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IV. CONCLUSION

In this correspondence, we have presented a powerful technique
for generation of linear subcodes of turbo codes with better distance
spectra than the mother turbo code, building upon and extending the
work of Öberg and Siegel in [2]. We have presented the construction
of the linear subcodes as an optimization problem conducted via
minimization of a cost function closely related to the upper bound on
the asymptotic BER of the code. The minimization itself is achieved
via injection of known trace bits at the input of the encoder at strategic
locations rendering the occurrence of certain error events impossible,
and selective puncturing of the code that allows for recovery of the
rate loss incurred in the trace-bit injection process.

Due to the enormous complexity of the direct minimization itself,
a greedy approach is adopted that performs iterative optimization by
determining the optimal position of the trace bits at a given step, fol-
lowed by determination of the optimal positions of the punctured bits,
without any backtracking (i.e., in a greedy mode). Simulation results
are provided validating the effectiveness of the approach by improving
the distance spectra of several already optimized PCCC codes.
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Abstract—This note considers an -letter alphabet in which the th letter
is accessed with probability . The problem is to design efficient algo-
rithms for constructing near-optimal, depth-constrained Huffman and al-
phabetic codes. We recast the problem as one of determining a probability
vector in an appropriate convex set, , so as to min-
imize the relative entropy over all . Methods from convex
optimization give an explicit solution for in terms of . We show that
the Huffman and alphabetic codes so constructed are within 1 and 2 bits of
the corresponding optimal depth-constrained codes.

Index Terms—Alphabetic codes, prefix lookup, router.

I. BACKGROUND AND INTRODUCTION

In the standard binary prefix coding problem, one is required to find
binary codewords of lengths for the letters, , of an
alphabet such that 1) no codeword is a prefix of another codeword,
and 2) if the letter occurs with a probability , then the average
codeword length is minimized.

An optimal prefix code can be constructed by Huffman’s algorithmic
procedure [1]. The Huffman procedure constructs a binary tree with the
letters of the alphabet at its leaves, and the codeword represents the
path from the root node of the tree to the leaf node associated with
the letter . The depth of the leaf corresponding to , and hence the
length of codeword , is . The depth of the Huffman tree is defined
to be the maximum depth of any letter in the tree. The complexity of
Huffman’s construction is in both time and space when the prob-
abilities are given in sorted order; otherwise, it is in time
and in space [2].

If there is an ordering relationship in the alphabet, say if
, one is sometimes interested in constructing alphabetic codes.

Alphabetic codes are prefix codes with the additional restriction that
must appear lexicographically before for . Equally, in the

tree corresponding to an alphabetic code, the letters must appear
in alphabetic order as leaves of the tree. Hu and Tucker [3] and Garsia
and Wachs [4] describe procedures for finding the optimal alphabetic
code in time and space.

An important variant of the general prefix coding problem is the
depth-constrained prefix coding problem—the subject of this corre-
spondence. This is the prefix coding problem subject to an additional
constraint that the depth of the tree cannot exceed a specified maximum
value, say . This problem is useful in many compression and en-
coding/decoding applications. For instance, it is generally much easier
to design efficient decoders when the codes are restricted to a maximum
length (such as the word size of the decoding machine).
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Alphabetic trees are used as binary search data structures for con-
ducting queries on . The alphabetic ordering of the leaves allows
for simple comparisons at the internal nodes of the tree and guides the
search process from the root to a particular leaf. In contrast, a Huffman
tree does not necessarily maintain the lexicographic ordering of the let-
ters at its leaves, and hence does not lend itself to efficient binary search
procedures. In this correspondence, we are interested in practical and
simple-to-implement algorithms for both the Huffman and alphabetic
versions of the depth-constrained coding problem.

