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ABSTRACT
As the Internet grows, so do the complexity and computational
requirements of network simulations. This leads either to un-
realistic, or to prohibitely expensive simulation experiments.

We explore a way to side-step this problem, by combining
simulation with sampling and analysis. Our hypothesis is this:
if we take a sample of the traffic, and feed it into a suitably
scaled version of the system, we can extrapolate from the per-
formance of the scaled system to that of the original.

We find that when we scale a network which is shared by
TCP-like flows, and which is controlled by a variety of active
queue management schemes, then performance measures such
as queueing delay and the distribution of flow transfer times
are left virtually unchanged. Hence, the computational re-
quirements of network simulations and the cost of experiments
can decrease dramatically.

1. INTRODUCTION
Measuring the performance of the Internet and predicting its

behavior under novel protocols and architectures are important
research problems. These problems are made difficult by the
sheer size and heterogeneity of the Internet: it is very hard to
simulate large networks and to pinpoint aspects of algorithms
and protocols relevant to their behavior. This has prompted
work on traffic sampling [1, 2]. Sampling certainly reduces the
volume of data, although it can be hard to work backwards—to
infer the performance of the original system.

A direct way to measure and predict performance is with
exhaustive simulation: If we record the primitive inputs to the
system, such as session arrival times and flow types, we can
in principle compute the full state of the system. Further,
through simulation we can test the behavior of the network
under new protocols and architectures. But such large-scale
simulation requires massive computing power.

Reduced-order models can go some way in reducing the bur-
den of simulation. In some cases [3, 13] one can reduce the di-
mensionality of the data, for example by working with traffic
matrices rather than full traces, while retaining enough infor-
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mation to estimate the state of the network. The trouble is
that this requires careful traffic characterization and model-
building. The heterogeneity of the Internet makes this time-
consuming and difficult, since each scenario might potentially
require a different new model.

In this paper we explore a way to reduce the computational
requirements of simulations and the cost of experiments, and
hence simplify network measurement and performance predic-
tion. We do this by combining simulations with sampling and
analysis. Our basic hypothesis, which we call SHRiNK1, is
this: if we take a sample of the traffic, and feed it into a suit-
ably scaled version of the system, we can extrapolate from the
performance of the scaled system to that of the original.

This has two benefits. First, by relying only on a sample of
the traffic, SHRiNK reduces the amount of data we need to
work with. Second, by using samples of actual traffic, it short-
cuts the traffic characterization and model-building process
while ensuring the relevance of the results.

This approach also presents challenges. At first sight, it ap-
pears optimistic. Might not the behavior of a large network
with many users and higher link speeds be intrinsically dif-
ferent to that of a smaller network? Somewhat surprisingly
we find that, in several essential ways, one can mimic a large
network using a suitably scaled-down version. The key is to
find suitable ways to scale down the network and extrapolate
performance.

The outline of the paper is as follows: In Section 2 we study
the scaling behavior of an IP-network whose traffic consists of
long-lived TCP-like flows arriving in clusters. Networks with
such traffic have been used in the literature to test the be-
havior of control algorithms and queue management schemes.
Using simulations and theory we find that when such a net-
work is suitably scaled, performance measures such as queue-
ing delay and drop probability are left virtually unchanged. In
Section 3 we study IP networks at which flows arrive at ran-
dom times (i.e. unclustered) and whose sizes are heavy-tailed.
Such networks are representative of the Internet. We find that
a different scaling to that in Section 2 leaves the distribution
of the number of active flows and of their normalized transfer
times unchanged. A simple theoretical argument reveals that
the method we suggest for “SHRiNKing” networks in which
flows arrive at random times will be widely applicable (i.e. for
a variety of topologies, flow transfer protocols, and queue man-
agement schemes). By contrast, we find that the theoretical
underpinning for SHRiNKing networks at which flows arrive
in clusters depends on the type of queue management scheme

1SHRiNK: Small-scale Hi-fidelity Reproduction of Network Ki-
netics
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used at the routers.
A word about the organization of the paper: Space limita-

tions have necessitated a selective presentation of the material.
We have chosen to describe the method in detail. The theo-
retical complement and the validation using simulations are
abbreviated. More details can be found in a longer version of
the paper [10].

2. SCALING BEHAVIOR OF IP NETWORKS
WITH LONG-LIVED FLOWS

In this section we explore how SHRiNK applies to IP net-
works used by long-lived TCP-like flows that arrive in clusters,
and controlled by queue management schemes like RED.

