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Absirucl- Gupta and Kumar ( Z W )  intrnduced a ran- 
dom network model for studying the way throughput scales 
in a wireless network when the nudes are fixed, and 
showed that the throughput per source-destinatinn pair is 
0 ( l / m ) .  Grossglauser and Tse (2001) showed that 
when nndes are mobile it is possible to have a cmstant or 
O( 1) thrnughput scaling per source-destination pair. 

The focus of this paper is on characterizing the delay and 
determining the throughput-delay trade-off in such fixed 
and mohile ad hoc netwiwks. For the Gupta-Kumar fixed 
network model, we sbnw that the optimal thrnughput-delay 
trade-off is given by D ( n )  = @(nT(n) ) ,  where T ( , I )  and 
D ( n )  are the thrnughput and delay respectively. For the 
Grnssglauser-Tse mobile network model, we show that the 
delay scales as 0 ( n ’ / * / o ( o ) ) ,  where u ( n )  is the velocity of 
the mobile nudes. We then dscrihe a scheme that achieves 
the crptiuial order of delay fnr any given throughput. The 
scheme varies (i) the nuniher crf hops, (ii) the transmission 
range and (iii) the degree of node mnhility to achieve the 
optimal throughput-delay trade-off. The scheme prnduces 
a range of models that capture the Gupta-Kuniar midel at 
one extreme and the Gnissglauser-Tse mndel at the other. 
In  the course of our wurk, we recover previnus results of 
Gupta and Kuniar, and Grns5glauser and Tse using simpler 
techniques, which might he t,f a separate interest. 

Keywords: Stochastic processes/Queueing theory. Com- 
binatorics. Information theory. Statistics. 

I. INTRODUCTION 
An ad hoc wireless network consists of a collection of 

nodes, each capable of transmitting to or receiving from 
other nodes. When a node transmits to another node. it 
creates some intcrfcrcncc to all othcr nodes in its vicin- 
ity. When several nodes transmit simultaneously. a re- 
ceiver can successfully receive the data sent by the desired 
transmitter only if the interference from the othcr nodes is 
sufficiently small. An important characteristic of ad hoc 
wireless networks is that the topology of the nodes may 
not be known. For example. i t  inay be a sensor network 
formed by a random configuration of nodes with wireless 
communication capability. The wireless nodes could also 
be mobile. in which case the topology could be continu- 
ously changing. 

Previous research has focused on determining how the 
throughput of such wireless networks scales with the nuni- 

her of nodes. I!. in the network. Gupta and Kuniar [SI in- 
troduccd a random network modcl for studying throughput 
scaling in a fixed wireless network: i.e. when the nodes do 
not move. They defined a random network to consist of n 
nodes distributed independently and uniformly on a unit 
disk. Each node has a randonily chosen destination node 
and can transmit at lV hits-per-second provided that the in- 
terference is sufficiently small. Thus, each node is simul- 
taneously a source. S .  a potential destination, D. and a re- 
lay for other source-destination (S-D) pairs. They showed 
that in such a random network the throughput scales as 
@(I/-) I per S-D pair. 

Grossglauser and Tse [4] showed that by allowing the 
nodes to move, the throughput scaling changes dramat- 
ically. Indeed, if node motion is independent across 
nodes and has a uniform stationary distribution. a constant 
throughput scaling (O(1)) per S-D pair is feasible. Later, 
Diggavi. Grossglauser and Tse [Z] also showed that a con- 
stant throughput per S-D pair is feasible even with a more 
restricted mobility model. 

‘lhe way in which delay scales for such throughput opti- 
nraf schemes, however, has not heen wcll-studied. Indeed. 
it is unclear precisely what “delay” means, especially in 
mohile networks. One of the main contributions of this 
paper is a definition of delay, which is both meaningful 
and makes derivations possible. 

From [5] and [4], one may make the following infer- 
ciiccs about the tradc-off bctwccn throughput and delay: 
(i) In a fixed random network a sniall transmission range 
is necessary to limit interference and hence to obtain a 
high throughput. This results in multi-hopping. and conse- 
quently leads to high delays. (ii) On the other hand, niobil- 
ity allows nodes to approach one another c.losely. This not 
only allows the use of sinall transmission ranges. but more 
crucially, it allows the use of a single relay node. which 
boosts throughput to O( I). Howcvcr, the delay is now dic: 
rated by the node velocity (which is much lower than the 

‘We recall the following notation: ( i )  f ( n )  = O(g(ii)) means that 
there exists a constant c and inteper iV such that .f ( 7 1 )  5 q ( n )  for i~ > 
W. ( i i )  f ( n )  = o ( g ( n ) )  mans tbai f ( n ) / g ( n )  = 0. ti”) 
J ( T L )  = C2(y(ri)) m a n s  that y o r )  = O(J(rt)). ( iv)  J ( , L )  = u(g(ri)) 
mems thnty(n) = o ( f ( 7 r ) ) .  ( V I  f ( n )  = U(f(n)) incans that /(m) = 
O(y(n)):  y(n) = O ( f ( n ) ) .  
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speed of electromagnetic propagation). always constant. 
The above observations point ont three important iea- D ( n )  

tures that influence the throughput and delay in ad hoc 
networks: ( i )  the nuuiber of hops, (ii) the transmission 
range. and (iii) the node mobility and velocity. We pro- 
pose schemes that cxploit these thrcc fcaturcs to differ- 
ent degrees to ohldin dilferent points on the throughpul- 
delay curve in an optiiiial way (see Figure I). In fixed net- 
works. our Scheme 1 achieves the throughpui-delay trade- 

throughput. it reduces to the Gupta-Kurnar scheme (point 
Q in the figure). In the presence of mobility. and using 
only one relay per packet (no multi-hopping). our Scheme 

off shown by segment PQ in Figure I and at the highest 

2 is csscntially the Grossglauscr-Tsc schcmc (point R in 1 - 
the figure). At this highest achievable throughput. we are 1 / 7 1  1/- I 
able to conmute the exact order of delay as network size 

) R  

T(r1) 

increases. For lower throughputs. by using the nuniher of 
hops and node mobility optimally, Scheme 3 obtains dif- 
ferent points on the throughput-delay curve shown by seg- 
uient PR in Figure 1. Beliore suuiinarizirig ihew slateinents 
more precisely, we shall need to define what we mean by 
throughput and delay. 
Definition of throughput: A throughput X > 0 is said to 
be feasihle/achievable if every node can send at a rate of 
X bits per second to its chosen destination. We denote by 
T(n.). the maximum feasible throughput with high proh- 
ability (whp). In this paper, T(?I)  will he the maxiiiinm 
delay-constrained throughput. When there is no delay con- 
straint. I ' ( n )  is simply the rhroirglprt capacir?: as in [51. 

Definition of delay: The delay of a packet in a network 
is the time it takes the packet to reach the destination after 
i t  leaves the source. We do not take queueing delay at the 
source into account, since our interest is in the network de- 
lay. The average packet delay for a network with 1 2  nodes. 
D ( v ) .  is obtained by averaging over all packets, all source- 
destination pairs, and all random network conliguralions. 