Our motivation for considering the depth-constrained alphabetic
coding problem arose from the need to perform fast route lookups in
Internet routers [5]. In the route lookup problem, one is required to
search the destination address of every incoming packet to find the best
matching entry in the forwarding table of the router. The forwarding
table can be organized as a binary search tree. This tree can be redrawn
to minimize the average lookup time based on a knowledge of the
access probabilities of the different entries. However, it is possible
for the depth of the binary tree to grow very large depending on the
actual access probabilities. Routers in the core of the Internet have
more than 100 000 entries today [6]. This can lead to an alphabetic
tree with a worst case depth of several hundreds or thousands, which
in turn can cause prohibitively long lookup times (up to 100 000
memory accesses) for some incoming packets. Therefore, it becomes
necessary to constrain the depth of the binary tree to some small
prespecified number. Moreover, since access patterns to routing table
entries can change, ease of implementation of the coding algorithm
is more relevant than the strict optimality of the solution. Hence, we
are motivated to find near-optimal depth-constrained alphabetic codes
that can be quickly recomputed.

An algorithm is proposed by Garey [7] for finding the optimal
depth-constrained Huffman code in time, and the op-
timal depth-constrained alphabetic code in time. The
time complexity of the alphabetic version is improved to
by Itai [8] and Wessner [9]. Larmore and Hirschberg [10] give an

time algorithm for the Huffman case, and an
time algorithm for the alphabetic case. Both these algorithms use
a scheme called Package-Merge. The fastest optimal algorithm for
finding depth-constained Huffman codes is due to Schieber [11], and
runs in time . Both this and the package-merge
algorithms are fairly complicated to implement and have high constant
factors. The implementation aspects of the package-merge algorithms
are studied by Turpin and Moffat [12].

As we will see, relaxing the optimality restriction affords consid-
erable simplification for finding depth-constrained codes. A near-op-
timal algorithm was proposed by Mildiú, Laber, and Pessoa [13], [14].
Their algorithm runs in 1 time where is the
maximum weight among the letters. The authors prove that the average
code length obtained by their algorithm is not greater than the optimal
average code length by more than where
is the golden ratio .

This correspondence proposes near-optimal algorithms for the
depth-constrained coding problem based on a framework built on
convex optimization techniques. The same framework provides solu-
tions for both the Huffman and alphabetic cases. The algorithms are
similar in flavor and run in time and space. Simple
proofs show that the average code lengths obtained by the algorithms
are within one and two bits, respectively, of the average codeword

1The bound is stated in terms of integer weights rather than letter probabilities
because the algorithm is not strongly polynomial [15].

lengths of the optimal depth-constrained Huffman and alphabetic
codes. The complexity of these algorithms does not depend upon the
letter probabilities. More importantly, the algorithms are simple to
implement, and the methods used are possibly of general interest.

II. DEPTH-CONSTRAINED HUFFMAN CODES

We are interested in the following minimization problem: Given a set
of probabilities , choose positive integers

so as to minimize

(1)

subject to the constraints i) for all , and ii) the form the
lengths of a prefix (or Huffman) code.

Our solution to this problem will use the following two standard
lemmas, whose proofs may be found, for example, in Cover and
Thomas [16].

Lemma 1: (Kraft’s Inequality): There exists a prefix code with
codeword lengths if and only if .

Lemma 2: The minimum average length of a prefix code on
letters, where the th letter occurs with probability , satisfies:

, where is the entropy of the probability dis-
tribution .

Remark: The lower bound, , in Lemma 2 is well known. The
upper bound can be achieved using the following codeword lengths
(which satisfy Kraft’s inequality):

(2)

Since the given set of probabilities might be such that
, the lengths used in the preceding remark

could yield a tree whose maximum depth is greater than . To work
around this problem we transform the given probabilities into
another set of probabilities such that .
With this transformation, we construct a canonical coding tree where
the th codeword has a length given by

(3)

These lengths satisfy Kraft’s inequality and therefore can be used to
construct a prefix tree. Clearly, the maximum codeword length is no
greater than . We are now left with having to choose a good candidate
for the vector so as to minimize .