First, we explain in general terms how we sample traffic,
scale the network, and extrapolate performance.

Sampling is simple. We sample a proportion α of the flows,
independently and without replacement.

We scale the network as follows: link speeds and buffer sizes
are multiplied by α. The various AQM-specific parameters are
also scaled, as we will explain in the following section 2.1. The
network topology is unchanged during scaling. In the cases we
study, performance measures such as average queueing delay
are virtually the same in the scaled and the unscaled system.

Our main theoretical tool is the recent work on fluid mod-
els for TCP networks [8]. While [8] shows these models to be
reasonably accurate in most scenarios, the range of their ap-
plicability is not yet fully understood. However, in some cases
the SHRiNK hypothesis holds even when the fluid model is
not accurate, as shown in Section 2.1.2.

2.1 RED
The key features of RED are the following two equations,

which together specify the drop (or marking) probability. RED
maintains a moving average qa of the instantaneous queue size
q; and qa is updated whenever a packet arrives, according to
the rule

qa := (1 − w)qa + wq,

where w is a parameter that determines the size of the aver-
aging window. The average queue size determines the drop
probability p, according to the equation

pRED(qa) =






0 if qa < minth

pmax

( qa−minth
maxth−minth

)
if minth ≤ qa < maxth

1 if qa > maxth

(1)

We scale the parameters pmax, minth, maxth and w as follows:
minth and maxth are multiplied by α; pmax is fixed at 10%; the
averaging parameter w is multiplied by α−1. The reason of
choosing these parameters will become clear later in Section
2.1.1.

The Basic Setup

We consider two congested links in tandem, as shown in Figure
1. There are three routers, R1, R2 and R3; and three groups of
flows, grp1, grp2, and grp3. The link speeds are 100Mbps and
the buffers can hold 8000 packets. The RED parameters are
minth = 1000, maxth = 2500 and w = 0.000005. For the flows:
grp0 consists of 1200 TCP flows each having a propagation
delay of 150ms, grp1 consists of 1200 TCP flows each having
a propagation delay of 200ms, and grp2 consists of 600 TCP
flows each having a propagation delay of 250ms. Note that
75% of grp0 flows switch off at time 150s.
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Figure 1: Basic network topology and flow information

This network is scaled-down by factors α = 0.1 and 0.02,
and the parameters are modified as described above.
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Figure 2: Basic Setup: Average Queueing Delay at Q1

We plot the average queueing delay at Q1 in Figure 2. The
drop probability at Q1 is shown in Figure 3. Due to a lack of
space, we omit the plot of the average queueing delay and drop
probability for Q2 whose behavior is similar to those of Q1.
We see that the queueing delay and the drop probabilities are
almost identical at different scales. We draw attention to two
features which we shall comment upon later: (i) The transient
behaviors (e.g. the overshoots and undershoots) are quite well-
mimicked at the smaller scales, and (ii) the variability increases
as the scale reduces.

Since the queueing dynamics and drop probabilities essen-
tially remain the same, the dynamics of the TCP flows are also
unchanged. In other words, an individual flow which survives
the sampling process essentially cannot tell whether it is in the
scaled or the unscaled system.

We have also tested the case where the scale is α = 0.01. In
this case, only three flows in grp1 are present during the period
150s to 200s. Hence the sample is too meager to reproduce the
queueing dynamics. Certainly, 1% is not the limit of the scaling
hypothesis in general. Further study needs to be conducted to
find out theoretically where this limit is.

ACM SIGCOMM Computer Communications Review Volume 33, Number 1: January 200336



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120 140 160 180 200

Dr
op

 P
ro

ba
bi

lity

Simulation Time (Sec)

scale = 1
scale = 0.1

scale = 0.02

Figure 3: Basic Setup: Drop Probability at Q1

2.1.1 With Faster Links

Suppose we alter the basic setup, by increasing the link
speeds to 500Mbps, while keeping all other parameters the
same. Figure 4 (zoomed in to emphasize the point) illustrates
that, once again, scaling the network does not alter the queue-
ing delay at Q1 (Q2 shows the same scaling behavior). Note
that high link speeds cause the queue to oscillate. There have
been various proposals for stabilizing RED [5, 9]. We are not
concerned with stabilizing RED here: we mention this case to
show that SHRiNK can work whether or not the queue oscil-
lates.
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Figure 4: With faster links: Average queueing delay
at Q1 (zoomed in)

Theory

We now show that these simulation results are supported by
the fluid model of TCP/RED [8].