In a f i x d  network, the delay equals the sum of the times 
spent at each relay. In a mobile network also. the delay is 
the sum of the times spent at each relay. However, in this 
case. delay depends on the velocity. v (n ) ,  of each relay. 

For a meaningful measure of delay per packet, it is 
irnporiant to scale the size of a packet depending on the 
throughput. If throughput is A. the transmission delay (or 
scrvice time) of a packet of fixcd size would scale as 1/X. 
This would dominate the overall delay and hence would 
not let us capture the delay causcd by the dynamics of the 
networWscheme. To counteract this. we let the packet size 
scale as X so that the transmission delay (scrvice time) is 

141. 

'In this paper. wlp means with probability 2 1 - 11" 

Fig. 1. 7hrmqhput-delay scaling trade-off for a wireless network &ssunGne 
U(",) = f J  (I /,hi). The marks on the axes rcprcscnt the orders ssymplol- 
icallg in n. 

A. Oirtliiie and Suirimap ojresirlts 
Fixed rantloin iierwork: In Section 11. we inuoduce 
Scheme 1 and show that the dcpcndcncc of thc optimal 
delay on throughput for a fixed random network is given 

~ ( r r )  = o ( , i ? . ~ ( n ) )  ~ for ~ ( 1 s )  = o ( I / G) . 
by 

(1) 
The above result says the following: (i) The highest 
throughput per node achievable in a fixed network is 
0 ( l / m ) ,  as Gupta and Kurnar obtained, At this 
throughput the average delay D ( n )  = 0 (d*) 
(point Q in Figure 1). (ii) By increasing the transniis- 
sion radius the average nuniber of hops can he reduced. 
But, because the interkrence is higher now. the through- 
put would he lower. When throughput is sinaller than 
0 (l/-), equation (1) shows how D(n)  is related 
to 1 1 ( 7 1 )  (segment PQ in Figure 1). 
Delqv irr a rrtohile rierwork for  T (n )  = O(1); In Sec- 
tion 111, we introduce Scheme 2 in which nodes move ac- 
cording to indcpcndcnt Brownian motions and use a singlc 
relay as in Grossglauser and Tse. This scheme achieves 
throughput .T(,v) = O(1). Using results from random 
walks [3] and queueing theory [X I  we show that the de- 
lay, D ( n ) ,  (both due to node mobility and queueing at the 
relay) is given by 

D(n)  = 0 ( f i / , u ( 7 ? ) )  when T(71) = O(1) 
Here . I J ( ~ s )  denotes the way node velocity scales with 1 7 .  
Taking ? J ( I ~ . )  = 0(1/&), the above point is shown as R 
in Figure I .  
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I%roug/rpirr t l e l p  tratle-off iii a riiohile tiencork: In 
Section 1V wc introduce Scheme 3, where the trade- 
off is achieved using multiple hops. The trade-off is 
para~neuized hy ~ ( 7 1 . ) .  where a corresponds to the 
average distance traveled in one hop. The range ol' u ( , t i )  is 
from @(log u / n )  (corresponding to the Grossglauser-Tse 
model. point R)' to O(1) (corresponding to the Gupta- 
Kumar model. point Q). 'The optimal throughput-delay 
trade-off for T(77). in the range hetween 0 (l/m) 
and 0 ( I / log 7)) ~ is given by 

D(72) = O ( l / u ( r i )  m) . 

This is shown hy the segment QR in Figure 1 .  

11. THKOU~~HPUT-DELAY TK.-\DE-OFF FOK FIXED 
NETWORKS 

We consider a random network model similar to that 
introduced by Gupta and Kurnar IS] .  There are 't i, nodes 
distributed uniformly at random on a unit torus and each 
node has a randomly chosen destination. We assume the 
unit torus to avoid edge effects, which otherwise compli- 
cates the analysis. We note, however, that the results in the 
paper hold for a unit square as well. Each node transmits 
at 14' hits per second. which is a constant. independent of 

We assume slotted time for transmission. For successful 
transmission. we assume a model similar to the Protocol 
model as defined [ 5 ] .  Under our Relaxed Piarocol model, 
a transmission from node .i to node ,7 is successful if for 
any other node k that is transmitting simultaneously, 

77,. 

r l ( k - j )  2 (I + A ) d ( i , j )  for h > 0 

where d ( i : j )  is the distance hetween nodes% andj .  This is 
a slightly more general version of the model presented in 
151 in the scnsc that nodes do not requirc a common rangc 
of transmission. 

In the other commonly used model (e.g.. [513 LB). 
known as the Plrvsical model, a transniission is success; 
ful if the Signal to Interference and Noise Ratio (SINR) is 
I zrcatcr than somc constant. It  is well known [5 ]  that with 
a fading factor CI > 2. the Protocul niodel is equivalent to 
the Pli?;sical model. where each transmitter uses the same 
power. In the rest ofthe paper we shall assume the Relaxed 
Protocol model. 

3To be precise. thru scheme corresponds to " ( 1 1 )  = Q(l /n ) .  which 
is covered hy our Scheme 2 .  For the technique we use IO analyze 
Sclirme 3 to work. we nerd u ( , L )  = Q(lugn/r~). Fur tlir sane rcil- 
son. wc also considcr T(n)  = O(1/ log n )  instead of T(n)  = O(1) in 
Scheme 3. 

We now present a parametrized coniniunicatinn scheme 
and show that i t  achieves the optiriial trade-off hetween 
throughput and delay. This scheme is a generalization of 
the Guptd-Kumar random network scheme 151. 
Scheme 1: 

Divide the unit toms using a square grid into square 
cells. cach of area o , ( , I J , )  (see Figure 2). 

A cellular time-division multi-access (TDMA) transniis- 
sion scheme is used. in which, each cell kconies active, 
i.e.. its nodes can transinit successl'ully to nodes in the cell 
or in neighboring cells. at regularly scheduled cell rirrie- 
slurs (se Figure 3). 

Let the straight line connecting a source S to its desti- 
nation D he denoted as an S-D line. A source S transmits 
data to its destination I1 hy hops along the adjacent cells 
lying on its S-D line as shown in Figure 2. 

Whcn a cell becomes active. it transmits a singlc packet 
lbr each 01' the S-D lines passing through it. This is again 
perfomied using a TDMA scheme that slots each cell time- 
slot into pucka rim-slors as shown in Figure 3. 
The following theorem characterizes the achievable trade- 
off for the above scheme. The optimality of this scheme 
will he proved in Theoreni 2. 
Theorem 1. For .Wienie 1 with a ( , t j . )  2 2 log 77,/77,, 

i.e.. the achiaable t/iroii~lip[if-(lelav trade-off is 

To prove Theorem 1. we need the following three len- 
mas. Lenima 1 shows that each cell will have at least one 
node d i p ,  thus guaranteeing successful transmission along 
each S-D line. Lemma 2 shows that each cell can be active 
for a constant fraction of time, independent ofn. I.emma 3 
hounds the maximum nuniber of S-U lines passing through 
any cell. Comhining these results yields a proof of Theo- 
rem 1. 