Consider

(4)

where is the relative entropy between the distributions and
.
Therefore, in order to minimize , we must choose so as

to minimize . This leads to the following optimization problem:
Given choose so as to

minimize

subject to and (5)
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The cost function is convex in (see [16, p. 30]) and the
constraint set is convex; in fact, it is defined by linear inequalities.
Minimizing convex cost functions with linear constraints is a standard
problem in optimization theory and is easily solved by using Lagrange
multiplier methods (see, for example, Bertsekas [17, Sec. 3.4] or Boyd
and Vandenberghe [18]). Accordingly, define

(6)

Setting the partial derivatives with respect to to zero at we get

(7)

Substituting this in , we get the dual function , and
now need to solve the following Lagrange dual problem:

maximize

subject to

with the implicit constraint that , which is the domain of the
dual function . Now

Maximizing gives

which combined with the constraint that gives us
. Substituting this in (7), we get

(8)

To finish, we need to find a value of , say, such that the constraint
is satisfied. The algorithm MINDPQ described later finds

.
By sorting if necessary we may assume that the are given to

MINDPQ in sorted order with as the largest element and as the
smallest element. MINDPQ obtains as the solution of ,
where . For , let
and if for all . Using this and (8) we may write
as

(9)

Lemma 3: There is a unique value of such that
.

Proof: For , and

since . And for , and
since .

Given this, the proof of the lemma will follow from showing that
is a strictly monotonically decreasing function of for

Accordingly, consider and such that . Observe that
. If , then clearly . If

then

where the last inequality follows from the definition of ; that is,
for all .

The preceding lemma implies that can be found explicitly by a
binary search procedure. This concludes the description of MINDPQ.
Substituting the value of in (8) gives us the transformed set of prob-
abilities .

Lemma 4: Let for obtained above. Then

Proof: Follows from (4).

Theorem 1: Given an -vector of probabilities , a Huffman
code with a depth constraint can be constructed in
time and space. The average codeword length so constructed is
within one bit of the average length of the optimum depth-constrained
Huffman code.

Proof: Given the we execute the algorithm MINDPQ
to obtain the associated transformed probabilities . The
yield codeword lengths via (3). These codewords satisfy Kraft’s
inequality and yield a depth-constrained prefix code. Observe that the
MINDPQ procedure which involves sorting takes time
and space.

Let be the codeword lengths for the optimum depth-con-
strained prefix tree with leaf probabilities , and let

be the associated average codeword length. Now,

where follows from the fact that for all prob-
ability distributions such that .

III. DEPTH-CONSTRAINED ALPHABETIC CODES

The algorithm for constructing good depth-constrained alphabetic
codes solves the minimization problem stated in (1) of the previous
section, with the additional constraint that the resulting code be alpha-
betic. The solution for the alphabetic version of the problem uses the
following two lemmas from Yeung [19], which are analogous to Lem-
mas 1 and 2, respectively.
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Lemma 5 (Yeung’s Characteristic Inequality): There exists an al-
phabetic code with codeword lengths if and only if , where

is given by the recursion

and

Proof: For a complete proof, see [19]. The basic idea is to con-
struct a canonical coding tree, a tree in which the codewords are chosen
lexicographically using the lengths . For instance, suppose that

for some , and in drawing the canonical tree we find the code-
word corresponding to the letter to be . If , then the
codeword for the letter will be chosen to be ; if ,
the codeword for letter is chosen to be ; and if , the
codeword for letter is chosen to be . Clearly, the resulting
tree will be alphabetic and Yeung’s result verifies that this is possible
if and only if the characteristic inequality defined above is satisfied by
the lengths .

Lemma 6: The minimum average length of an alphabetic code
on letters, where the th letter occurs with probability satisfies

Proof: The lower bound is well known. For the upper bound, the
codeword length of the th letter occurring with probability can
be chosen to be

.

The proof in [19] verifies that these lengths satisfy the characteristic in-
equality, and shows that a canonical coding tree constructed with these
lengths has an average depth satisfying the upper bound.

Similar to the Huffman case, since the given set of probabilities
might be such that , a direct application of
Lemma 6 could yield a tree whose maximum depth is bigger than .
Hence, we again transform the given probabilities into another
set of probabilities such that . The code-
word lengths for constructing the canonical coding tree using are
chosen as follows:

.
(10)

Each codeword is clearly at most bits long and the tree thus generated
has a maximum depth of . We now show that these codeword lengths
yield an alphabetic tree.

Lemma 7: The of (10) satisfy the characteristic inequality of
Lemma 5.