Consider N flows sharing a link of capacity C. Let Wi(t)
and Ri(t) be the window size and round-trip time of flow i at
time t. Here Ri(t) = Ti + q(t)/C, where Ti is the propagation
delay for flow i and q(t) is the queue size at time t. Let p(t) be
the drop probability and qa(t) the average queue size at time
t.

The fluid model describes how these quantities evolve; or
rather, since these quantities are random, the fluid model de-
scribes how their expected values evolve. Let X̄ be the ex-
pected value of random variable X. Then the fluid model

equations are:

dW̄i(t)
dt

=
1

Ri(q̄(t))
− W̄i(t)W̄i(t− τi)

1.5Ri(q̄(t− τi))
p̄(t− τi) (2)

dq̄(t)
dt

=
N∑

i=1

W̄i(t)
Ri(q̄(t− τi))

− C (3)

dq̄a(t)
dt

=
log(1− w)

δ
q̄a(t)− log(1− w)

δ
q̄(t) (4)

p̄(t) = pRED(q̄a(t)) (5)

where τi = τi(t) solves τi(t) = Ri(q̄(t− τi(t))), δ is the average
packet inter-arrival time, and pRED is as in (1) 2. Suppose we
have a solution to these equations

(
W̄i(·), q̄(·), q̄a(·), p̄(·)

)
.

Now, suppose the network is scaled and denote by C′, N ′,
etc., the parameters of the scaled system. When the network is
scaled, the fluid model equations change, and so the solution
changes. Let

(
W̄ ′

i (·), q̄′(·), q̄′a(·), p̄′(·)
)

be the solution of the
scaled system. It can be theoretically verified (but we do not
do this here due to lack of space) that

(
W̄ ′

i (·), q̄′(·), q̄′a(·), p̄′(·)
)

=
(
W̄i(·), αq̄(·), αq̄a(·), p̄(·)

)
,

which means the queueing delay q̄′/C′ = αq̄/αC is identical
to that in the unscaled system. The drop probability is also
the same in each case, i.e. p̄(t) = p̄′(t). Thus, we will have
theoretical support for the observations in the previous section.
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Figure 5: Fluid model predicts scaling behavior

Figure 5 presents the solution of the fluid model for the
queueing delay at Q1 under the scenario of Figure 1 for the
scale parameters α = 1 and 0.1. As can be seen, both the so-
lutions are virtually identical, illustrating the scaling property
of the differential equations mentioned above.

2.1.2 When the theory is not appropriate

Suppose we alter the basic setup, by decreasing the link
speeds to 50Mbps, while keeping all other parameters the same.
Once again, scaling the network does not alter the queueing
delay. Due to limitations of space we omit the corresponding
plot. For such a simulation scenario, especially in the time
frame 100sec-150sec, the fluid model is not a good fit as shown

2We have the constant 1.5 in (2), not 2 as in [8]. This change
improves the accuracy of the fluid model; due to limited space
we omit the derivation.
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in [12] and verified by us via simulations: actual window and
queue sizes are integer-valued whereas fluid solutions are real-
valued; rounding errors are non-negligible when window sizes
are small as is the case here. The range of applicability of the
fluid model is not our primary concern in this paper: we men-
tion this case to show that SHRiNK can work whether or not
the fluid model is appropriate.
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Figure 6: DropTail: Average queueing delay at Q2

2.2 DropTail
While all the simulations above show the validity of SHRiNK,

the scaling behavior does not hold when we change the queue
management scheme to DropTail. Figure 6 shows the average
queueing delay at Q2. Clearly, the queueing delays for differ-
ent scale do not match. This scheme drops all the packets that
arrive at a full buffer. As a result, it could cause a number of
consecutive packets to be lost. These bursty drops underlie the
reason the scaling hypothesis fails in this case [11]. Besides,
when packet drops are bursty and correlated, the assumption
that packet drops occur as a Poisson process (see [8]) is vio-
lated and the differential equations become invalid.

2.3 Summary
Besides the examples we have studied in this section, we have

also validated SHRiNK with heterogeneous end-systems (TCP,
general AIMD and MIMD protocols, UDP, HTTP), with a va-
riety of active queue management policies such as the PI con-
troller [6] and AVQ [7], with a range of system parameters, and
with a variety of network topologies (tandems, stars, meshes).
We have found that, in cases where TCP-like flows are long-
lived and drops are not bursty, basic performance measures
such as queueing delay are left unchanged, when we sample
the input traffic and scale the network parameters in propor-
tion.