Lemma 1. (a)  Iftr(n.) 2 2 logn/n, rlieri all cells have UI 
least OflC rrutle whp. 
(b) For ~ ( 7 7 )  = Q(log?//t7), each cell has m ( 7 1 . )  f 
J21i , t i ( tr , )  logn riodes whp. hi par/icu/ar: if' a ( 7 1 )  = 
w(logrt / lr)  tltefl each cell has 1 7 u ( 1 1 )  * O(,f1(1(7t))  frorlrs. 
(c) Let u.(IJ.)  = 1 / 7 1  aiid let c k ( 7 2 ) )  b 2 0 be the fraction of 
cells with k rlo~1e.Y. Tlrerr wI1p 

C k ( 7 l )  = t:-'/k! 
This lemma can be proved using well-known results (for 

example, see 171. Chapter 3). Due to space constr dints, ' we 
do not repeat the proof here. 
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Cell of size u ( n )  S-U lines 
Fig. 2. Ilhc unit t o m  is divided into cells ofsiu, a ( n )  for Scheme 1. The 

S-U lilies p3ssisg through the shaded cell in the center xc  shown. 

Cell time-slots 

I . Time 
... ... A 

P *  ... 

Packet time-slots 
Fig. 3. 'The TDMA transmission schedule of Scheme 1. The number 

of cell I I I I I ~ - S I O I S  is constant while thz nurnhcr of packet time-slns i s  
V (  m). i!Yote that B cell here rcfsrs to B square call oMaincd hy 
the overlay of the unit tom by a square grid and 1101 a packet of fixzd size 
as commonlyusrd i n  networking litcraturz.) 

Before stating Lemma 2, we niake the following defini- 
tion: We say that cell B interferes with another cell A if a 
transmission hy a node in cell B can affect the success of 
a simultaneous transmission hy a node in cell A. 

Lemma 2. IJrider the Relaxed Protocol iriodel. the riurt~l~er 
of cells tliut interfere witli anv giverl cell i.s bourrded above 
Ov U coiisrarit CI. irideperitfenr o f n .  

Proof: Consider a node in a cell transmitting to another 
node within the same cell or in one of its 8 neighboring 
cells. Since each cell has area u ( ~ ? ) ,  the distance between 
the transmitting and receiving nodes cannot he more than 
I' = m. Under the Relaxed Protocol model. data is 
successfully received if no node within distance r = (1 + 
A ) r  of the receiver transmits at the same time. Therefore, 

the nuniher of interfering cells. c j ,  is at most 

which. for a constant A. is a constant. independent of 7). 

(and o ( ? ~ ) ) .  0 

A consequence of Lemma 2 is that interference-free 
scheduling among all cells is possihle. where each cell he- 
comes active once in every 1 + CI slors. In other words, 
each cell can have a constant throughput. Now we bound 
the maximum nuniher of S-D lines passing through any 
cell. 
Lemma 3. llie ririrnDer of S-D lines passing rlirough ury 
cell is  ~(nm), w/ip. 

Proof: Consider 77, S-D pairs. Let (1, he the distance he- 
tween the S-I) pair i .  i.e.. the length of S-D line %. Let 
hi be the number of hops per packet for S-D pair %. Then 
I1.i = d i / & i j .  L e t  H = r=l I L ~ ,  i.e.. the total numher 
of hops required to send one packet from each sender S to 
its corresponding destination D. 

Now consider a particular cell and define the Bernoulli 
random variables Y:. for S-D pairs I 5 ,i 5 'ti. and 
hops 1 < k 5 hi, to be equal to 1 if hop b of S-D 
pair i ' s  packet originates from a node in the cell. Hence. 
the total nuinher of S-D lines passing through the cell is 
Y = E:=, ~~~, Yi.  Note that since the nodes are ran- 
domly distributed, Ihe 1':s are identically distributed. For 
any 1 < ,i # j < 77,. Y; and 1;' (for any I < I: - < 
hi, 1 I 1 5 I r j )  are independent. However. for any given 
1 < ,i < '17,  Yl and (for any I 5 k # 1 < hi) are 
dependent and in fact the event {)< = = 1) is not 
possible, as S-D line i can intersect the cell at most once. 

Since, for all %. di E [O-  1/&], H = O ( J Z , / ~ ) .  NOW. 
we use this result to find a bound on E[Y] as follows 

First consider the random variable H = Cy=1 di./ m. 

= E H  [FIE[Y;]] 

= @ ( 7 7 . & ( 7 ) >  ( 2 )  
where ( 2 )  follows from the fact that. by the symmetry o f  
the torus, any hop is equally likely to origiirate from any 
ofthe l / a ( r i . )  cells. 

Consider a random variable = e. where I;; 
are i.i.d. Bernoulli random variables with pr(F, = I) = 
Pr(1'; = 1) = a(?).). Because of the particular de- 
pendence of y," and 1'; (for any given I < i < 71.  and 
1 < k # 1 5 1t.i). it can be shown that. for any m,  

E[Y""] < E(Y"J. 
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This implies that, for any Q > O, the number of hops taken by a packet averaged over all S- 
(A cy='=, t/ i /  m). Since for large ' t i .  the 

E:=, di = O(1). 
E[exp(@I')] I E[esp(@I')]. (3) D pairs is 

average distance between S-D pairs is 
For any s > 0, deline P(P: 6) e Pr(P -1 ( I  + ~ ) E [ F I ) .  
By the Chernoff bound for i.i.d. Bernoulli random wui- the average number of hops is 0 (l/m). 

ahles, Now note that by Lemma 2 each cell can he active once 
every constant number of cell time-slots and by Lemma 3 
each S-D line passing through a cell can have its own 
packet time-slot within that cell's time-slot. Since we as- 
surned that packet size scales in proportion to the through- 
put T(rr). each packet arriving at a node in the cell departs 

FTW~ the above discussion. we conclude that the delay 
D ( n )  : 0 (l/m). Thisconcludes theproofofThe- 
orem 1. O 

Next we show that Scheme 1 provides the optinial 
throughput-delay trade-off for a fixed wireless network. 
Theorem 2. Let the uveruge d&?: De Doirrided above 
by o('Ji). Tlreri the aclriaable throirglrprrr T(w) for anv 

(4) P ( Y , ~ )  I e x p ( - 6 ' ~ [ P ] / . ~ ) .  

Consider the following: 
n 

= Pr(exP(41.') 2 (+SP(cb(l 4- 6)EIYI)) within aconstant tinie. 

I 

P(Y:6)  = Pr(1' 2 (1 + f i ) E [ Y ] )  

( 5 )  

(61 

where (5) follows by the Markov inqudity and (6) follows 
liorn (3) and the Fact thatesp(Q( 1+6)E[1']) = esp($(l+ 
6)E[Y] ) .  From (6) and the proof of the Chernoff bound 
(for example. see [7], pg. 68)  it follows that P( I I  6) can 
be bounded above by the bound on P( y 2  6) as given in (4). s c ' l ~ l e  scales US 0 (q). 