Proof: We shall prove by induction that

For the base case, by the definition of . For the
induction step, assume the hypothesis is true for . By definition,

. Now there are two possible cases.
Case 1: . Or, equally, . Since

for all positive and , we get that

This and the inductive hypothesis yield

Case 2: . This implies that , and hence
. Also, note that the definition of at (10) implies, for each

, that and hence that is an integer multiple of . This
further implies that is an integer multiple of for each . There-
fore,

and we get

Therefore, . And

To continue with our search for good depth-constrained alphabetic
codes, we proceed as in (4) and obtain that the lengths defined in (10)
satisfy

(11)

where is the relative entropy between the distributions and .
Thus, given , we need to determine

so that is minimized. This convex optmization problem can
be solved exactly analogously as before using the algorithm MINDPQ.
The so determined will yield codeword lengths via
(10). And, as shown in (11), the average codeword length is within two
bits of that of the optimum depth-constrained alphabetic code.

The above results are stated in the following theorem whose proof is
identical to that of Theorem 1, and hence is omitted.

Theorem 2: Given an -vector of probabilities an alphabetic
code with a depth constraint of can be constructed in
time and space. The average codeword length so constructed is
within two bits of the average length of the optimum depth-constrained
alphabetic code.
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Codes From the Suzuki Function Field
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Abstract—We construct algebraic geometry (AG) codes from the func-
tion field defined by

where is a positive integer. These codes are supported by two places, and
many have parameters that are better than those of any comparable code
supported by one place of the same function field. To define such codes,
we determine and exploit the structure of the Weierstrass gap set of an
arbitrary pair of rational places of . Moreover, we
find some codes over with parameters that are better than any known
code.

Index Terms—Algebraic geometry (AG) code, optimal function field,
Suzuki curve, Suzuki function field, Weierstrass gap set.

I. INTRODUCTION

IN [3], the function field defined by
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is used to construct codes supported by a single place that have better
parameters than any known code. Such codes are sometimes referred to
as one-point codes. In [14], it is shown that there are -point codes with

, that is algebraic geometry (AG) codes supported by places
where , that have better parameters than any comparable one-
point code constructed from the same curve. In this correspondence, we
combine these ideas to find such two-point codes over where

is a positive integer. Of those we find, some have better parameters
than any comparable one-point code and some have better parameters
than any known code.

We consider the function field defined by

where , , and is a positive integer. The projective
curve defined by the above equation was considered in [8] as an ex-
ample of a curve with an automorphism group that is large with respect
to its genus. The curve (resp., function field ) is sometimes called
the Suzuki curve (resp., Suzuki function field) as the automorphism
group of (resp., ) is the Suzuki group of order .
In [10], Hansen and Stichtenoth considered this curve and applica-
tions to AG codes. More recently, Kirfel and Pellikaan determined the
Feng-Rao bound on the minimum distances of some of these AG codes
[12]. The case where has been examined by Chen and Duursma
as mentioned above. Here, we use the structure of Weierstrass gap sets
to construct codes and estimate their parameters. This method was first
suggested by Goppa ([6], [7]) and later made more explicit in [5], [14],
[9], [4], and [13]. We see that these new codes compare quite favorably
with those studied in [10], [12], and [3].

This work is organized as follows. Section II contains the necessary
background information on the Suzuki function field. In Section III,
we determine the Weierstrass gap set of any pair of rational places. In
Section IV, this gap set is used to define two-point AG codes. These
codes are compared with one-point codes constructed from the Suzuki
function field. In addition, we find codes over other than those in
[3] with better parameters than any known code.

II. SUZUKI FUNCTION FIELDS

Let denote the algebraic function field defined
by

where and for some positive integer . Let us
review some facts about found in [10]. The notation we use is
as in [16]. A place of of degree one will be called a rational
place. The set of all rational places of is denoted by , and
the divisor (resp., pole divisor) of a function is denoted by

(resp., ). The function field has exactly rational
places. In fact, for each there exists a unique rational place

that is a common zero of and . In addition,
has a single place at infinity, . The genus of is .
Moreover, the explicit formulas of Weil can be used to show that is
an optimal function field.

It will be convenient at times to view as an extension of the rational
function field . Then (see [10, Lemma 1.8]).
Let denote the zero of and denote
the place at infinity. It will also be useful to consider the functions
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