3. SCALING BEHAVIOR OF IP NETWORKS
WITH SHORT AND LONG FLOWS

It has been shown that the size distribution of flows on the
Internet is heavy-tailed [14]. Hence, Internet traffic consists of
a large fraction of short and and a small fraction of long flows.
It has been observed that sessions arrive as a Poisson process3.
In this section we take these observations into account and
3Further, for certain models of TCP bandwidth sharing, the
equilibrium distribution of the number of flows in progress is
as if flows arrive as a Poisson process, not just sessions [4].

study the scaling behavior of IP networks carrying heavy-tail
distributed, Poisson flows. Our finding is that with a somewhat
different scaling than in the previous section, the distributions
of a large number of performance measures, such as the number
of active flows and the delay of flows, remain the same.

3.1 Simulations
We perform simulations using ns-2 for the same topology as

in Figure 1. There are three routers, R1, R2 and R3, two links
in tandem, and three groups of flows, grp1, grp2, and grp3.
The link speeds are 10Mbps. We present simulations with both
RED and DropTail. The RED parameters are minth = 100,
maxth = 250 and w = 0.00005. When using DropTail, the
buffer can hold 200 packets.

Within each group flows arrive as a Poisson process with
some rate λ. We vary λ to study both uncongested and con-
gested scenarios. (We use the ns-2 built-in routines to generate
sessions consisting of a single object each. This is what we call
a flow.) Each flow consists of a Pareto-distributed number
of packets with average size 12 packets and shape parameter
equal to 1.2. The packet size is set to 1000 bytes. The prop-
agation delay of each flow of grp0, grp1, and grp2, is 50ms,
100ms, and 150ms respectively.

Sampling and Scaling

The heavy-tailed nature of the traffic makes sampling a bit
more involved than before, because a small number of very
large flows has a large impact on congestion. To guarantee that
we sample the correct number of these flows, we separate flows
into large (elephants) and small (mice) and sample exactly a
proportion α of each.

Scaling the system is slightly different from Section 2. As
before, we multiply by α the link speeds. However, we do
not scale the buffer sizes or the RED thresholds. Further, we
multiply by α−1 the propagation delay of each flow4. We will
elaborate on the intuition and theory behind these choices after
we present the simulation results.

Since we sample flows which arrive at random times and
have random sizes, quantities like the queueing delay cannot
be expected to scale as functions of time. However, simula-
tions and theory show that we can exhaustively compare the
distributions of related quantities.

We run the experiments for scale factors α = 1 and 0.1, and
compare the distribution of the number of active flows as well
as the histogram of the normalized delays of the flows in the
original and the scaled system. (The normalized delays are
the flow transfer times multiplied by α.) We will also compare
more detailed performance measures such as the distribution
of active flows that are less than some size and belong to a par-
ticular group. Due to limitations of space we will not present
results when the links are uncongested, but only compare dis-
tributions for the more interesting case where drops occur.
(The performance of uncongested networks also scale.) The
flow arrival rate is set to be 60 flows/sec within each group.
The results don’t depend on whether the rates are larger or
smaller.

Simulation Results

We will start by comparing distributions when RED is used.

4One should also multiply by α−1 the various protocol time-
outs. In practice, since it is very rare for a timeout to expire,
leaving timeouts unscaled does not affect the results.
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Figure 7: Distribution of number of active flows on
the first link.

Figure 7 plots the distribution of the number of active flows
in the first link between routers R1 and R2. It is evident from
the plot that the two distributions match. A similar scaling
holds for the second link.
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Figure 8: Histogram of normalized delays of grp0
flows.

Figure 8 plots the histogram of the flow transfer times (de-
lays) of the flows of grp0 multiplied by α. To generate the
histogram, we use delay chunks of 10

α ms each. There are 150
such delay chunks in the plot, corresponding to flows having a
delay of 0 to 10

α ms, 10
α ms to 20

α ms, and so on. The last delay
chunk is for flows that have a delay of at least 1500

α ms. It is
evident from the plot that the distribution of the normalized
delays match. The results for the other two groups of flows
are also the same. The peaks in the delay plot are due to the
TCP slow-start mechanism. The left-most peak corresponds
to flows which send only one packet that face no congestion,
the portion of the curve between the first and second peaks
corresponds to flows which send only one packet but face con-
gestion (but no drops), the next peak corresponds to flows
which send two packets and face no congestion, and so on.