E b P ( 4 Y ) I  
esp(Q(1 + 6)E[Yl )  

E[cxp($!lY)] 
esp(4(i + 6 ) ~ [ i ' ] ) '  

< - 

Prooj The proof uses similar techniques to the proof of 
P r ( Y  2 EY + 2 d m )  5 I/??. (7) Theorem 2.1 in [SI. Consider a given fixed placement of 

By taking h = 2 ,/-, we obtain 

Thus. for any cell, the number of hops originating from 
.it are bounded above by 11 m + o ( n m )  with prob- 
ahility 2 1 - 1/n2, Since there are at most n cells, by the 
union of cvcnts bound. the abovc bound holds for all cells 
with probability 2 1 - I / . J L  This completes the proof of 
the lemma. 0 

We are now ready to prove Theorem I 

Proofqf 77irorerir I .  From Lemma 2. it follows that each 
cell can bc active for a guarantccd fraction of tiinc. i.e.. it 
can have a COUStdnt throughput. LelnITGa 3 suggests that 
if each cc11 dividcs its cell time-slot into o ( n  m) 
packet time-slots. each S-D pair hopping through it can 
use one packet time-slot. Equivalently. each S-D pair 
can successfully transmit for o (l/vm) fraction of 
time. That is. the achievable throughput per S-D pair is 
T('f1) = @ (1/7Jm). 

Next we compute the average packet delay D(rr). As 
defined earlier. packet delay is the sum of the amount of 
time spent in  each hop. We first hound the avera, oe n u n -  
her of hops then show that the time spent in each hop is 
constant. indcpcndcnt of 11,. 

Since Fach hop covers a distance of 0 (m), 
the number of hops per packet for S-D pair ,i is 
0 (di/ m), where d i  is the length of S-D line %. Thus 

71, nodes in the unit torus. Let E h e  the saniple mean of 
the lengths of the S-U lines for the given node placement 
aud let the throughput he A. Consider a large enough time 
1 over which the total nunihcr of hits transported in the 
network is Xnt.  Lct h(6 )  bc Ihc number of hops taken by 
hit b. 1 5 b 5 Xl,t and let r(6; I J . )  denote the length of hop 
h. of bit 6. Therefore. 

Now. for two simultaneous kansmissions from node ,i to 
node j and from node k to node 1. 

d( j ;  I )  2 d ( j :  k )  - d ( l >  k )  
2 (1 + A)d( i : j )  - d(1 :k ) :  

and similarly. 

d ( j >  1)  2 d ( l > i )  - t l ( i , j )  
2 (1 -I-  A ) d ( l : k )  - d ( i l j )  

Combining the above two inequalities, we obtain 
A 
2 d ( j >  1 )  2 ( t l ( i :  j )  -1 d ( k ,  1 ) )  . 

This result implies that if we place a disk around each 
receiver of radius A/2 times the length of the hop. the 
disks must he disjoint for successful transmission under 
the Protocol model. Since a node transmits at 1.V bits per 
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second. each hit transmission time is 1/11’ seconds. Dur- 
ing each hit transmission, the tolal area covered hy the 
disks surrounding thc receivers niust he less than the to- 
tal unit area. Summing over the Il’t hits transmitted in 
time 1 ,  we obtain 

(9) 

Let the total numher of hops taken hy all hits he H = 
/r(b). Then, hy convexity. it follows that 

Cornhining (9) and ( I O )  gives 

Substituting from (8) into (11) and rearranging. we ohtain 

- 
Now defining h(6 )  to hc the samplc mean of the numhcr 
of hops over Ant hits, we obtain 

(12) 
I I rl(o) = -xh(b) = -H. 

X f t l  
b=l 

X f / t  

Substituting from (12) into (1 1) and rearranging, we ohtain 

By definition the throughput capacity T ( n )  5 X with high 
prohahility. As a result, E(X) 2 T(,ft) .  Substituting into 
(13). we ohtain 

Now. since the average number of hops per hit is the same 
as the average nuinher of hops per packet and the packet- 
size scales as T’(,n), the time spent hy a packet at each relay 
is Q(1). Therefore. the average delay. D(n) .  is of the same 
order as thc average nuniher of hops per hit, E( / r (  0)). This 
concludes the proof of Theorem 2. 0 

111. DELAY IN A M O B I L E  N E T W O R K  FOR T ( v )  = @(I) 

- 

In this section we consider a randoin network with mo- 
bile nodes sinlilar to the model introduced by Grossglauser 
and Tse in [4]. They showed that under the Physical model 
T ( n )  = O(1) is achievable. We assume 77 nodes form- 
ing 71 S-D pairs in a torus of unit area and assume slotted 
transmission time. Each node inoves independently and 
uniformly on the unit torus. Thus. at a given time, a node 

is equally likely to he in any part of the torus indepen- 
dent of the location of any other node. We first present a 
scheme (which is siniilar to that in  [4]) and show that it 
achieves constant throughput and then analyze its delay in 
Suhsection 111-A. 
Scheme 2: 

Divide the unit toms into n. square cells, each of area 
1/77,,  

Each cell heconies active once in every I + c1 cell time- 
slots as discussed in Lernma 2. 

In an active cell, the transmission is always hetween two 
nodes within the same cell. 

In an active cell. if two or inore nodes are present pick 
one at random. Each cell time-slot is divided into two suh- 
slots A and B. 
- In suh-slot A. the randomly chosen node transmits to 

its destination node if it is present in the same cell. Other- 
wise. it transmits its packet to a randomly chosen node in 
the same cell. which acts as a relay. 
- In suh-slot R. the randomly chosen node picks another 

node at random from the same cell and transmits to it a 
packct that is destined to it. 

We now prove that this scheme achieves constant 
throughput scaling. The proof is siinpler than the one given 
in [4] and. as we shall see. will help us analyze delay and 
characterize the throughput-delay trade-off in inohile wire- 
less networks (sec Section IV). 

Theorem 3. The rlirorrghpr irsirig Scheme 2 is T ( n )  = 
@(I). 

ProoJ The proof is based on Part (c )  of Lelnlnd I and 
Lemma 2 as follows: 

Each packet is Wansniittcd directly to its dcstination or 
relayed at inost once and hence the net traffic is at niost 
twice the original traffic. Since: (i) a node is chosen to he 
a relay at random from the other nodes in the same cell and 
(ii) the nodes have independent and uniformly distributed 
motion. each source’s traffic gets spread uniformly among 
all other nodes (similar to the argument in [4]). As a result, 
in steady state. each node has packets for every other node 
for a constant fraction of time c1. 

Since in any cell tinie-slot. the 12 nodes are unilbrmly 
distrihuted on the torus and the unit torus is divided into 7~ 

square cells each ofarea I /,n, hy IEninra I(c). I - 2e-’ rr 
0.26 fraction of the cells contain at least 2 nodes. Thus 
from Lclllllla 2. 0.26c2/(1 + CI) fraction of cclls can 
execute the scheme successfuUy. Since each cell has a 
throughput of @(I). the net throughput in any time-slot is 
O ( n )  whp. Moreover. due to reasons (i) and (ii) a h v e ,  the 
throughput of O(f2) is divided among all 77 pairs equally. 
Thus, the throughput per S-D pair is T(ri.) = O(1). 0 
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A. Airu/\;sL of Delci\; 

To analyze the delay for Scheme 2, we make the addi- 
tional assumption that each node moves according to an 
independent ?-dimensional Brownian motion on the torus. 
Note that in the ccllular setting with ‘IL cells. a Brownian 
motion on the toms yields a symmetric random walk on a 
2-D torus of size ,h x ,h. 

