/2|E|.

Define the quadratic form of function φ as

E(φ,φ) =
1
2

∑

i,j

(φ(i) − φ(j))2Q(i, j).

Let the variance of φ with respect to π be

V (φ) =
1
2

∑

i,j

(φ(i) − φ(j))2π(i)π(j).

For a directed edge e from i → j, define φ(e) =
φ(i) − φ(j) and Q(e) = Q(i, j). First, consider one
collection of path γ = (γij). Define

|γij |Q =
∑

e∈γij

Q(e)−1.

Then, under the natural random walk,

|γij |Q = |γij |(2|E|),(6.25)

where |γij | is the length of the path γij .

V (φ) =
1
2

∑

i,j

(φ(i) − φ(j))2π(i)π(j)

(a)
=

1
2

∑

i,j




∑

e∈γij

(
Q(e)
Q(e)

)1/2

φ(e)




2

π(i)π(j)

(b)
≤ 1

2

∑

i,j

|γij |Qπ(i)π(j)
∑

e∈γij

Q(e)φ(e)2

≤
(

d∗
2|E|

)2 1
2

∑

e

Q(e)φ(e)2
∑

γij*e

|γij |Q

(c)
=

(
d2
∗

2|E|

)
1
2

∑

e

Q(e)φ(e)2
∑

γij*e

|γij |

(d)
≤

(
d2
∗

2|E|

)
γ∗

1
2

∑

e

Q(e)φ(e)2b(γ, e),(6.26)

where b(γ, e) denotes the number of paths passing
through edge e under γ = (γij). (a) follows by using
π(i) ≈ 1/n for all i and adding as well as subtracting
values of φ on the nodes of path γij for all node pair (i, j)
for a give path-set γ = (γij). (b) follows by Cauchy-
Schwartz inequality. (c) follows from (6.25), and (d)
follows from the fact that all path length are smaller
than γ∗.

Note that in (6.26), b(γ, e) is the only path depen-
dent term. Hence under a probability distribution on Γ
(i.e. set of all paths), in (6.26), b(γ, e) can be replaced
by b(e) where

b(e) =
∑

γ∈Γ

Pr(γ)b(γ, e).

Let b = maxe b(e). Then,

V (φ) ≤
(

d2
∗

2|E|

)
γ∗

1
2

∑

e

Q(e)φ(e)2b,(6.27)

=
(

d2
∗γ∗b

2|E|

)
E(φ,φ).(6.28)

The minimax characterization of eigenvalue ([HJ85],
page 176), gives a bound on the second largest eigen-
value as

λ2 = sup{1 − E(φ,φ)
V (φ)

: φ a non-constant}.(6.29)

From (6.28) and (6.29), the statement of the Lemma
follows.