We will now investigate if distributions scale when DropTail

is used.
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Figure 9: Histogram of normalized delays of grp1 flows
when DropTail is used.

Figure 9 plots the histogram of the flow transfer times of the
flows of grp1 multiplied by α, when routers employ DropTail.
The distributions of the normalized delays match as before.
Although not shown here, the distribution of the number of
active flows also scales under DropTail.
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Figure 10: Distribution of number of active grp2 flows
with size less than 12 packets.

What about more detailed performance measures? As an ex-
ample, we compare the distribution of active flows belonging
to grp2 that are less than 12 packets long. The AQM scheme
used at the routers is RED (DropTail behaves similarly). Fig-
ure 10 compares the two distributions from the original and
scaled system. Again, the plots match.

3.2 Theoretical support
The above results can be theoretically supported. First, con-

sider a simplified model: suppose that flows arrive as a Poisson
process, and that the service time for each flow is independent
and drawn from some common distribution (perhaps heavy-
tailed). This is known in queueing theory as an M/GI model.
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Suppose also that the service capacity of the link is shared be-
tween currently active flows according to the classic equation
for TCP throughput. (We will shortly extend the argument to
allow for a detailed packet-level model of the link.) This is the
sort of flow-level model used in [4].

Let J(t) be the number of jobs in this system at time t.
Now scale the process of arriving flows, by multiplying flow
interarrival times by 1/α. Also, multiply the service capacity
of the link by α. It is not hard to see that the scaled system
looks exactly like the original system, watched in slow motion.
Specifically, if J̃(t) is the number of jobs in the scaled system
at time t, then J̃(t) = J(αt).

Suppose that instead of stretching the flow arrival process
in time we had sampled it, retaining each flow independently
with probability α. It is a simple but far-reaching property
of the Poisson process that these two processes have exactly
the same distribution. In particular, if Ĵ(t) is the number of
jobs in the system which is scaled by sampling, then for each
t (assuming the queues are in equilibrium), Ĵ(t) and J̃(t) have
the same distribution, which is the distribution of J(t). That
is, the marginal distribution of the number of jobs is the same
in the two systems.

This argument does not in fact depend on how the link
shares its bandwidth. It could be first-come-first-served, or
use priorities. More interestingly, let us instead model the be-
havior of the link as a discrete event system. Suppose that
flows arrive as a Poisson process as before, and that they ar-
rive with a certain number of packets to send, independent and
with a common distribution. Consider a time-line showing the
evolution in time of the discrete event system. How could we
scale the parameters of the system, in order to stretch out the
time-line by a factor 1/α?

To be concrete, suppose that α = 0.1, and that a flow with
12 packets takes 1 second to transfer in the original system. We
would like to ensure that its transfer time in the scaled system
is 10 seconds. We can do this by making sure that each of
the 12 packets takes 10 times as long to transfer in the scaled
system. Now, the transmission time of a packet is the sum of
its queueing delay and propagation delay. We can multiply the
queueing delay by 10 by reducing the link speed by a factor of
10; we should also multiply the propagation delay by 10.

In general, we should multiply propagation times by 1/α,
and the service times by the same factor, which means mul-
tiplying the service rate by a factor α. As before we would
multiply flow interarrival times by 1/α, which has the same ef-
fect as sampling with probability α. Note that this model takes
account of retransmissions due to drops (assuming either there
are no timeouts, or that the timeout clock is also scaled). Note
also that the packet buffer at the link is not scaled. The con-
clusion holds just as before: the marginal distribution of the
number of jobs in the system is unchanged.

4. CONCLUSION
In this paper we have presented a method, SHRiNK, to re-

duce the complexity of network simulations and performance
prediction. Our main finding is that when a sample of the net-
work traffic is fed to a suitably scaled replica of the network,
performance measures of the original network are accurately
predicted by the smaller scale replica. In particular, (i) when
long-lived flows arrive in clusters, queueing delays and drop
probabilities in the two networks are the same as a function
of time in many interesting scenarios, and (ii) when flows ar-
rive at random times and their size is heavy-tailed, the distri-

bution of performance measures under any network topology,
active queue management mechanism, and transport protocol
remains unchanged. We have shown these results using simu-
lations and theory.

Further work consists of validating SHRiNK in large exper-
imental testbeds, obtaining a better understanding of the the-
ory, and trying to extend the approach to web-server farms
and to wireless networks.
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