Let the node velocity scale as s(n,). We assume that 
~ ( a )  scales down as a function o fn .  This is motivated by 
the fact that in a real network, each node would occupy a 
constant amount of area. and thus as the network scales. 
the overall area must scale accordingly. However, in our 
model. as in [SI. [41. we keep the total area fixed and there- 
fore to sirnulate a rcal nctwork wc must scalc ,U(??.)  down. 

Note that a node travels Lo one of its neighboring cells 
evcry t(rr) time-slots, where 

t ( 7 i )  = 0 ( l / f i i > ( , r i ) )  . ( 14) 
Thus. we assume that each node moves accordin, 0 to a ran- 
doni walk on the torus. where each move occurs every t (u )  
time-slots. 

We now precisely define delay for Scheme 2. Since the 
nodes perform independent random walks, only O( 1/1r) 
of thc packets bclonging to any S-D pair rcach thcir dcs- 
tination in a single hop (which happens when both S and 
D are in the same cell). Thus, most of the packets reach 
their destination via a relay node. where the delay has two 
components: (i) hop-ilelav. which is constant. independent 
of 1). and (ii) iiiobi/e-i/eluv. which is the time the packet 
spends at the relay while it is moving. To compute mobile- 
delay we first niodel the queues formed at a relay node for 
each S-D pair as a GIIGIIl-FCFS. Then we characterize 
the inter-arrival and inter-departure times of the queue to 
obtain the average delay in the mobile case. 
Relay queue model: For each S-I) pair. each of the re- 
maining 12, - 2 nodes can act &s a relay. Each node keeps 
a separate queue for each S-D pair as illustrated in Fig- 
ure 4. Thus the mobile-delay is the average delay at such a 
queue. By symmetry. all such queues at all relay nodes are 
identical. Consider one such queue’. i.e., fix an S-D pair 
and a relay node R. To compute the average delay for this 
queue. we need to study the characteristics of its arrival 
and departure processes. A packet arrives when (i) R is in 
the same cell as S. and (ii) the cell becomes active. Simi- 
larly, a packet dcparts whcn R is in thc sanic active cc11 as 
D. Let I, be the probability h a t  the cell is active when both 
R and S are in it. Note that I, does not vary with ‘11. Define 
the inter-meeting time of two nodes as the time hetween 

‘Fur delay to be finite. the alrival rate must be strictly smaller tlian the 
servicc ratc. To eiisurc this. wc ilssumc that if the ovailablc tlrouphpul 
is T(n) .  rich source fraiisinirs 31 3 rate (1 - r ) T ( n ) .  for some t > 0. 

Direct transmission 
Fig. 4. For any S-D pair. the remunine I L  - 2 nodes act as relays. Each node 

maintains a s c p ~ ~ ~ i t c  queue loor each of the .,L - 2 S-D pairs. 

two consecutive instants where they are both in the same 
cell. Since the node motion is independent of the event 
that the cell is active, the inter-arrival time is a sun1 of a 
Geometric number, IC - Geom(p), of inter-meeting times 
of S and R. Hence the inter-arrival time is of the same or- 
der a? the the inter-meeting time of S and R. Similarly. the 
inter-departure time is also of the same order as the inter- 
meeting time o f R  and D. 
Average delay of GUGIIl-FCFS queue: Since the nodes 
perform indcpcndcnt synirnctric random walks, the queuc 
at each relay node is GIIGIII-FCFS. The average delay for 
a GIIGIII-FCFS queue can be bounded using the first and 
second moments of the inter-arrival and inter-departure 
times. We recall the following upper bound on the aver- 
age delay for a GIIGIII-FCFS queue known as Kingman’s 
upper bound (see [8]. pase 476). 
Lemma 4. Coiisider a discrete GI/GI/l-FCFS qrreiie. Ler 
4( i ) :  ,i E Z he srutioriuv indepericleizt inter-urrivul riirles. 
urd S( i )  ,i E Z De srutioritin inr/epeiiderrr inter-ilepurtcrre 
rirnes. Let 

E[A(O)] = p;  E[S(O)I = (I  - t)!~., 

Vur(A(0) )  = 0 2 ;  v u r ( s ( 0 ) )  = U: 

Tlieri, tlir average ileluy is borrrided ubove us 

Also it is trivially true that 

E [ D ]  = Q ( , L ) .  (16) 

Inter-meeting time analysis: In view of the above lemma, 
we proceed to compute the first and second moments of the 
inter-meeting time. The torus with 71. cells can be viewed 
as a fi x fi grid. Let the position of node i at time t 
he (.Yi(t)>zYi(t)). where Si,(t) E (0:. . . ~ fi - 1): k = 
1: 2. Now consider the difference random walk between 
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. .  
nodes% andj,dcfncdhy (Xy( t )>dYy( t ) )  whcreS?(t)  = 

X i ( t )  - X i ( t )  niod fi. for t = 1,2.  Since each node 
is performing an indepcndent symmetric random walk on 
a 2-dimensional g i d  (or torus). each of the components 
{.~j!(t)> t = 1; 21 is independent of others. Further 
since we arc interested only in the first two niomcnts. each 
component can he modeled as an independent symmetric 
random walk on a one dimensional grid of size fi. i.e.. 
for I ;  = I, 2, 

The meeting time of two nodes i and . j  is iden- 
tified by the event { ( X y ( t ) , X f ( t ) )  = (0:O)). 
Thus the inter-meeting time is the random stopping 
time T = in f i t  2 1 : (AXy(t) ,AY.y(t))  = 
(o,o) giventhat ( , Y ~ ( o ) ) x ~ ( u ) )  = (o,o)}.  ene em^ 
to compute U$ = E[T' ] - E[T12. For further analysis, we 
consider only the difference random walk. Also note that 
the unit time step of the random walk is actually of order 
t(n) in real time. 

For k = 1> 2. let 

T k  = inf(t 1 1 : S k j ( t )  = 0 such that .X;!(O) = 0). 
. .  

r 
Define 

f = l  

Then T = E,"=, Tl(l)  where Tl((1) are i.i.d. random vari- 
ables with the same distrihution as T I .  As a result. 

r: 

I =  I 
= 

= 

E[GE[Tf]  + G(G - 1)E[TiI2] 
E[G]E[TfI +E[G' - G]E[Tl]'.  (17) 

The sequence (X:" ( t ) ,X$( t ) )  forms a Markov chain 
with a uniform distribution on the n states { ( a , h )  E 
{O, . . . ~ fi - l}'}. By definition T is the inter-visit time 
of this Markov chain to state (0 ;O) .  Since it is a finite 
state Markov chain with a uniform stationary disrrihution, 
E[T]  = 71. Similarly. E[Tt] = fi. By definition, we 
ohtain. E[T]  = EIG]EITl] and hence E[G] = fi. Con- 
hining this wilh (17), we ohtain 

E[Tg]  - E [ T ] ' = f i E ~ T ~ ]  -u:'/~ + E[G']I,? - 7 1 ~ .  (18) 

Bound on EIT:]: Let -?(t) he a symmetric random walk 
on z starting at position 0 and let i. = inf{t ; 2 ( t )  = 
--I or T(t)  = fi}. Then E[T:] = O(E[T"]) .  Now. 

consider the following lemma. which follows from stan- 
dard results in  prohahiliry theory for martingales. 

Lemma S. E[?'] = o ( r P )  . 
Using this result. i t  follows that 

EIT:] = 0 ( 7 q  (19) 

Bound o n  E'[@]: Consider two nodes 711 and v g ,  hoth 
starting at position 0 at time t = 0 and performing inde- 
pendent symmetric random walks on a I-D toms of size 
fi. By definition. G is the nuinher of times node 771 vis- 
its 0 until hoth 'ul and n g  arc at position 0 for the first time 
T > 0. Consider the conditional prohahility of being 
at 0 at any time t > 0 given that it was at 0 at time t = 0. 
This probability is 2 l / f i  since the stationary distrihu- 
tion ofthe position ofif.2 has probability 1/ fi for position 
0. Moreover, node ,172 performs a random walk indepen- 
dent of ??,I and hence i t  is easy to see that G is stochasti- 
cally upper hounded hy a Geometric random variahle with 
parameter I/ Jr;. Therefore 

E[G'l 5 'n. (20) 

Finally from h e  ahove discussion. by combining (18). 
(19) and (20). we obtain the following result. 

Lemma 6. 
E [ T ]  = 7 1 >  

o$ = E [ P ]  - E p y  = 0 (112) . 
Now we are ready to compute the average delay of a 

packet for Scheme 2. From Leiiiiiia 6, we ohtain p = @(,I? . )  

and 0: z O(n2). Now using (15) and (16) along with 
the tact that the actual nuinher of time-slots per unit time 
as considered for the random walk model is t(n) (a? given 
by (14)). we obtain the following theorem. 

Theorem 4. 1Jider Sckeiiie 2,  /lie uveruge delqv iricitrred 
bv U vuckrt 

D(rr) = 0 (") V ( , f I )  

From Theorem 4. for 7 ~ ( 7 1 )  = @(l/&), we ohtain. 
D ( n )  = O(n). which corresponds to the point R in Figure 
1. 

Iv. 'rIIROUGHPUT-DEL.4Y TRADE-OFF IN MOBILE 
NETWORKS 

In this section we find the optimal throughput-delay 
trade-off in random mohile networks. To achieve this 
trade-off, we introduce Scheme 3. This scheme is divided 
into two parts hased on the range of throughput: Scheme 
3(a) is for T(n)  = O ( l / m ) .  while Scheme ?(h) is 
forT(n) = w ( ~ / , h & G ) .  
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For fixed networks, with throughput ‘T(77) = 
O(l/-), Scheme I achieves the optimal trade- 
off of D(71) = O(nT(ri.)). Since the nodes move ran- 
domly and independently. use of mobility can only result 
in higher delays. Hence to achieve a trade-off for through- 
put T ( n )  = O ( l / M ) ,  we use Scheme 3(a) which is 
an adaptation of Scheme 1 for mobile networks. 

To achieve constant throughput scaling, in Scheme 2, 
the unit toms was divided into square cells of area 1 / 7 1 .  
The transmissions occurred only when the source (or des- 
tination) and relay were in the same cell. The effective 
“ncighhorhood” of a node was the a~lrea of the cell con- 
vairiing it. arid the scheme used mobility to bring the relay 
node into the “neighborhood” of the destination to deliver 
the packet. This suggests that delay can he decreased by 
increasing the size of the “neighborhood” of each node. 
But a larger neighhorhood would result in lower through- 
put due to increased interference, thus providing a trade- 
off. To achieve the trade-off for T ( n )  = u ( l / m ) ,  
we use Scheme 3(b) which employs both mobility of nodes 
and relaying across cells to reduce interference. 
Scheme 3(a): 

As in Scheme 1. divide the unit toms using a square grid 
into square cells, each of area a(??) (see Figure 2) .  

A cellular TDMA transmission sthenit: is used, in 
which, each cell becomes active at regularly scheduled cell 
time-slots (see Figure 3). From Lemma 2,  each cell gets a 
chance to he activc once cvcry I + CI ccll time-slots: 

A source S sends its packet directly to its destination D if 
it is in any of the neizhhhoring cells. Otherwise. it randomly 
chooses a relay node R in an adjacent cell on the S-1) line 
at the time of transmission. 

When the cell containing the relay node R is active. R 
transinits the packet directly to D. if D is io a neighhor- 
ing cell. Otherwise. it relays the packet ayain to a ran- 
domly chosen node in a neighboring cell on the straight 
line connecting it to D. This process continues until the 
packet reaches the destination. 

The following theorem shows that in spite of node mo- 
bility, Scheme 3(a) achieves the same throughput-delay 
trade-off as Scheme 1 for fixed networks. 
Theorem 5. I f i ! ( w )  satisfies the coritlitiori 

‘IJ (11 . )  = O( m), (211 
Scheme .?(U) achieves the following trade-off: 

Proof First we show that condition (21) is necessary for 
every packet to be eventually delivered. Consider a packet 
relayed from a source toward its destination. and let the 
initial distance between the source and its destination be 

rl. Each relaying step occurs within I + c1 time slots. 
I k h  lime rhc packer is relayed, the disrance hcrween the 
center of the cell containing the packet and its destination 
decreases by at least m. On the other hand. since 
the nodes move with velocity , ~ ( n ) ,  this distance can in- 
crease hy at most (1 + Q ) ~ U ( ~ / ) .  Thus after the packet is 
relayed 1 times. the distance hetween the center of the cell 
containing the packet and its destination will be less than 
f 1 ~ 1 ( ~ ~ ( 1 i ~ ~ l ) ? ~ ( ? ? ) ) .  Hence if m = ~ ( ~ ~ ( ~ i z ) ) .  
(he packer eventually reaches its destination. Since we 
have ~ ( n )  = O(Ii)gn/u), this results in condition (21) 
being ncccssq  for thc succcss of the scheme. 

Note that when condition (21) is satisfied, the average 
number of tinies a packet has to be relayed in order to 
reach its destination is of order O(1/ m), which is the 
same as in Scheme 1 for fixed networks. Hence the delay 
D ( n )  = @(l/m). 

Next we analyze the throughput for Scheme 3(a). De- 
fine an S-D path (which is not necessarily a straight linc) 
of a packet for a particular S-D pair as the concatenation 
of line-segments joining Ihe ccnters of the cells through 
which it hops. As in the analysis of Scheme 1. in order to 
determine the throughput. we consider the S-D paths pass- 
ing through a cell in some time-slot. 

From the preceding discussion about the delay, the 
numher of hops h i .  for any packet of an S-D pair %. is 
O( l/m). Hence H = hi. as defined in the 
proof of Lemma 3. has the same order. For a fixed cell and 
time-slot. dcfinc Y; as in the proof of Lemma 3. i.e., 1’; 
is die indicator lbr the event that hop k of an S-D pair %’s 
packet originates in the cell during this time-slot. The ran- 
dom variable 1’; has the same properties as that in Lemma 
3. i.e.. (i) independence between 1’; and I;’ for ,i # j .  
(ii) event (17 = 1,1< = 1 )  cannot occur for any given 
1 5 .i, 5 1 1 ,  I 5 1 + k 5 hi. and (iii) E[Yl] = l / u (n ) .  
As a result, as in Lemma 3. the numbcr of S-D paths pass- 
ins through any cell at any given time-slot is O(n m). 
Consequently. the achievahlc throughput per S-D pair is at 
least O ( l / n m ) .  By choosing a particular (I,(?),) such 
that ~ ( 7 7 )  = R(log?a/?i.) we obtain the trade-off region 
stated in the theorem. U 

To obtain highcr‘throughputs. we nccd to usc mobility. 
and to ohvain lower delay, we nced to use multiple hops 
cleverly. This leads to the followin_g scheme. 
Scheme 3(b): . As in Scheme 3(a). divide the unit torus using a square 
grid into square cells, each 01’ area ~ ( 7 7 ) .  We further lay 
out an additional grid formed by square sub-cells of size 
h ( r r )  = O(logn/n) as shown in Fig 5. Thus each square 
cell of area a(71) contains a ( n ) / b ( n )  sub-cells each of area 
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Cells of area a(n)  

Fig. 5. Schenw 3(b) fur throughput-dcluy trade-off in il mubile network. 

b ( n ) .  
A cellular TDMA transmission scheme is used. in 

which. each cell becomes active at r eghr ly  scheduled cell 
time-slots (see Figure 3). A cell time-slot is divided into 
O(im(n))  packet time-slots. . An active packet time-slot is divided into two sub-slots 
A and B. 
- In sub-slot A, each node sends a packet to its destina- 

tion node if it is present in the same cell. Otherwise. il 
sends its packet to a randody chosen node in the same 
cell. which acts as a relay. The packet is sent using hops 
along sub-cells of size 6 ( 7 1 )  as in Scheme 3(a). 

where ( ~ ( 7 1 , )  = O(1) ur7d o(n) = C2(logn/7t). 

Proof. As discussed in the proof of Theorem 5. in order 
to guarantee that after leaving its source a packet is even- 
tually delivered to its destination, we must have b(i?)  = 
w ( t ? ( n ) ) ,  Since 6 ( n )  = 0(iogn/n).  this implies that 
condition (21) is necessary for the scheme to be successful. 

In stcady Stdtc. cach nodc has packets for cvcry othcr 
node lor a conslant lidclion ol' the time and the ual'lic 
between each source-destination pair is spread uniformly 
across all other nodes. Note that this is simply a repeat of 
the statements from the proof of Theorem 3 for Scheme 2. 

In any packet time-slot in a given cell: (i) the S-R or 
R-11 pairs are randomly chosen according to Scheme 3(h). 
(ii) packets are communicated according to Scheme ?(a). 
and (iii) there are d ( n )  = a(n.) /b(n)  sub-cells and vi. = 
17a(71)( 1 + o( 1)) nodes. Hence. as in the proof of Theo- 
rem 5 for Schcmc 3(a). the throughput between S-U I U-U 
pairs is O ( l / . r i i . m )  = O ( l / , , ' m ) .  Thus the 
throughput for any S-D pair is O( 1/ , / i?a(r! . )  log 7 1 ) .  

The delay has two components: (i) hop-delay, which is 
proportional to the numbzr of hops along sub-cells from 
a source to the mobile relay and from the mobile relay to 
the destination and (ii) mobile-delay, which is the time it 
takes the mohile relay node to reach the cell containing ~ - - In sub-slot B, each llodt: picks another Itode at random the destination and to le l iver  the packet to it. The average 

from the same cell and sends a packet that is destined to it. 
Again. the packet is Sent using hops along sub-cells a5 in 
Scheme 3(d). 

nurllbm of hops taken by a in sub-slots A and B is 
then q Q ( 1 1 , ) / h ( 7 1 , ) )  (z~(,,~,(,~)/ log7&). H~~~~ thc llOp- 
delay is O(a( , / ! ) /b(Tf ) )  = O(??a(,i!,)/ logr!). The mobilo- 
delay can he analyzed in the same manner as for Scheme 
2 with the following differences. . The inter-mceting time of nodes-for Scheme 3(b) is for 
a randoni walk on a discrete-torus ol' size x m, instead of J;; x fi. 

The time faken by a node to move w t  of a cell is t (71 . )  = 
O( m/u(u)). instead of@(~/J iTrr(~a))  
Now using Lcmnia 6 and Lemma 4 with the two differ- 
ences mentioned above. the mobile-delay is 
0 ( I / u ( ? i . )  ' / ' , i ! (n)) .  Due to condition (21), the mohile- 
delay always dominates the hop-delay and hence the aver- 
age delay is of the same order as the mobile-delay. 0 

The trade-off obtained hy Scheme 3 is demonstrated 

we 
to scale as O ( l / n a ( n ) )  instead of as 0(1/ m). 
The scheme i s  depicted in Figure 5. A source S lirst de- 

livers its packet to a mobile relay node U which is chosen at 
random from all nodes in the same cell. The mobile relay 
node R delivcrs the packet to destination node D when 
R and 1) are in the same cell. In this sense the scheme is 
sirllilar to s ~ ] , ~ ~ ~ ~ ~  2, H~~~~~~ packet delivery in bodl 
these 

The following theorem states the trade-off achievdble by 
Sc.heme 3(b) lor iiiobile networks. 

Theorem 6. (fcoiiclition (21). i.e., ,o(n) = < I ( - ) ,  

is satisfied. flier! Scheiizr 3(0) ucfiiwes rlrr tlrroughpirr- 

[hat, the above scheme requires the 

is hy hops along sub-cells = in ScheIl1e 3 ~ ~ ) .  

graphically in Figure I assuming u ( n )  = 0 (l/fi), 
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A. Optiiirali~v of' Scheriir 3 

Consider any communication scheme for the random 
niohile network introduced in Section 111. The distance 
traveled hy a packet hetwcen its source and destination is 
the sum of the total distance traveled by hops and the total 
distance traveled hy the mobile relays used. Let r(u) he 
the sarllpk mean distance Waveled by hops averaged over 
all packets. In the following lernnia we obtain a hound on 
the throughput scaling as a function of r(n) using a tech- 
nique similar to the one used inl'heorein 2 .  We then show 
that to achieve this optimal throughput. the minimum de- 
lay incurred is of the same order as the delay of Scheme 3, 
which will establish the optirnality of Scheme 3. 
Lemma 7 .  Die aclria~able rlirorcglipirt T(n.) for airv 
scheiiie with sample mean distance traveled by / l o p  r(, i i ,)  

is  boirirdetl above as 

Proof: We merely outline the proof as i t  is similar to that 
of Theorem 2. Here the equivalents of (8) and ( I  I)  are: 

b=l h=l 

and 

where r.3 is a constant that does not depend on 1 7 .  Suhsti- 
tuting from (23) into (24) and rearranging we obtain 

t?tT(/7)qti) ~ t 
I' 5 e,-. H H 

where 

( 2 5 )  

is the sample mean of hop-lengths over H hops. Rcmang- 
inp we ohtain 

(26) 

Now for any cellular scheme ryuiring full connectivity, 

the hop distance is 12 (e) and hence we ohtain 

Note that for Schemes 3(a) and 3(h) with parameter 
( I ( ? ? ) .  the average hop distance r( , i i , )  = 0 (m). Thus 
the ahove hound on throughput has the Same order as the 
hounds in Theorems 5-6. 
Optimality of Scheme 3(a): First consider the case when 
mobility is uot used. i.e.. r(??) = O(1). In this case, from 

T ( ? , )  = 0 ( l / / ( , l? , ) - ) .  0 

(261, we obtain. T ( n )  5 c / i r l . .  and delay D ( n )  = O( l / F )  
whic.h is only due to hops. 

Now suppose rnohility is used for the vanie throughput, 
i.e.. r ( ? i , ) F  remains of the Same order in (26). If r(?i) = 
O( I). then the delay due to hoppiny is O( l / 7 )  in addition 
to mobile-delay. This implies that, use of mohility will 
result in a worse trade-off. Thus. the use of mobility when 
l(n) = O(1) does not help. 

If r(,t?) = o(1). then the average distance traveld by 
a packet via node niohility is O(1). From condition 21, 
since ~ ~ ( 7 7 , )  = o( m). the average mohile-delay is 
w( &*). Sincc F = !2( m). the hop-delay 
is O(r(,~?)/l .)  = o( d-). Clearly the rnohile-delay 
U( d-) dominates the hop-delay for any / ( , i i . ) ,  

From the ahove discussion, the optimal throughput- 
delay trade-off is hounded as 

~ ( t ? . )  = O(D(,I?)/?J),  for ~ ( n )  = 0(1/=). 

Since this throughput-delay trade-off is achieved hy 
Scheme 3(a), it is optimal. 
Optimality of Scheme 3(h): From (22) .  it  is c.lear that 
achieving T(?i) = U(],'-) requires that / ( ? I )  = 
o( I). But from the preceding discussion. for any l.. when 
= o(1). the mohile-delay dominates the hop-delay. Thus, 

to lilaximize the throughput for a given delay. any op- 
timal scheme must have 7 = O( m), lhere- 
fore. for any optimal scheme. the throughput T ( n )  = 

Consider a throughput-delay optinial scheme with av- 
erage hop distance / ( ? I ) .  For any such scheme, fixing 
a throughput T(n,) ,  fixes T(??.). The goal of an optimal 
scheme is to use hops to mininiize the time Ihr a packet 
to reach its destination. 

Consider the transmission of a packet p starting from its 
source S and moving towads its destination U. initially at 
a distance d from S. Recall that a packet travels a distance 
I = l ( n )  through hops and the rest through the motion of 
the nodes relaying it. Define t,, to be the time i t  takes the 
packet p. after leaving its source S. to reach its destination 
D. We ignore the time required for hops as the mobile de- 
lay dominates the total delay. Let E[t,] be the expectation 
of t., lor a given rand d .  Note that, the expectation is over 
the distrihution induced by random walks of the nodes. 

Lemma 8. For airy rarrd d, a sclieirie tkut tiiiiiiiiiixs E[t,] 
iiiii.st perfonn all tlie hops 11iejirc.t tiirie the packet i s  at a 
(/istarice less tliaii or rqirul 10 ifrom its desriiiariori D. 

ProoJ For r 2 d, the Leiniiia clearly holds. For r < d. 
consider the following two schemes. Scheme A uses the 
entire hop distance rwhen the packet reaches within a dis- 
tance rof  D for the first time, which is consistent with the 

0 (l/r(?i,)&l@x). 

- -  

We claim the following. 
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claim o f  the lemma. Scheme B uses a hop of length c when 
the packet is at a distance 17 (d > d > 7) from 1). and uses 
the remaining hop distance - E at the end. as in Scheme 
A. 

to reach D in Scheme B than in Scheme A. For simplicity, 
wc assume that D is fixd. This does not affect general- 
ity as all nodes perform independent symmetric random 
walks. 

Consider the path of a packet originating at distance d 
from D. Until the packet reaches within a distance d of D, 
its path is the same in both schcmes. As illustrated in Fig- 
ure 6. under Scheme B. at point X, which is at a dishrice ri 
from D, the packet travcls a distance t by hops toward D to 
reach Y. Under Scheme A. the packet remains at point X. 
At this instant. the remaining time for the packet to reach 
0 under Scheme A, t.4, is the time taken to reach a ball 
H ( D ,  I )  startiug from X. and under Scheme B. it is the 
time t g  taken to reach B ( D ,  T - e), starting from Y. We 
now show that on average t.4 < tg. Consider a point D' 
on the line X-D at distance E from D (as depicted in Fig- 
ure 6). Since all nodes perform independent symmetric 
random walks, the prohahility that. a path starting tioni X 
reaches B(D7 r) is the same as the probability that any path 
starting from Y rcachcs B(D', r). Notc that. by cnnstruc- 
tion. B ( D ,  I- e )  C B(L)', I) .  Herice the time for a packet 
at Y to reach B( D', 1) is stochastically dominated by the 
timeneeded to reach B(D:  I -e) .  This proves that the time 
taken by Scheme A is strictly smaller than the time taken 
by Scheme B on average. 

Using the ahove argument inductively for all hops es- 
tahlishes the lemma. U 

The above lemma shows that a throughput-delay opti- 
mal scheme must utilize all the hops at the end. Since in 
Scheme 3(b) half the hops are perforiiicd at the cud, it fol- 
lows that its achievable throughput-delay trade-off is of the 
Same order as that of an optimal scheme. This establishes 
the following theorem. 
Theorem 7 .  Scherrie 3 ubtairis (lie optiirutl tlii-ui~glipiir- 
d e l p  trade-uj'for riiubile networks. 

We want to show Ihat, on average, a packet takes longer 

V. CONCLUSION 

The way throughput scales with the number of nodes in 
ad hoc fixed and mobile wireless networks has been well- 
studied. However, the way delay scales with the size of 
such networks has not heen addressed previously. This 
paper provides a definition of delay in ad hoc networks 
and obtains optimal throughput-delay lrade-off in fixed 
and mobile ad hoc networks. For the Gupta-Kumar fixed 
network model. we showed that the optimal throughput- 
dclay trade-off is given by D ( u )  = O(aT(7a)). For the 

Fig. 6. lllmtration for comparison of Schemes A and R. 

Grossglauser-Tse rnohile network model. we showed that 
the delay scales as 0 (?j1r2/v(n.)). For a mobile wireless 
network we described a scheme that achieves the optimal 
throu_ghput-delay trade-off hy varying the nuinher of hops. 
the transmission range. and the degree of node mobility. 
The scheme captures the Gupta-Kumar model at one ex- 
treme and the Grossglauser-Tse model at the other. The 
proofs use a unified framework and siiiipler tools than used 
in previous work. 
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